
Math 4710/6710 Graph Theory Fall 2019

HAMILTON CYCLES

Reading: 18.1, 3.

Recall: hamilton path or cycle: spanning.
hamiltonian graph: has hamilton cycle.
traceable graph: has hamilton path.

c(G): number of components of G.

Necessary condition

Examples: K3,4: not hamiltonian, cannot al-
ternate X − Y −X − Y . . ..

G not hamiltonian: c(C − S) ≤ 2, C − S span-
ning subgraph of G−S with c(G−S) = 3,
impossible. More general version of bipar-
tite problem.

Toughness condition: If G has a hamilton cycle then
c(G− S) ≤ |S| ∀ S ⊆ V (G), S 6= ∅.

G is t-tough if c(G−S) ≤ |S|/t ∀ S ⊆ V (G) with c(G−S) ≥ 2.
So hamiltonian⇒ 1-tough. Book calls 1-tough just ‘tough’.

Notes: (1) 1-tough ⇒ 2-connected (no cutvertex).

(2) High connectivity cannot guarantee hamiltonian. Kk,k+1 is
k-connected but not 1-tough so not hamiltonian.
But 1-tough 6⇒ hamiltonian (example from Chvatal, 1973).

Toughness Conjecture (Chvátal, 1973): Sufficiently tough
graphs are hamiltonian. (At present know required toughness
would have to be at least 9/4.)

Degree-based sufficient conditions

Dirac’s Theorem: If G is a simple graph with δ ≥ n/2, n ≥ 3, then G is hamiltonian.

Proof: Suppose not. Let G be a maximal n-vertex graph satisfying the condition that is not
hamiltonian. Then G is not complete, so there are two nonadjacent vertices u, v. By maximality
of G, G + uv is hamiltonian, with hamilton cycle C which must include uv. Then P = C − uv =
v1v2v3 . . . vn (v1 = u, vn = v) is a hamilton path in G. Let

S = {i | u ∼ vi} ⊆ [2, n − 1];
T = {i | v ∼ vi−1} ⊆ [3, n].

Then S ∪ T ⊆ [2, n] so |S ∪ T | ≤ n− 1. But
|S| + |T | = d(u) + d(v) = n, so S ∩ T 6= ∅.
If i ∈ S ∩ T then G has the hamilton cycle
C ′ shown, which is a contradiction.

Ore observed that this can be strengthened.
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Ore’s Theorem: Suppose G is an n-vertex simple graph, n ≥ 3, and d(u) + d(v) ≥ n for all
distinct nonadjacent u, v. Then G is hamiltonian.

Proof: Same. Need conditional for all nonadjacent u, v so can use maximality argument.

Note: (1) Theorems of Ore and Dirac are sharp: Take graph
with vertex separating G into two Kk+1’s: n = 2k + 1 and

δ = k = (n− 1)/2;
d(u) + d(v) = k + k = 2k = n− 1 ∀ nonadjacent u, v.

But no hamiltonian cycle since not 2-connected.

(2) Observe: G has hamilton path ⇔ G ∨K1 has hamilton cycle. Can deduce
d(u) + d(v) ≥ n− 1 ∀ distinct nonadj u, v

δ ≥ (n− 1)/2

}

⇒ G has hamilton path (is traceable)

In fact, can make an even more general statement.

Lemma H1: Let G be an n-vertex simple graph with distinct nonadjacent vertices u, v. If d(u) +
d(v) ≥ n then G is hamiltonian ⇔ G+ uv is hamiltonian.
Proof: (⇒) Obvious. (⇐) Almost same. Just start with G+ uv being hamiltonian.

addable edge uv: u 6∼ v, d(u) + d(v) ≥ n. My terminology, not standard.

Bondy-Chvátal closure: Given G, repeatedly add addable
edges until reach graph Gc with no more addable edges. Can
show Gc is unique: Bondy-Chvátal closure of G. G hamiltonian
⇔ Gc hamiltonian. Theorems of Dirac and Ore just cases where
Gc is complete.

Example where BCC complete although Dirac, Ore don’t work.

Leads to other complicated degree-based conditions; see book.

Sufficient condition: connectivity and independence

Saw before that connectivity by itself cannot guarantee hamiltonian. But if connectivity high
relative to size of independent sets, then get hamiltonian.

Recall α(G): size of maximum independent set.

Mark Ellingham H2 Vanderbilt University



Math 4710/6710 Graph Theory Fall 2019

Chvátal-Erdős Theorem: If G is loopless, n ≥ 3 and κ(G) ≥
α(G) then G is hamiltonian.

Proof: If G is supercomplete this is obvious, so suppose G is
not supercomplete. Then we may assume G is simple (since
parallel edges do not affect hamiltonicity, and since there are
nonadjacent vertices κ is determined by vertex cutsets) and
n ≥ κ+ 2.

Let C be a longest cycle in G, and assume G is not hamil-
tonian, so there exists z /∈ V (C). We know |V (C)| ≥ κ (since
any κ vertices lie on a cycle). For each x ∈ V (C) let x+ be the
vertex immediately following x on C (taking a fixed orientation
of C). There are κ paths from v to C, vertex-disjoint except at
v, ending at w1, w2, . . . , wκ. If z ∼ w+

i then we have a longer
cycle C ′ as shown. If w+

i ∼ w+
j then we have a longer cycle C ′′

as shown (even if w+
i w

+
j ∈ E(C)). Hence {z, w+

1 , w
+
2 , . . . , w

+
κ }

is an independent set of size κ + 1, a contradiction. Hence C
must be a hamilton cycle.

Connectivity and planarity

Recall: planar graph: can be drawn in plane without crossings.

Theorem (Tutte, 1956): If G is a 4-connected planar graph
then G is hamiltonian.

Note: Not all 3-connected planar graphs are hamiltonian, e.g.
Herschel graph (Fig. 18.1(b) in book). Even if restrict to cubic
(3-regular) graphs, not hamiltonian; rules out approach to 4
Colour Theorem.
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