Math 4710/6710 Graph Theory Fall 2019

CONNECTIVITY
Reading: 9.1-3
Edge connectivity

Think of trying to get message from x to y, adversary trying to [
stop you by taking out edges of graph. '

o edge cutset: S C E(G) so G — S is disconnected.

o edge cut: S C E(G) so that there exists X C V(G), X #
0,V(G), with S = 6X. Not quite the same thing.

(K1) Any edge cut is an edge cutset, but not vice versa. See X _ O/'O\O\
picture. ;
(K2) Any edge cutset S contains an edge cut 6X, where X is OV’\ k
_ X o
vertex set of any component of G — 5. N o 0)( ,/:c_)/(‘/ b

Follows that every minimal edge cutset is an edge cut.

o xy-edge cutset S where G — S has no zy-path; o_c:\ & dimtek
s'(x,y) = minimum size of an zy-edge cutset. Lk % Y L

o xy-edge cut: S =06X withz € X, y € X e M ernal “S]QM
c(x,y) = minimum size of an zy-edge cut.

(K3) Like (K1) and (K2), every zy-edge cutset contains an xy-
edge cut, so s'(z,y) > d(x,y), and every zy-edge cut is
an xy-edge cutset, so s'(z,y) < (z,y). Thus, §'(x,y) =
d(z,y).

(K4) Let P be a collection of edge-disjoint xy-paths, and X an

zy-edge cut. Each path in P must contain a distinct edge
of 60X, so |P| <[6X|.

o p/(z,y) = maximum number of edge-disjoint xy-paths.

(K5) Thus p'(z,y) < (x,y). And if we can find P and X

with |P| = |6X]|, P must be maximum and X must be
minimum, and then p'(z,y) = ¢/ (z,y).

Edge Version of Menger’s Theorem: If z,y are distinct
vertices of a graph G, then p/(z,y) = ¢ (z,y) = §'(x,y).

Proof: We just need to find P and 6X as in (K5).

Take the associated digraph D of G (replace each edge by two oppositely directed arcs). Give
each a € A(D) capacity c(a) = 1. Let f be an integer-valued maximum zy-flow in D and 6}, X the
associated minimum zy-cut. By the MFMC Theorem, val f = ¢(65X) = |65 X].

By flow decomposition we may assume f is acyclic, and break f into an integer linear combi-
nation of flows of value 1 along directed xy-paths. If P’ is the collection of paths then val f = |P/|,
supp f = Upepr A(P) is acyclic, and each arc is in at most one path. Since supp f is acyclic, no two
paths in P’ use opposite arcs. Important for saying corresponding paths in G are edge-disjoint.

Thus, G has a corresponding collection P of edge-disjoint xy-paths, where [P| = |P’| = val f =
165X =16X]|. n

Notes: (1) Also directed version, proof even simpler.
(2) Can use max flow algorithm to find p’/c’/s'(x,y), min cut, max set of edge-disjoint paths.
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o GG is k-edge-connected if G — S is connected for \-e—c \=-c
all S C E(G) with |S| < k. Equivalent to K= £
s’/ [p'(x,y) > k V¥ distinct z,y € V(G). -

o edge-connectivity k' (G) is the largest k for which
G is k-edge-connected. Le., k(@) is the min-
imum size of any edge cutset. Thus /'(G) =
min{s'/c'/p'(z,y) | x,y € V(G),x # y}. Ob-
serve that x'(G) < 0(G).

\~ee  l=C
\~e-¢c \-c 2—g-—¢ 2-c
2-e-~cC 3-e-¢ 3-c¢
King I /-3 ¥=3

Note: Edge-connectivity of a one-vertex graph is conventionally taken as 1. Could argue for 0, co.

B&M define £’ using p’, but definition using cutsets more standard. Equivalent by edge version of
Menger’s Thm.

Global Edge Version of Menger’s Theorem: G with n > 2 is k-edge-connected if and only if
there are k edge-disjoint paths between any pair of distinct vertices.

(Vertex) connectivity

Again trying to get message from z to y, adversary can now take
out VERTICES of graph. Want to define connectivity x(G) S
and relate to existence of paths. This time no cut/cutset -«
distinction, but another issue.

o vertez cut(set): S C V(G) so that G — S is disconnected;
xy-vertex cut(set) S: G — S has z,y but no zy-path (so
2,y ¢ S);
¢’(z,y) = minimum size of an zy-vertex cut.

Cuen Miaimel Verhew

Issue: If graph supercomplete (any two distinct vertices adja-
cult wm lkave =% 3

cent), no vertex cuts. If z, y adjacent, no zy-vertex cut.
Various ways to handle this. (1) Define connectivity using cocu\?owenl:
paths, not cuts (what B&M do). (2) Treat supercomplete

graphs/adjacent vertices as special cases (very common ap-

proach). (3) Expand definition of cut (my approach, non-

standard).

For adjacent vertices, does adversary give up? No, prefers vertices, but will target edges as well if
necessary. Nonstandard, but works nicely.

o a unit in a graph is either a vertex or an edge;
unit cutset: U C V(G)U E(G) so G — U is disconnected;
xy-unit cutset: U C V(G) U E(G) so G — U has z,y but no zy-path;
¢(x,y) = minimum size of zy-unit cutset.

(K6) If  and y are nonadjacent, any xy-unit cutset can be replaced by an zy-vertex cutset of
the same or smaller size. Replace each edge by one of its ends not equal to = or y. Hence
c(x,y) = c¥(x,y) when z and y are nonadjacent.
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o internally disjoint ry-paths: nothing in common except x and
y (no common internal vertices or edges, i.e. no common
internal units).

(K7) Let P be a collection of internally disjoint zy-paths, and U
an xy-unit cutset. Each path in P must contain a distinct
element of U, so |P| < |U]|.

o p(z,y) = maximum number of internally disjoint zy-paths.

(K8) Thus p(z,y) < ¢(z,y). And if we can find P and U with
|P| = |U|, P must be maximum and U must be minimum,
and then p(z,y) = c(z,y).

Vertex Version of Menger’s Theorem really, UNIT Version!: If x,y are distinct vertices of a
graph G, p(z,y) = c¢(x,y). So if x,y are nonadjacent then p(z,y) = c(z,y) = ¢"(z,y).
Proof: We find P and U as in (K8) by the MFMC Theorem and flow decomposition in a digraph
D using idea for vertex capacities: split each vertex into input, output sides:

for each vertex v of G, D has two vertices v—,v" and an arc v=v™T,

for each edge uv of G, D has two arcs uTv~ and u=v™,

but omit z~ and yT.
All arcs get capacity 1. (For just VERTEX cuts, arcs from edges get capacity co.) An acyclic
integer-valued maximum z "y~ -flow in (D, ¢) can be decomposed into directed xy-paths in D cor-
responding to internally disjoint zy-paths in G. A minimum 2%y -cut in D corresponds to a
minimum zy-unit cutset in G. 1

Notes: Again, also directed version. Again, can use max flow algorithm to compute.

o G is k-connected (or k-vertex-connected, really should be k-UNIT-connected) if G—U is connected
for every set of vertices and edges U with |U| < k. Equivalent to ¢/p(x,y) > k V distinct
z,y € V(G).

o connectivity (or vertex connectivity, should be UNIT connectivity) x(G) is the largest k for which

G is k-connected. Ie., k(G) is the minimum size of any cutset of vertices and edges. Thus,
k(G) = min{c/p(z,y) | z,y € V(G),x # y}. Observe that k(G) < k'(G) < §(G).

Note: Connectivity of a one-vertex graph is conventionally taken as 1,

Global Vertex Version of Menger’s Theorem: G with n > 2 is k-connected if and only if
there are k internally disjoint paths between any pair of distinct vertices.

Standard approach also makes sense: treat supercomplete graphs specially, and just look at non-
adjacent vertices in other graphs. Now will see how this works.
Connectivity for supercomplete graphs

o m(x,y) = number of edges between z and y;
Mumin(G) = min{m(z,y) | x,y € V(G), x # y}, the minimum edge multiplicity.

(K9) If G is supercomplete then p(z,y) = n — 2+ m(x,y) whenever x # y, so
k(G) = m;np(x,y) = m;n (n—2+m(z,y) =n—2+ Hgnm(:n,y) =n — 2+ Muyin(G).
a7y z#y z#y

Connectivity for non-supercomplete graphs
In this case really turns out to just depend on VERTEX cuts.

o x ~ y means z,y adjacent.
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Lemma K10: If G is not supercomplete and ¢(u,v) > k for all distinct nonadjacent w,v, then
c(x,y) > k for all distinct adjacent z,y.

Proof: Assume c(u,v) > k for all distinct nonadjacent u,v. Since ¢(u,v) < n —2 for all such pairs
u,v, and at least one such pair u, v exists, k < n — 2.

Suppose there are adjacent x,y with c¢(x,y) < k —1. Let H =G — E(x,y). In H, = £ y, so
there is a minimum xy-unit cutset S consisting only of vertices. So

k—12>c(z,y) =p(z,y) =pa(r,y) + m(z,y) = cu(z,y) + m(z,y) = [S| + m(z,y).

Hence, |S| <k —1—m(z,y) <k —2<n—4, and there is some z € V(G) — (SU{z,y}). Now in
H — S, z is in a different component from at least one of = or y, say from x. Therefore z % x in H
and hence in G. Now SU E(z,y) separates z from x in G, but |SU E(z,y)| = |S|+m(z,y) < k—1,
contradicting ¢(u,v) > k whenever u ¢ v.

Corollary K11: If G is not supercomplete then

k(G) = min{c(x,y) | z # y} = min{p(z,y) | ¥ # y} = min{c"(z,y) | z £ y}.

Only considering nonadjacent vertices reduces work, sometimes significantly. And only need to

think about vertex cuts, not unit cuts.

To show connectivity of non-supercomplete graph: show x < k by finding vertex cut of size k; show
Kk > k by finding k internally disjoint zy-paths for all nonadjacent distinct z, y.

Disjoint paths between sets of vertices

Often want paths between sets of vertices: have useful trick to handle this.

Lemma K12: Suppose G is k-connected, and S C V(G) has |S| > k. If we form G’ by adding a
new vertex v adjacent to all vertices of S, then G’ is also k-connected.

Proof: If G’ is supercomplete then it is k-connected because |V (G’)| > k + 1. Otherwise, every
vertex cut in G’ contains a vertex cut in G (if it separates two vertices different from v), or contains
S (if it separates v from other vertices), and so has > k vertices.

Fan Lemma: Suppose G is k-connected and S C V(G) with
|S| > k, and x € V(G). Then there are k paths from x to S that
are vertex-disjoint except at x and have no internal vertices in
S (a k-fan from z to S).

Note: Can have z € S, in which case we get trivial path z
and k — 1 paths xy;, y1,...,yr_1 distinct vertices of S. Book
restricts to x ¢ S.

To prove, add extra vertex y adjacent to S, use Lemma K12 and vertex version of Menger for
ry-paths. Stop paths as soon as hit vertex of S.
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Corollary K13: Suppose G is k-connected and S,T C V(Q)
with |S|,|T| > k. Then there are k vertex-disjoint paths from
S to T (with no internal vertices in SUT).

Note: S,T can overlap.

To prove, add extra vertices adjacent to S,7T', use Lemma K12
and vertex version of Menger.

Don’t know which vertex of S connected to which vertex of
T. If can control this, have k-linkage. Needs more than
k-connected.

Now see an application of this.

Corollary K14 (Dirac): Suppose G is k-connected, k > 2,
and S C V(G) with |S| = k. Then there is a cycle C' in G that
includes all vertices of S.

Proof: By induction on k. Write S = {vy,va,...,v}.

If £ = 2 then by the vertex version of Menger’s Theorem
there are two internally disjoint v, vo-paths, which together form
the required cycle.

Suppose k > 3, and the result holds for £ — 1. Since a
k-connected graph is also (k — 1)-connected, G has a cycle C’
containing S’ = {v1, v, ...,vk_1}. We may assume vy, ¢ V(C”)
or we are done.

The vertices of S” divide C’ into k—1 segments. If |V (C")| =
k — 1 then since G is (k — 1)-connected the Fan Lemma gives
a (k — 1)-fan from vy to V(C’) and we replace some segment
V;...v; by v;...vp...v; to get C. So |V(C')| > k and there
is a k-fan from v to V(C’). By the pigeonhole principle two
of the k paths in the fan must end on the same one of the
k — 1 segments, and we use these to obtain a cycle C' containing

S U{op} =S.

Fall 2019

Ve = k

Note: This is best possible: Kj, 41 is k-connected but has no cycle containing the k + 1 vertices

in the second part of the bipartition.
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