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CONNECTIVITY

Reading: 9.1-3

Edge connectivity

Think of trying to get message from x to y, adversary trying to
stop you by taking out edges of graph.

◦ edge cutset: S ⊆ E(G) so G− S is disconnected.
◦ edge cut: S ⊆ E(G) so that there exists X ⊆ V (G), X 6=

∅, V (G), with S = δX. Not quite the same thing.

(K1) Any edge cut is an edge cutset, but not vice versa. See
picture.

(K2) Any edge cutset S contains an edge cut δX, where X is
vertex set of any component of G− S.

Follows that every minimal edge cutset is an edge cut.

◦ xy-edge cutset S where G− S has no xy-path;
s′(x, y) = minimum size of an xy-edge cutset.

◦ xy-edge cut : S = δX with x ∈ X, y ∈ X;
c′(x, y) = minimum size of an xy-edge cut.

(K3) Like (K1) and (K2), every xy-edge cutset contains an xy-
edge cut, so s′(x, y) ≥ c′(x, y), and every xy-edge cut is
an xy-edge cutset, so s′(x, y) ≤ c′(x, y). Thus, s′(x, y) =
c′(x, y).

(K4) Let P be a collection of edge-disjoint xy-paths, and δX an
xy-edge cut. Each path in P must contain a distinct edge
of δX, so |P| ≤ |δX|.

◦ p′(x, y) = maximum number of edge-disjoint xy-paths.

(K5) Thus p′(x, y) ≤ c′(x, y). And if we can find P and δX
with |P| = |δX|, P must be maximum and δX must be
minimum, and then p′(x, y) = c′(x, y).

Edge Version of Menger’s Theorem: If x, y are distinct
vertices of a graph G, then p′(x, y) = c′(x, y) = s′(x, y).

Proof: We just need to find P and δX as in (K5).
Take the associated digraph D of G (replace each edge by two oppositely directed arcs). Give

each a ∈ A(D) capacity c(a) = 1. Let f be an integer-valued maximum xy-flow in D and δ+DX the
associated minimum xy-cut. By the MFMC Theorem, val f = c(δ+DX) = |δ+DX|.

By flow decomposition we may assume f is acyclic, and break f into an integer linear combi-
nation of flows of value 1 along directed xy-paths. If P ′ is the collection of paths then val f = |P ′|,
supp f = ∪p∈P′A(P ) is acyclic, and each arc is in at most one path. Since supp f is acyclic, no two
paths in P ′ use opposite arcs. Important for saying corresponding paths in G are edge-disjoint.

Thus, G has a corresponding collection P of edge-disjoint xy-paths, where |P| = |P ′| = val f =
|δ+DX| = |δX|.

Notes: (1) Also directed version, proof even simpler.
(2) Can use max flow algorithm to find p′/c′/s′(x, y), min cut, max set of edge-disjoint paths.
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◦ G is k-edge-connected if G− S is connected for
all S ⊆ E(G) with |S| < k. Equivalent to
s′/c′/p′(x, y) ≥ k ∀ distinct x, y ∈ V (G).

◦ edge-connectivity κ′(G) is the largest k for which
G is k-edge-connected. I.e., κ′(G) is the min-
imum size of any edge cutset. Thus κ′(G) =
min{s′/c′/p′(x, y) | x, y ∈ V (G), x 6= y}. Ob-
serve that κ′(G) ≤ δ(G).

Note: Edge-connectivity of a one-vertex graph is conventionally taken as 1. Could argue for 0, ∞.

B&M define κ′ using p′, but definition using cutsets more standard. Equivalent by edge version of
Menger’s Thm.

Global Edge Version of Menger’s Theorem: G with n ≥ 2 is k-edge-connected if and only if
there are k edge-disjoint paths between any pair of distinct vertices.

(Vertex) connectivity

Again trying to get message from x to y, adversary can now take
out VERTICES of graph. Want to define connectivity κ(G)
and relate to existence of paths. This time no cut/cutset
distinction, but another issue.

◦ vertex cut(set): S ⊆ V (G) so that G− S is disconnected;
xy-vertex cut(set) S: G − S has x, y but no xy-path (so
x, y /∈ S);
cv(x, y) = minimum size of an xy-vertex cut.

Issue: If graph supercomplete (any two distinct vertices adja-
cent), no vertex cuts. If x, y adjacent, no xy-vertex cut.
Various ways to handle this. (1) Define connectivity using
paths, not cuts (what B&M do). (2) Treat supercomplete
graphs/adjacent vertices as special cases (very common ap-
proach). (3) Expand definition of cut (my approach, non-
standard).

For adjacent vertices, does adversary give up? No, prefers vertices, but will target edges as well if
necessary. Nonstandard, but works nicely.

◦ a unit in a graph is either a vertex or an edge;
unit cutset : U ⊆ V (G) ∪ E(G) so G− U is disconnected;
xy-unit cutset : U ⊆ V (G) ∪ E(G) so G− U has x, y but no xy-path;
c(x, y) = minimum size of xy-unit cutset.

(K6) If x and y are nonadjacent, any xy-unit cutset can be replaced by an xy-vertex cutset of
the same or smaller size. Replace each edge by one of its ends not equal to x or y. Hence
c(x, y) = cv(x, y) when x and y are nonadjacent.
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◦ internally disjoint xy-paths: nothing in common except x and
y (no common internal vertices or edges, i.e. no common
internal units).

(K7) Let P be a collection of internally disjoint xy-paths, and U
an xy-unit cutset. Each path in P must contain a distinct
element of U , so |P| ≤ |U |.

◦ p(x, y) = maximum number of internally disjoint xy-paths.

(K8) Thus p(x, y) ≤ c(x, y). And if we can find P and U with
|P| = |U |, P must be maximum and U must be minimum,
and then p(x, y) = c(x, y).

Vertex Version of Menger’s Theorem really, UNIT Version!: If x, y are distinct vertices of a
graph G, p(x, y) = c(x, y). So if x, y are nonadjacent then p(x, y) = c(x, y) = cv(x, y).

Proof: We find P and U as in (K8) by the MFMC Theorem and flow decomposition in a digraph
D using idea for vertex capacities: split each vertex into input, output sides:

for each vertex v of G, D has two vertices v−, v+ and an arc v−v+,
for each edge uv of G, D has two arcs u+v− and u−v+,
but omit x− and y+.

All arcs get capacity 1. (For just VERTEX cuts, arcs from edges get capacity ∞.) An acyclic
integer-valued maximum x+y−-flow in (D, c) can be decomposed into directed xy-paths in D cor-
responding to internally disjoint xy-paths in G. A minimum x+y−-cut in D corresponds to a
minimum xy-unit cutset in G.

Notes: Again, also directed version. Again, can use max flow algorithm to compute.

◦ G is k-connected (or k-vertex-connected, really should be k-UNIT-connected) if G−U is connected
for every set of vertices and edges U with |U | < k. Equivalent to c/p(x, y) ≥ k ∀ distinct
x, y ∈ V (G).

◦ connectivity (or vertex connectivity, should be UNIT connectivity) κ(G) is the largest k for which
G is k-connected. I.e., κ(G) is the minimum size of any cutset of vertices and edges. Thus,
κ(G) = min{c/p(x, y) | x, y ∈ V (G), x 6= y}. Observe that κ(G) ≤ κ′(G) ≤ δ(G).

Note: Connectivity of a one-vertex graph is conventionally taken as 1,

Global Vertex Version of Menger’s Theorem: G with n ≥ 2 is k-connected if and only if
there are k internally disjoint paths between any pair of distinct vertices.

Standard approach also makes sense: treat supercomplete graphs specially, and just look at non-
adjacent vertices in other graphs. Now will see how this works.

Connectivity for supercomplete graphs

◦ m(x, y) = number of edges between x and y;
mmin(G) = min{m(x, y) | x, y ∈ V (G), x 6= y}, the minimum edge multiplicity .

(K9) If G is supercomplete then p(x, y) = n− 2 +m(x, y) whenever x 6= y, so
κ(G) = min

x6=y
p(x, y) = min

x6=y

(

n− 2 +m(x, y)
)

= n− 2 + min
x6=y

m(x, y) = n− 2 +mmin(G).

Connectivity for non-supercomplete graphs

In this case really turns out to just depend on VERTEX cuts.

◦ x ∼ y means x, y adjacent.
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Lemma K10: If G is not supercomplete and c(u, v) ≥ k for all distinct nonadjacent u, v, then
c(x, y) ≥ k for all distinct adjacent x, y.

Proof: Assume c(u, v) ≥ k for all distinct nonadjacent u, v. Since c(u, v) ≤ n− 2 for all such pairs
u, v, and at least one such pair u, v exists, k ≤ n− 2.

Suppose there are adjacent x, y with c(x, y) ≤ k − 1. Let H = G − E(x, y). In H, x 6∼ y, so
there is a minimum xy-unit cutset S consisting only of vertices. So

k − 1 ≥ c(x, y) = p(x, y) = pH(x, y) +m(x, y) = cH(x, y) +m(x, y) = |S|+m(x, y).

Hence, |S| ≤ k − 1−m(x, y) ≤ k − 2 ≤ n− 4, and there is some z ∈ V (G) − (S ∪ {x, y}). Now in
H − S, z is in a different component from at least one of x or y, say from x. Therefore z 6∼ x in H
and hence in G. Now S ∪E(x, y) separates z from x in G, but |S ∪E(x, y)| = |S|+m(x, y) ≤ k−1,
contradicting c(u, v) ≥ k whenever u 6∼ v.

Corollary K11: If G is not supercomplete then

κ(G) = min{c(x, y) | x 6∼ y} = min{p(x, y) | x 6∼ y} = min{cv(x, y) | x 6∼ y}.

Only considering nonadjacent vertices reduces work, sometimes significantly. And only need to
think about vertex cuts, not unit cuts.
To show connectivity of non-supercomplete graph: show κ ≤ k by finding vertex cut of size k; show

κ ≥ k by finding k internally disjoint xy-paths for all nonadjacent distinct x, y.

Disjoint paths between sets of vertices

Often want paths between sets of vertices: have useful trick to handle this.

Lemma K12: Suppose G is k-connected, and S ⊆ V (G) has |S| ≥ k. If we form G′ by adding a
new vertex v adjacent to all vertices of S, then G′ is also k-connected.

Proof: If G′ is supercomplete then it is k-connected because |V (G′)| ≥ k + 1. Otherwise, every
vertex cut in G′ contains a vertex cut in G (if it separates two vertices different from v), or contains
S (if it separates v from other vertices), and so has ≥ k vertices.

Fan Lemma: Suppose G is k-connected and S ⊆ V (G) with
|S| ≥ k, and x ∈ V (G). Then there are k paths from x to S that
are vertex-disjoint except at x and have no internal vertices in
S (a k-fan from x to S).

Note: Can have x ∈ S, in which case we get trivial path x
and k − 1 paths xyi, y1, . . . , yk−1 distinct vertices of S. Book
restricts to x /∈ S.

To prove, add extra vertex y adjacent to S, use Lemma K12 and vertex version of Menger for
xy-paths. Stop paths as soon as hit vertex of S.
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Corollary K13: Suppose G is k-connected and S, T ⊆ V (G)
with |S|, |T | ≥ k. Then there are k vertex-disjoint paths from
S to T (with no internal vertices in S ∪ T ).

Note: S, T can overlap.

To prove, add extra vertices adjacent to S, T , use Lemma K12
and vertex version of Menger.

Don’t know which vertex of S connected to which vertex of
T . If can control this, have k-linkage. Needs more than
k-connected.

Now see an application of this.

Corollary K14 (Dirac): Suppose G is k-connected, k ≥ 2,
and S ⊆ V (G) with |S| = k. Then there is a cycle C in G that
includes all vertices of S.

Proof: By induction on k. Write S = {v1, v2, . . . , vk}.
If k = 2 then by the vertex version of Menger’s Theorem

there are two internally disjoint v1v2-paths, which together form
the required cycle.

Suppose k ≥ 3, and the result holds for k − 1. Since a
k-connected graph is also (k − 1)-connected, G has a cycle C ′

containing S′ = {v1, v2, . . . , vk−1}. We may assume vk /∈ V (C ′)
or we are done.

The vertices of S′ divide C ′ into k−1 segments. If |V (C ′)| =
k − 1 then since G is (k − 1)-connected the Fan Lemma gives
a (k − 1)-fan from vk to V (C ′) and we replace some segment
vi . . . vj by vi . . . vk . . . vj to get C. So |V (C ′)| ≥ k and there
is a k-fan from vk to V (C ′). By the pigeonhole principle two
of the k paths in the fan must end on the same one of the
k−1 segments, and we use these to obtain a cycle C containing
S′ ∪ {vk} = S.

Note: This is best possible: Kk,k+1 is k-connected but has no cycle containing the k + 1 vertices
in the second part of the bipartition.
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