CONNECTIVITY

Reading: 9.1-3

Edge connectivity

Think of trying to get message from x to y, adversary trying to stop you by taking out edges of graph.

Graph Theory

- \circ edge cutset: $S \subseteq E(G)$ so G S is disconnected.
- edge cut: $S \subseteq E(G)$ so that there exists $X \subseteq V(G)$, $X \neq$ $\emptyset, V(G)$, with $S = \delta X$. Not quite the same thing.
- (K1) Any edge cut is an edge cutset, but not vice versa. See picture.
- (K2) Any edge cutset S contains an edge cut δX , where X is vertex set of any component of G S.

Follows that every *minimal* edge cutset is an edge cut.

- xy-edge cutset S where G S has no xy-path; s'(x, y) =minimum size of an xy-edge cutset.
- xy-edge cut: $S = \delta X$ with $x \in X, y \in \overline{X}$; c'(x, y) =minimum size of an xy-edge cut.
- (K3) Like (K1) and (K2), every xy-edge cutset contains an xy-edge cut, so $s'(x,y) \ge c'(x,y)$, and every xy-edge cut is an xy-edge cutset, so $s'(x,y) \le c'(x,y)$. Thus, s'(x,y) = c'(x,y).
- (K4) Let \mathcal{P} be a collection of *edge-disjoint xy*-paths, and δX an *xy*-edge cut. Each path in \mathcal{P} must contain a distinct edge of δX , so $|\mathcal{P}| \leq |\delta X|$.
- $\circ p'(x,y) =$ maximum number of *edge-disjoint xy*-paths.
- (K5) Thus $p'(x,y) \leq c'(x,y)$. And if we can find \mathcal{P} and δX with $|\mathcal{P}| = |\delta X|$, \mathcal{P} must be maximum and δX must be minimum, and then p'(x,y) = c'(x,y).

Edge Version of Menger's Theorem: If x, y are distinct vertices of a graph G, then p'(x, y) = c'(x, y) = s'(x, y).

Proof: We just need to find \mathcal{P} and δX as in (K5).

Take the associated digraph D of G (replace each edge by two oppositely directed arcs). Give each $a \in A(D)$ capacity c(a) = 1. Let f be an integer-valued maximum xy-flow in D and $\delta_D^+ X$ the associated minimum xy-cut. By the MFMC Theorem, val $f = c(\delta_D^+ X) = |\delta_D^+ X|$.

By flow decomposition we may assume f is acyclic, and break f into an integer linear combination of flows of value 1 along directed xy-paths. If \mathcal{P}' is the collection of paths then val f = |P'|, $\operatorname{supp} f = \bigcup_{p \in \mathcal{P}'} A(P)$ is acyclic, and each arc is in at most one path. Since $\operatorname{supp} f$ is acyclic, no two paths in \mathcal{P}' use opposite arcs. Important for saying corresponding paths in G are edge-disjoint.

Thus, G has a corresponding collection \mathcal{P} of edge-disjoint xy-paths, where $|\mathcal{P}| = |\mathcal{P}'| = \text{val } f = |\delta_D^+ X| = |\delta X|$.

Notes: (1) Also directed version, proof even simpler.

(2) Can use max flow algorithm to find p'/c'/s'(x,y), min cut, max set of edge-disjoint paths.

cutset, not cut

7

- G is k-edge-connected if G S is connected for all $S \subseteq E(G)$ with |S| < k. Equivalent to $s'/c'/p'(x,y) \ge k \forall$ distinct $x, y \in V(G)$.
- edge-connectivity $\kappa'(G)$ is the largest k for which G is k-edge-connected. I.e., $\kappa'(G)$ is the minimum size of any edge cutset. Thus $\kappa'(G) =$ $\min\{s'/c'/p'(x,y) \mid x, y \in V(G), x \neq y\}$. Observe that $\kappa'(G) \leq \delta(G)$.

Note: Edge-connectivity of a one-vertex graph is conventionally taken as 1. Could argue for $0, \infty$. B&M define κ' using p', but definition using cutsets more standard. Equivalent by edge version of Menger's Thm.

Global Edge Version of Menger's Theorem: G with $n \ge 2$ is k-edge-connected if and only if there are k edge-disjoint paths between any pair of distinct vertices.

(Vertex) connectivity

- Again trying to get message from x to y, adversary can now take out VERTICES of graph. Want to define connectivity $\kappa(G)$ and relate to existence of paths. This time no cut/cutset distinction, but another issue.
- vertex cut(set): $S \subseteq V(G)$ so that G S is disconnected; xy-vertex cut(set) S: G - S has x, y but no xy-path (so x, y ∉ S);

Issue: If graph supercomplete (any two distinct vertices adjacent), no vertex cuts. If x, y adjacent, no xy-vertex cut. Various ways to handle this. (1) Define connectivity using paths, not cuts (what B&M do). (2) Treat supercomplete graphs/adjacent vertices as special cases (very common approach). (3) Expand definition of cut (my approach, non-standard).

- For adjacent vertices, does adversary give up? No, prefers vertices, but will target edges as well if necessary. Nonstandard, but works nicely.
- \circ a unit in a graph is either a vertex or an edge; unit cutset: $U \subseteq V(G) \cup E(G)$ so G - U is disconnected; xy-unit cutset: $U \subseteq V(G) \cup E(G)$ so G - U has x, y but no xy-path; c(x, y) = minimum size of xy-unit cutset.
- (K6) If x and y are nonadjacent, any xy-unit cutset can be replaced by an xy-vertex cutset of the same or smaller size. Replace each edge by one of its ends not equal to x or y. Hence $c(x, y) = c^{v}(x, y)$ when x and y are nonadjacent.

 $c^{v}(x, y) = minimum \text{ size of an } xy \text{-vertex cut.}$

- \circ internally disjoint xy-paths: nothing in common except x and y (no common internal vertices or edges, i.e. no common internal units).
- (K7) Let \mathcal{P} be a collection of internally disjoint xy-paths, and U an xy-unit cutset. Each path in \mathcal{P} must contain a distinct element of U, so $|\mathcal{P}| \leq |U|$.
- $\circ p(x, y) =$ maximum number of internally disjoint xy-paths.
- (K8) Thus $p(x, y) \leq c(x, y)$. And if we can find \mathcal{P} and U with $|\mathcal{P}| = |U|, \mathcal{P}$ must be maximum and U must be minimum, and then p(x, y) = c(x, y).

Vertex Version of Menger's Theorem really, UNIT Version!: If x, y are distinct vertices of a graph G, p(x, y) = c(x, y). So if x, y are nonadjacent then $p(x, y) = c(x, y) = c^{v}(x, y)$.

Proof: We find \mathcal{P} and U as in (K8) by the MFMC Theorem and flow decomposition in a digraph D using idea for vertex capacities: split each vertex into input, output sides:

for each vertex v of G, D has two vertices v^-, v^+ and an arc v^-v^+ , for each edge uv of G, D has two arcs u^+v^- and u^-v^+ , but omit x^- and y^+ .

All arcs get capacity 1. (For just VERTEX cuts, arcs from edges get capacity ∞ .) An acyclic integer-valued maximum x^+y^- -flow in (D,c) can be decomposed into directed xy-paths in D corresponding to internally disjoint xy-paths in G. A minimum x^+y^- -cut in D corresponds to a minimum xy-unit cutset in G.

Notes: Again, also directed version. Again, can use max flow algorithm to compute.

- G is k-connected (or k-vertex-connected, really should be k-UNIT-connected) if G-U is connected for every set of vertices and edges U with |U| < k. Equivalent to $c/p(x,y) \ge k \forall$ distinct $x, y \in V(G)$.
- connectivity (or vertex connectivity, should be UNIT connectivity) $\kappa(G)$ is the largest k for which G is k-connected. I.e., $\kappa(G)$ is the minimum size of any cutset of vertices and edges. Thus, $\kappa(G) = \min\{c/p(x,y) \mid x, y \in V(G), x \neq y\}$. Observe that $\kappa(G) \leq \kappa'(G) \leq \delta(G)$.

Note: Connectivity of a one-vertex graph is conventionally taken as 1,

Global Vertex Version of Menger's Theorem: G with $n \ge 2$ is k-connected if and only if there are k internally disjoint paths between any pair of distinct vertices.

Standard approach also makes sense: treat supercomplete graphs specially, and just look at nonadjacent vertices in other graphs. Now will see how this works.

Connectivity for supercomplete graphs

 $\circ m(x,y) =$ number of edges between x and y; $m_{\min}(G) = \min\{m(x,y) \mid x, y \in V(G), x \neq y\}$, the minimum edge multiplicity.

(K9) If G is supercomplete then
$$p(x, y) = n - 2 + m(x, y)$$
 whenever $x \neq y$, so
 $\kappa(G) = \min_{x \neq y} p(x, y) = \min_{x \neq y} (n - 2 + m(x, y)) = n - 2 + \min_{x \neq y} m(x, y) = n - 2 + m_{\min}(G).$

Connectivity for non-supercomplete graphs

In this case really turns out to just depend on VERTEX cuts.

• $x \sim y$ means x, y adjacent.

Lemma K10: If G is not supercomplete and $c(u, v) \ge k$ for all distinct nonadjacent u, v, then $c(x, y) \ge k$ for all distinct adjacent x, y.

Proof: Assume $c(u, v) \ge k$ for all distinct nonadjacent u, v. Since $c(u, v) \le n - 2$ for all such pairs u, v, and at least one such pair u, v exists, $k \le n - 2$.

Suppose there are adjacent x, y with $c(x, y) \le k - 1$. Let H = G - E(x, y). In $H, x \not\sim y$, so there is a minimum xy-unit cutset S consisting only of vertices. So

$$k-1 \ge c(x,y) = p(x,y) = p_H(x,y) + m(x,y) = c_H(x,y) + m(x,y) = |S| + m(x,y).$$

Hence, $|S| \leq k - 1 - m(x, y) \leq k - 2 \leq n - 4$, and there is some $z \in V(G) - (S \cup \{x, y\})$. Now in H - S, z is in a different component from at least one of x or y, say from x. Therefore $z \not\sim x$ in H and hence in G. Now $S \cup E(x, y)$ separates z from x in G, but $|S \cup E(x, y)| = |S| + m(x, y) \leq k - 1$, contradicting $c(u, v) \geq k$ whenever $u \not\sim v$.

Corollary K11: If G is not supercomplete then

$$\kappa(G) = \min\{c(x,y) \mid x \not\sim y\} = \min\{p(x,y) \mid x \not\sim y\} = \min\{c^{\mathsf{v}}(x,y) \mid x \not\sim y\}.$$

Only considering nonadjacent vertices reduces work, sometimes significantly. And only need to think about vertex cuts, not unit cuts.

To show connectivity of non-supercomplete graph: show $\kappa \leq k$ by finding vertex cut of size k; show $\kappa \geq k$ by finding k internally disjoint xy-paths for all nonadjacent distinct x, y.

Disjoint paths between sets of vertices

Often want paths between sets of vertices: have useful trick to handle this.

Lemma K12: Suppose G is k-connected, and $S \subseteq V(G)$ has $|S| \ge k$. If we form G' by adding a new vertex v adjacent to all vertices of S, then G' is also k-connected.

Proof: If G' is supercomplete then it is k-connected because $|V(G')| \ge k + 1$. Otherwise, every vertex cut in G' contains a vertex cut in G (if it separates two vertices different from v), or contains S (if it separates v from other vertices), and so has $\ge k$ vertices.

Fan Lemma: Suppose G is k-connected and $S \subseteq V(G)$ with $|S| \ge k$, and $x \in V(G)$. Then there are k paths from x to S that are vertex-disjoint except at x and have no internal vertices in S (a k-fan from x to S).

Note: Can have $x \in S$, in which case we get trivial path x and k-1 paths $xy_i, y_1, \ldots, y_{k-1}$ distinct vertices of S. Book restricts to $x \notin S$.

To prove, add extra vertex y adjacent to S, use Lemma K12 and vertex version of Menger for xy-paths. Stop paths as soon as hit vertex of S.

Corollary K13: Suppose G is k-connected and $S, T \subseteq V(G)$ with $|S|, |T| \ge k$. Then there are k vertex-disjoint paths from S to T (with no internal vertices in $S \cup T$).

Note: S, T can overlap.

To prove, add extra vertices adjacent to S, T, use Lemma K12 and vertex version of Menger.

Don't know which vertex of S connected to which vertex of T. If can control this, have k-linkage. Needs more than k-connected.

Now see an application of this.

Corollary K14 (Dirac): Suppose G is k-connected, $k \ge 2$, and $S \subseteq V(G)$ with |S| = k. Then there is a cycle C in G that includes all vertices of S.

Proof: By induction on k. Write $S = \{v_1, v_2, \ldots, v_k\}$.

If k = 2 then by the vertex version of Menger's Theorem there are two internally disjoint v_1v_2 -paths, which together form the required cycle.

Suppose $k \geq 3$, and the result holds for k-1. Since a k-connected graph is also (k-1)-connected, G has a cycle C' containing $S' = \{v_1, v_2, \ldots, v_{k-1}\}$. We may assume $v_k \notin V(C')$ or we are done.

The vertices of S' divide C' into k-1 segments. If |V(C')| = k-1 then since G is (k-1)-connected the Fan Lemma gives a (k-1)-fan from v_k to V(C') and we replace some segment $v_i \ldots v_j$ by $v_i \ldots v_k \ldots v_j$ to get C. So $|V(C')| \ge k$ and there is a k-fan from v_k to V(C'). By the pigeonhole principle two of the k paths in the fan must end on the same one of the k-1 segments, and we use these to obtain a cycle C containing $S' \cup \{v_k\} = S$.

Note: This is best possible: $K_{k,k+1}$ is k-connected but has no cycle containing the k + 1 vertices in the second part of the bipartition.