
Math 4710/6710 Graph Theory Fall 2019

NETWORK FLOWS

Reading: 7.1-3

Want to think about moving something (water, messages, vehicles) through a network. Important
practical applications. Also several other graph theory results (Menger’s theorem in vertex
and edge forms, bipartite matching algorithm) are consequences.

General flows

◦ flow in a digraph: f : A(D) → R Many books including ours add extra conditions but we allow
any function at this point.

Recall: A(X,Y ) = arcs from X to Y ; X = V (D) −X; δ+X = A(X,X), δ−X = A(X,X). Also
write δ+v, δ−v for individual vertices v.

Notation: Given a flow f , we define
f(S) =

∑

a∈S
f(a) for S ⊆ A(D),

f+(X) = f(δ+X), f−(X) = f(δ−X) for X ⊆ V (D) (total flow on arcs out of or into X),
∂Df(X) = ∂f(X) = f+(X) − f−(X) for X ⊆ V (D), net flow out of X. Notation: using

boundary symbol ∂, not coboundary δ.

(F1) ∂f(X) = −∂f(X) because δ+X = δ−X, δ−X = δ+X.
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A general flow:

f+(r) = 11 + 4 + 1 + 7 = 23, f−(r) = −8 + 5 = −3,
∂f(r) = 23− (−3) = 26

X = {p, q}, f+(X) = −8 + (−3) = −11, f−(X) = 11,
∂f(X) = −11− 11 = −22

∂f(p) + ∂f(q) = −12 + (−10) = −22 = ∂f(X) (flow on arc
pq cancels)

Lemma F2: ∂f is additive, i.e., for X ⊆ V (D) we have ∂f(X) =
∑

v∈X
∂f(v).

Proof: By definition,
∑

v∈X

∂f(v) =
∑

v∈X

(f+(v) − f−(v)) =
∑

v∈X

f+(v)−
∑

v∈X

f−(v) =
∑

v∈X

∑

a∈δ+v

f(a)−
∑

v∈X

∑

a∈δ−v

f(a).

Consider the final expression and a ∈ A(D). The net contribution of a is
0− 0 = 0 if a ∈ A(X,X),
f(a)− f(a) = 0 if a ∈ A(X,X),
f(a)− 0 = f(a) if a ∈ A(X,X) = δ+X,
0− f(a) = −f(a) if a ∈ A(X,X) = δ−X.

Therefore,
∑

v∈X

∂f(v) =
∑

a∈δ+X

f(a)−
∑

a∈δ−X

f(a) = f(δ+X)− f(δ−X) = f+(X)− f−(X) = ∂f(X).

Note: Means that
∑

v∈V (D) ∂f(v) = ∂f(V (D)) = 0 because δ+(V (D)) = δ−(V (D)) = ∅.

So now we just need to worry about how ∂f behaves on individual vertices.

(F3) ∂ : RA → RV is a linear operator (linear transformation, vector space homomorphism)
mapping flows (arc weights) to vertex weights: ∂(αf + βg) = α∂f + β∂g.
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Two-terminal flows and circulations

For applications, we generally want flow to be ‘balanced’ at most vertices: outflow = inflow.
◦ f conserved at v: f+(v) = f−(v), i.e. ∂f(v) = 0.
◦ xy-flow f : ∂f(v) = 0 ∀ v ∈ V (D) − {x, y} (conserved except at x and y, think of flowing from

x to y. x is supply vertex and y is demand vertex . (Book and other sources call x the source
and y the sink , but confusing: no need to assume x has indegree 0 or y has outdegree 0.)

(F4) By linearity of ∂, xy-flows also form a vector space: if ∂f(v) = ∂g(v) = 0 for v /∈ {x, y}, then
∂(αf + βg)(v) = α∂f(v) + β∂g(v) = 0 for v /∈ {x, y}.

◦ circulation f : ∂f = 0, i.e., ∂f(v) = 0 ∀ v ∈ V (D). Conserved everywhere, so xy-flow for any x, y.

(F5) Set of circulations is kernel/nullspace of linear operator ∂, so is also vector subspace of all
flows.

ps-flow (and sp-flow)
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◦ value of an xy-flow is val f = ∂f(x). E.g. ps-flow above has value 9, or −9 as sp-flow. Circulation
also ps-flow, value 0. Circulations always have value 0.

(F6) Value is linear on xy-flows: val (αf + βg) = α val f + β val g. Follows from linearity of ∂.

Corollary F7: Suppose f is an xy-flow and X,Y is a par-
tition of V (D) with x ∈ X, y ∈ Y = X . Then

val f = ∂f(x)
(1)

= ∂f(X)
(2)

= − ∂f(Y )
(3)

= − ∂f(y).

Proof: For (1) and (3) use additivity of ∂f and ∂f(v) = 0
if v 6= x, y. For (2) use (F1).
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Special xy-flows: ◦ characteristic function χS of S ⊆ A(D): χ(a) = 1 if a ∈ S, 0 otherwise. For
subdigraph H write χH for χA(H).

◦ signed characteristic function −→χ T of direction-insensitive trail T : −→χ T (a) = 1 if T uses a forwards,
−1 if T uses a backwards, 0 otherwise. Simpler for trails since use each edge at most once, but
could extend to walks. If T is a directed trail then −→χ T = χT thinking of T as subdigraph.

If P is a direction-insensitive (directed) xy-path, then −→χ P (−→χ P = χP ) is an xy-flow of value 1.
If C is a direction-insensitive (directed) cycle then −→χ C (−→χ C = χC) is a circulation, and hence an

xy-flow of value 0. Irrelevant whether or not C contains x or y.

−→χ P = χP

1 1 1 1 1x y
−→χ P

1 1 −1 1 −1x y

−→χ C = χC

1 1 1

111

−→χ C

1 −1 1

−1−11
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Networks and feasible flows

◦ network (D, c): digraph D (V = V (D), A = A(D)), each
arc has nonnegative capacity c(a).
Book adds distinguished vertices x, y but we do not.
Since c is just a function on arcs, can use notation

developed for flows like c(S), c+(X), etc.

◦ feasible flow in (D, c): flow (any flow, not necessarily xy-
flow) that satisfies 0 ≤ f ≤ c, i.e., 0 ≤ f(a) ≤ c(a) ∀
a ∈ A(D).
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f(a)/c(a); feasible ps-flow

Maximum Flow Problem: Find a maximum xy-flow , a feasible xy-flow in (D, c) of maximum
value.

Cuts and flows

◦ xy-edge cut or just xy-cut : set of arcs K such that there exists X ⊆ V (D) with x ∈ X, y /∈ X,
and K = δ+X (only outward arcs). Removal destroys all directed xy-walks. Capacity of δ+X
in (D, c) means c(δ+X) = c+(X).

Theorem F8: Suppose f is a feasible xy-flow in (D, c), and δ+X is an xy-cut. Then
(a) val f ≤ c(δ+X) and
(b) val f = c(δ+X) if and only if f(a) = c(a) ∀ a ∈ δ+X and f(a) = 0 ∀ a ∈ δ−X.

Example: Above, if X = {p, q, t}, val f = ∂f(X) = f+(X) = 1 + 2 ≤ c+(X) = 9 + 11 = 20.

Proof: By Corollary F7

val f = ∂f(X) = f(δ+X)− f(δ−X)

≤ f(δ+X) (1) since f(δ−X) ≥ 0 because f ≥ 0

≤ c(δ+X) (2) since f(δ−X) ≤ c(δ+X) because f ≤ c.

Equality holds if and only if it holds at (1), so f(a) = 0 for all a ∈ δ−X, and it holds at (2), so
f(a) = c(a) for all a ∈ δ+X.

Corollary F9: If f is a feasible xy-flow, δ+X is an xy-cut and val f = c(δ+X), then f is a maximum
xy-flow, and δ+X is a minimum (capacity) xy-cut. Does converse hold, or could maximum flow
have value less than capacity of minimum cut? Goal: prove converse by constructing maximum
flow and minimum cut. Do this in small steps.

Improving flow

Basic idea: try to improve flow. If cannot, try to prove current flow is maximum by finding a
corresponding cut. How to improve flow?

Treatment here different from book: we use explicit residual network , makes it easier to prove
things using standard reachability arguments.

◦ residual network (D∗, c∗) = Res(D, c, f) for feasible flow f : shows how to modify f and stay
feasible. V (D∗) = V (D). Up to two arcs in D∗ for each arc of D, with capacity function c∗:

if f(a) < c(a) add a+, copy of a, with c∗(a+) = c(a) − f(a) (indicates we can push extra flow
along a);

if f(a) > 0 add arc a−, opposite to a, with c∗(a−) = f(a) (indicates we can push some flow
backwards along a, i.e., reduce flow in a).

◦ [b] = a for arc b = a+ or a− in D∗; [W ] = direction-insensitive walk in D corresponding to walk
W in D∗.
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Example: (0) Initial flow f0 of value 3 and residual network:

(D, c, f)0 1/13

1/9

2/5

0/6

0/10 1/4
0/3

2/4

2/11
1/13

p

q r

s

t u

(D∗, c∗)0
12

1

8

1 3

26

10 3

1
3

2

2 9

2

12

1

p

q r

s

t u

◦ f -augmenting path for feasible xy-flow f : directed xy-path in D∗. Easy to find: use Directed
Local TCM, e.g., Directed BFS or DFS, to see if y reachable from x in D∗.

(F10) If P is an f -augmenting path and ρ = min{c∗(b) | b ∈ A(P )} (which is > 0) then we get a
better feasible xy-flow f ′ in (D, c) by augmenting f along P (by ρ):

f ′(a) = f(a) + ρ ∀ a+ ∈ A(P );
f ′(a) = f(a)− ρ ∀ a− ∈ A(P ).

I.e., f ′ = f + ρ−→χ [P ]. Then f ′ is an xy-flow since xy-flows are a vector space which is feasible by
choice of ρ and val f ′ = val f + ρ val−→χ [P ] = val f + ρ by linearity of val . Could have augmented by
amount less than ρ, but will be greedy and improve as much as possible.

Example (ctd): (1) Augment along pqrs by 3 = min{12, 8, 3}, get f1 of value 6 (flow and residual
network only change along pqrs):
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Ford-Fulkerson (F-F) Algorithm: (very complicated!)

start with some feasible xy-flow f (maybe f = 0);
while there is an f -augmenting path P

augment f along P ;

(F11) If we can find several arc-disjoint f -augmenting paths in D∗ then can augment along all of
them simultaneously.

We hope that F-F (a) terminates and (b) gives a maximum flow.

Example (ctd): (2) Augment along ptus by 2, get f2 of value 8:
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Could have combined (1) and (2) into single step augmenting along two edge-disjoint paths.
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(3) Augment along pqrtus by 5, get f3 of value 13:

(D, c, f)3 9/13
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No apparent ps-path in residual network. Verified by Directed Local TCM from p. Will use output
of Directed Local TCM again, shortly. So stop.

Theorem F12: Suppose f is a feasible xy-flow.
(i) If f is a maximum xy-flow then there is no f -augmenting path.
(ii) If there is no f -augmenting path then there is an xy-cut δ+X with val f = c(δ+X). Thus, f is

a maximum xy-flow, and δ+X is a minimum xy-cut.

Proof: (i) If we had an f -augmenting path we could increase val f .

(ii) Let X = R+
D∗(x). Since there is no directed xy-path in D∗, y ∈ X , so δ+X is an xy-cut.

By (D1), δ+
D∗X = δ+

D∗(R
+
D∗(x)) = ∅. So if a ∈ δ+

D
X then f(a) = c(a), otherwise a+ ∈ δ+

D∗X.
And if a ∈ δ−

D
X then f(a) = 0, otherwise a− ∈ δ+

D∗X. But these are exactly the conditions of
Theorem F8(b), so val f = c(δ+X) and by Corollary F9 f is maximum and δ+X is minimum.

(F13) So if F-F terminates, by (ii) we have a maximum xy-flow. And we know how to find
a minimum xy-cut δ+X: X = R+

D∗(x) which we have probably already constructed with our
Directed Local TCM to look for an xy-path in D∗.

Example (ctd): Our Directed Local TCM found R+
D∗(p) = {p, q} = X so δ+X = {pt, qr}. Then

c(δ+X) = 9 + 4 = 13 = val f3, so we have a maximum ps-flow f3 and minimum ps-cut δ+X.

Theorem F14: If all capacities are integral then there exists an integer-valued maximum xy-flow.

Proof: Start F-F with f = 0. Since all capacities integral, all computations are integral, and F-F
must terminate (since value increases by at least 1 each time).

If all capacities rational, can scale to make them integers, so similar conclusion holds.

(F15) F-F may take many steps even for small graph. In
example (at right), want tw-flow, use Directed DFS
processing neighbours in some weird order. Augments
along tuvw, tvuw, tuvw, . . .: 2000 iterations.

(F16) There are examples with irrational capacities where
F-F never terminates.
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Edmonds-Karp (E-K) Algorithm: In F-F always choose an f -augmenting path with fewest
arcs (shortest path in digraph, D∗) (can use Directed BFS in D∗). Then terminates, even with
irrational capacities, and in polynomial time. Proof not too hard but omit due to time constraints.

Max-Flow Min-Cut (MFMC) Theorem: The value of a maximum xy-flow equals the capacity
of a minimum xy-cut.

Proof: First, a maximum xy-flow f exists, since E-K finds one. Book fails to address existence.
[Alternatively, val is a continuous function on the closed bounded (compact) space of feasible
xy-flows, defined by conservation and feasibility conditions. Therefore, from topology, a flow of
maximum value exists.]
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Now f has no augmenting path, so by Theorem F12(ii) there is a corresponding minimum
xy-cut.

Comments on F-F/E-K algorithms: (1) May combine effect of parallel arcs in residual network
into single arc.

(2) Need not explicitly construct the residual network: work directly with original network. Many
books, inc. B&M, do not define residual network, just work with original network. More efficient
for implementation. But residual network aids understanding and proofs can use familiar ideas like
R+(·).

Variations

(F17) Infinite capacities: If (D, c) is a network where c can have values of +∞, let D∞ be the
spanning subdigraph with only the infinite capacity arcs. Let X∞ = R+

D∞

(x). Then either

(i) y ∈ X∞, in which case we can find feasible xy-flows of arbitrarily large value, and there is no
finite capacity xy-cut. No maximum flow value, but supremum of values of feasible xy-flows = ∞
= capacity of minimum xy-cut, so MFMC Theorem holds in some sense.

(ii) y /∈ X∞, in which case there is a finite capacity xy-cut (δ+
D
X∞), a maximum xy-flow of finite

value, and MFMC Theorem holds. Can prove by replacing infinite capacities by a large finite value.

(F18) Vertex capacities: Suppose at flow-con-
serving v we want f+(v) = f−(v) ≤ c(v). To
implement, split v into v− with all in-arcs, v+

with all out-arcs (both flow-conserving), and arc
v−v+ of capacity c(v).

c(v)

v v− v+

Decomposing flows

Will show any nonnegative flow is actually positive linear combination of flows along directed cycles
and directed paths. Important for applications. Book does this in halfhearted way in §7.3 but
jumps to Cor. 7.15 without proper explanation.

Example: Remove flow first along directed cycles, then along maximal directed paths.
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Remove
4 along C1 = (abe),
2 along C2 = (cef),
3 along P1 = abcd,
6 along P2 = cefd,
now all flow is gone.

So f0 = 4χC1
+ 2χC2

+ 3χP1
+ 6χP2

.

◦ support of f , supp f = {a ∈ A(D) | f(a) 6= 0}.
◦ acyclic flow f : D[supp f ] is acyclic.

Flow Decomposition Algorithm: What we did in example.
f = f0, a nonnegative flow; here f = f0
Phase 1:

while supp f has a directed cycle C {
α = min{f(a) | a ∈ A(C)}; f = f − αχC ; remove fC = α1χC1

+ . . .+ αsχCs

} here f = fA = f0 − fC , acyclic
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Phase 2:

while supp f 6= ∅ {
take maximal nontrivial directed path P ;
β = min{f(a) | a ∈ A(P )}; f = f − βχP ; remove fA = β1χP1

+ . . . + βtχPt

} here f = 0

Gallai’s Flow Decomposition Theorem (FDT): Every nonnegative flow f0 may be written

f0 =

fC
︷ ︸︸ ︷

α1χC1
+ α2χC2

+ . . .+ αsχCs
+

fA
︷ ︸︸ ︷

β1χP1
+ β2χP2

+ . . . + βtχPt

where
(i) fC is a nonnegative circulation, s ≥ 0, α1, . . . , αs > 0, and C1, . . ., Cs are directed cycles;
(ii) fA is a nonnegative acyclic flow, t ≥ 0, β1, . . . , βt > 0, and each Pi is a directed xiyi-path with

∂f0(xi) > 0, ∂f0(yi) < 0; and
(iii) if f0 is integer-valued then we may choose α1, . . . , αs, β1, . . . , βt to all be integers, so that fC

and fA are also integer-valued.

Proof: Apply the algorithm. It terminates because at each iteration in each phase supp f loses at
least one arc. Everything is then obvious except for the claims about ∂f0 in (ii).

For each vertex v, ∂f(v) does not change during Phase 1. During Phase 2, by maximality of
Pi, xi is a source and yi a sink in D[supp f ] when Pi is chosen. Therefore, whenever ∂f(v) changes
in Phase 2 it moves towards 0. Moreover, when Pi is chosen ∂f(xi) > 0 and ∂f(yi) < 0, so we
must have had ∂f0(xi) > 0, ∂f0(yi) < 0.

Note: In general flow decomposition is not unique. E.g. in example could have started by removing
3 along (abce).

Consequences:

(F19) For every feasible xy-flow f0, there is a feasible acyclic xy-flow fA of equal value. In
particular, there exists a maximum xy-flow that is acyclic.

(F20) Every nonnegative acyclic xy-flow f0 of positive value can be written as a positive linear
combination of flows along directed xy-paths.

(F21) Every nonnegative circulation f0 can be decomposed entirely as f0 = fC = α1χC1
+α2χC2

+
. . .+ αsχCs

: t = 0 in FDT(ii) because there are no vertices v with ∂f0(v) 6= 0.

(F22) An acyclic digraph D has no nonnegative circulation f0 except the zero flow: by (F21)
f0 = α1χC1 + . . .+ αsχCs, but s = 0 since D is acyclic.

(F23) A digraph without isolated vertices in which every vertex has indegree = outdegree is the
union of arc-disjoint directed cycles.

(F24) A graph without isolated vertices in which every vertex has even degree is the union of
edge-disjoint cycles.
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