NETWORK FLOWS

Reading: 7.1-3

Want to think about moving something (water, messages, vehicles) through a network. Important practical applications. Also several other graph theory results (Menger's theorem in vertex and edge forms, bipartite matching algorithm) are consequences.

General flows

- flow in a digraph: $f: A(D) \rightarrow \mathbf{R}$ Many books including ours add extra conditions but we allow any function at this point.
Recall: $A(X, Y)=\operatorname{arcs}$ from X to $Y ; \bar{X}=V(D)-X ; \delta^{+} X=A(X, \bar{X}), \delta^{-} X=A(\bar{X}, X)$. Also write $\delta^{+} v, \delta^{-} v$ for individual vertices v.
Notation: Given a flow f, we define
$f(S)=\sum_{a \in S} f(a) \quad$ for $S \subseteq A(D)$,
$f^{+}(X)=f\left(\delta^{+} X\right), f^{-}(X)=f\left(\delta^{-} X\right) \quad$ for $X \subseteq V(D)$ (total flow on arcs out of or into X), $\partial_{D} f(X)=\partial f(X)=f^{+}(X)-f^{-}(X) \quad$ for $X \subseteq V(D)$, net flow out of X. Notation: using boundary symbol ∂, not coboundary δ.
(F1) $\partial f(\bar{X})=-\partial f(X)$ because $\delta^{+} \bar{X}=\delta^{-} X, \delta^{-} \bar{X}=\delta^{+} X$.

A general flow:

$$
\begin{aligned}
& f^{+}(r)=11+4+1+7=23, \quad f^{-}(r)=-8+5=-3 \\
& \quad \partial f(r)=23-(-3)=26 \\
& X=\{p, q\}, \quad f^{+}(X)=-8+(-3)=-11, \quad f^{-}(X)=11 \\
& \quad \partial f(X)=-11-11=-22 \\
& \partial f(p)+\partial f(q)=-12+(-10)=-22=\partial f(X) \text { (flow on arc } \\
& \quad p q \text { cancels) }
\end{aligned}
$$

Lemma F2: ∂f is additive, i.e., for $X \subseteq V(D)$ we have $\partial f(X)=\sum_{v \in X} \partial f(v)$.
Proof: By definition,
$\sum_{v \in X} \partial f(v)=\sum_{v \in X}\left(f^{+}(v)-f^{-}(v)\right)=\sum_{v \in X} f^{+}(v)-\sum_{v \in X} f^{-}(v)=\sum_{v \in X} \sum_{a \in \delta^{+} v} f(a)-\sum_{v \in X} \sum_{a \in \delta^{-} v} f(a)$.
Consider the final expression and $a \in A(D)$. The net contribution of a is

$$
\begin{aligned}
& 0-0=0 \text { if } a \in A(\bar{X}, \bar{X}) \\
& f(a)-f(a)=0 \text { if } a \in A(X, X) \\
& f(a)-0=f(a) \text { if } a \in A(X, \bar{X})=\delta^{+} X \\
& 0-f(a)=-f(a) \text { if } a \in A(\bar{X}, X)=\delta^{-} X
\end{aligned}
$$

Therefore,

$$
\sum_{v \in X} \partial f(v)=\sum_{a \in \delta^{+} X} f(a)-\sum_{a \in \delta^{-} X} f(a)=f\left(\delta^{+} X\right)-f\left(\delta^{-} X\right)=f^{+}(X)-f^{-}(X)=\partial f(X)
$$

Note: Means that $\sum_{v \in V(D)} \partial f(v)=\partial f(V(D))=0$ because $\delta^{+}(V(D))=\delta^{-}(V(D))=\emptyset$.
So now we just need to worry about how ∂f behaves on individual vertices.
(F3) $\partial: \mathbf{R}^{A} \rightarrow \mathbf{R}^{V}$ is a linear operator (linear transformation, vector space homomorphism) mapping flows (arc weights) to vertex weights: $\partial(\alpha f+\beta g)=\alpha \partial f+\beta \partial g$.

Two-terminal flows and circulations

For applications, we generally want flow to be 'balanced' at most vertices: outflow $=$ inflow.

- f conserved at $v: f^{+}(v)=f^{-}(v)$, i.e. $\partial f(v)=0$.
- xy-flow $f: \partial f(v)=0 \forall v \in V(D)-\{x, y\}$ (conserved except at x and y, think of flowing from x to $y . x$ is supply vertex and y is demand vertex. (Book and other sources call x the source and y the sink, but confusing: no need to assume x has indegree 0 or y has outdegree 0 .)
(F4) By linearity of ∂, $x y$-flows also form a vector space: if $\partial f(v)=\partial g(v)=0$ for $v \notin\{x, y\}$, then $\partial(\alpha f+\beta g)(v)=\alpha \partial f(v)+\beta \partial g(v)=0$ for $v \notin\{x, y\}$.
- circulation f : $\partial f=0$, i.e., $\partial f(v)=0 \forall v \in V(D)$. Conserved everywhere, so $x y$-flow for any x, y. (F5) Set of circulations is kernel/nullspace of linear operator ∂, so is also vector subspace of all flows. $p s$-flow (and $s p$-flow)

circulation

- value of an $x y$-flow is val $f=\partial f(x)$. E.g. ps-flow above has value 9 , or -9 as $s p$-flow. Circulation also $p s$-flow, value 0 . Circulations always have value 0 .
(F6) Value is linear on $x y$-flows: $\operatorname{val}(\alpha f+\beta g)=\alpha \operatorname{val} f+\beta \operatorname{val} g$. Follows from linearity of ∂.
Corollary F7: Suppose f is an $x y$-flow and X, Y is a partition of $V(D)$ with $x \in X, y \in Y=\bar{X}$. Then

$$
\operatorname{val} f=\partial f(x) \stackrel{(1)}{=} \partial f(X) \stackrel{(2)}{=}-\partial f(Y) \stackrel{(3)}{=}-\partial f(y)
$$

Proof: For (1) and (3) use additivity of ∂f and $\partial f(v)=0$ if $v \neq x, y$. For (2) use (F1).

Special $x y$-flows: \circ characteristic function χ_{S} of $S \subseteq A(D): \chi(a)=1$ if $a \in S$, 0 otherwise. For subdigraph H write χ_{H} for $\chi_{A(H)}$.

- signed characteristic function $\vec{\chi}_{T}$ of direction-insensitive trail T : $\vec{\chi}_{T}(a)=1$ if T uses a forwards, -1 if T uses a backwards, 0 otherwise. Simpler for trails since use each edge at most once, but could extend to walks. If T is a directed trail then $\vec{\chi}_{T}=\chi_{T}$ thinking of T as subdigraph.
If P is a direction-insensitive (directed) $x y$-path, then $\vec{\chi}_{P}\left(\vec{\chi}_{P}=\chi_{P}\right)$ is an $x y$-flow of value 1 . If C is a direction-insensitive (directed) cycle then $\vec{\chi}_{C}\left(\vec{\chi}_{C}=\chi_{C}\right)$ is a circulation, and hence an $x y$-flow of value 0 . Irrelevant whether or not C contains x or y.

$\vec{\chi}_{C}=\chi_{C}$

Networks and feasible flows

- network (D, c) : digraph $D(V=V(D), A=A(D))$, each arc has nonnegative capacity $c(a)$.
Book adds distinguished vertices x, y but we do not.
Since c is just a function on arcs, can use notation developed for flows like $c(S), c^{+}(X)$, etc.
- feasible flow in (D, c) : flow (any flow, not necessarily $x y$ flow) that satisfies $0 \leq f \leq c$, i.e., $0 \leq f(a) \leq c(a) \forall$

$f(a) / c(a)$; feasible $p s$-flow $a \in A(D)$.
Maximum Flow Problem: Find a maximum $x y$-flow, a feasible $x y$-flow in (D, c) of maximum value.

Cuts and flows

- xy-edge cut or just $x y$-cut: set of arcs K such that there exists $X \subseteq V(D)$ with $x \in X, y \notin X$, and $K=\delta^{+} X$ (only outward arcs). Removal destroys all directed $x y$-walks. Capacity of $\delta^{+} X$ in (D, c) means $c\left(\delta^{+} X\right)=c^{+}(X)$.
Theorem F8: Suppose f is a feasible $x y$-flow in (D, c), and $\delta^{+} X$ is an $x y$-cut. Then
(a) val $f \leq c\left(\delta^{+} X\right)$ and
(b) val $f=c\left(\delta^{+} X\right)$ if and only if $f(a)=c(a) \forall a \in \delta^{+} X$ and $f(a)=0 \forall a \in \delta^{-} X$.

Example: Above, if $X=\{p, q, t\}$, val $f=\partial f(X)=f^{+}(X)=1+2 \leq c^{+}(X)=9+11=20$.
Proof: By Corollary F7

$$
\begin{aligned}
\text { val } f & =\partial f(X)=f\left(\delta^{+} X\right)-f\left(\delta^{-} X\right) \\
& \leq f\left(\delta^{+} X\right) \quad(1) \text { since } f\left(\delta^{-} X\right) \geq 0 \text { because } f \geq 0 \\
& \leq c\left(\delta^{+} X\right) \quad \text { (2) since } f\left(\delta^{-} X\right) \leq c\left(\delta^{+} X\right) \text { because } f \leq c .
\end{aligned}
$$

Equality holds if and only if it holds at (1), so $f(a)=0$ for all $a \in \delta^{-} X$, and it holds at (2), so $f(a)=c(a)$ for all $a \in \delta^{+} X$.
Corollary F9: If f is a feasible $x y$-flow, $\delta^{+} X$ is an $x y$-cut and val $f=c\left(\delta^{+} X\right)$, then f is a maximum $x y$-flow, and $\delta^{+} X$ is a minimum (capacity) $x y$-cut. Does converse hold, or could maximum flow have value less than capacity of minimum cut? Goal: prove converse by constructing maximum flow and minimum cut. Do this in small steps.

Improving flow

Basic idea: try to improve flow. If cannot, try to prove current flow is maximum by finding a corresponding cut. How to improve flow?
Treatment here different from book: we use explicit residual network, makes it easier to prove things using standard reachability arguments.

- residual network $\left(D^{*}, c^{*}\right)=\operatorname{Res}(D, c, f)$ for feasible flow f : shows how to modify f and stay feasible. $V\left(D^{*}\right)=V(D)$. Up to two arcs in D^{*} for each arc of D, with capacity function c^{*} :
if $f(a)<c(a)$ add a^{+}, copy of a, with $c^{*}\left(a^{+}\right)=c(a)-f(a)$ (indicates we can push extra flow along a);
if $f(a)>0$ add arc a^{-}, opposite to a, with $c^{*}\left(a^{-}\right)=f(a)$ (indicates we can push some flow backwards along a, i.e., reduce flow in a).
$\circ[b]=a$ for $\operatorname{arc} b=a^{+}$or a^{-}in $D^{*} ;[W]=$ direction-insensitive walk in D corresponding to walk W in D^{*}.

Example: (0) Initial flow f_{0} of value 3 and residual network:

$\left(D^{*}, c^{*}\right)_{0}$

- f-augmenting path for feasible $x y$-flow f : directed $x y$-path in D^{*}. Easy to find: use Directed

Local TCM, e.g., Directed BFS or DFS, to see if y reachable from x in D^{*}.
(F10) If P is an f-augmenting path and $\rho=\min \left\{c^{*}(b) \mid b \in A(P)\right\}$ (which is >0) then we get a better feasible $x y$-flow f^{\prime} in (D, c) by augmenting f along P (by ρ):

$$
\begin{array}{ll}
f^{\prime}(a) & =f(a)+\rho \\
f^{\prime}(a) & =f(a)-\rho
\end{array} \quad \forall a^{+} \in A(P) ;
$$

I.e., $f^{\prime}=f+\rho \vec{\chi}_{[P]}$. Then f^{\prime} is an $x y$-flow since $x y$-flows are a vector space which is feasible by choice of ρ and val $f^{\prime}=\operatorname{val} f+\rho \operatorname{val} \vec{\chi}_{[P]}=\operatorname{val} f+\rho$ by linearity of val. Could have augmented by amount less than ρ, but will be greedy and improve as much as possible.
Example (ctd): (1) Augment along pqrs by $3=\min \{12,8,3\}$, get f_{1} of value 6 (flow and residual network only change along pqrs):

$$
(D, c, f)_{1}
$$

$\left(D^{*}, c^{*}\right)_{1}$

Ford-Fulkerson (F-F) Algorithm: (very complicated!)
start with some feasible $x y$-flow f (maybe $f=0$);
while there is an f-augmenting path P
augment f along P;
(F11) If we can find several arc-disjoint f-augmenting paths in D^{*} then can augment along all of them simultaneously.
We hope that F-F (a) terminates and (b) gives a maximum flow.
Example (ctd): (2) Augment along ptus by 2, get f_{2} of value 8:

$\left(D^{*}, c^{*}\right)_{2}$

Could have combined (1) and (2) into single step augmenting along two edge-disjoint paths.
(3) Augment along pqrtus by 5 , get f_{3} of value 13 :

$$
(D, c, f)_{3}
$$

$\left(D^{*}, c^{*}\right)_{3}$

Dir. Loc. TCM

No apparent $p s$-path in residual network. Verified by Directed Local TCM from p. Will use output of Directed Local TCM again, shortly. So stop.
Theorem F12: Suppose f is a feasible $x y$-flow.
(i) If f is a maximum $x y$-flow then there is no f-augmenting path.
(ii) If there is no f-augmenting path then there is an $x y$-cut $\delta^{+} X$ with val $f=c\left(\delta^{+} X\right)$. Thus, f is a maximum $x y$-flow, and $\delta^{+} X$ is a minimum $x y$-cut.
Proof: (i) If we had an f-augmenting path we could increase val f.
(ii) Let $X=R_{D^{*}}^{+}(x)$. Since there is no directed $x y$-path in $D^{*}, y \in \bar{X}$, so $\delta^{+} X$ is an $x y$-cut.

By (D1), $\delta_{D^{*}}^{+} X=\delta_{D^{*}}^{+}\left(R_{D^{*}}^{+}(x)\right)=\emptyset$. So if $a \in \delta_{D}^{+} X$ then $f(a)=c(a)$, otherwise $a^{+} \in \delta_{D^{*}}^{+} X$. And if $a \in \delta_{D}^{-} X$ then $f(a)=0$, otherwise $a^{-} \in \delta_{D^{*}}^{+} X$. But these are exactly the conditions of Theorem F8(b), so val $f=c\left(\delta^{+} X\right)$ and by Corollary F9 f is maximum and $\delta^{+} X$ is minimum.
(F13) So if F-F terminates, by (ii) we have a maximum $x y$-flow. And we know how to find a minimum $x y$-cut $\delta^{+} X: \quad X=R_{D^{*}}^{+}(x)$ which we have probably already constructed with our Directed Local TCM to look for an $x y$-path in D^{*}.
Example (ctd): Our Directed Local TCM found $R_{D^{*}}^{+}(p)=\{p, q\}=X$ so $\delta^{+} X=\{p t, q r\}$. Then $c\left(\delta^{+} X\right)=9+4=13=\operatorname{val} f_{3}$, so we have a maximum $p s$-flow f_{3} and minimum $p s$-cut $\delta^{+} X$.
Theorem F14: If all capacities are integral then there exists an integer-valued maximum $x y$-flow.
Proof: Start F-F with $f=0$. Since all capacities integral, all computations are integral, and F-F must terminate (since value increases by at least 1 each time).
If all capacities rational, can scale to make them integers, so similar conclusion holds.
(F15) F-F may take many steps even for small graph. In example (at right), want $t w$-flow, use Directed DFS processing neighbours in some weird order. Augments along tuvw, tvuw, tuvw, ...: 2000 iterations.
(F16) There are examples with irrational capacities where F-F never terminates.

Edmonds-Karp (E-K) Algorithm: In F-F always choose an f-augmenting path with fewest arcs (shortest path in digraph, D^{*}) (can use Directed BFS in D^{*}). Then terminates, even with irrational capacities, and in polynomial time. Proof not too hard but omit due to time constraints.
Max-Flow Min-Cut (MFMC) Theorem: The value of a maximum $x y$-flow equals the capacity of a minimum $x y$-cut.
Proof: First, a maximum $x y$-flow f exists, since E-K finds one. Book fails to address existence. [Alternatively, val is a continuous function on the closed bounded (compact) space of feasible $x y$-flows, defined by conservation and feasibility conditions. Therefore, from topology, a flow of maximum value exists.]

Now f has no augmenting path, so by Theorem F12(ii) there is a corresponding minimum $x y$-cut.
Comments on F-F/E-K algorithms: (1) May combine effect of parallel arcs in residual network into single arc.
(2) Need not explicitly construct the residual network: work directly with original network. Many books, inc. B\&M, do not define residual network, just work with original network. More efficient for implementation. But residual network aids understanding and proofs can use familiar ideas like $R^{+}(\cdot)$.

Variations

(F17) Infinite capacities: If (D, c) is a network where c can have values of $+\infty$, let D_{∞} be the spanning subdigraph with only the infinite capacity arcs. Let $X_{\infty}=R_{D_{\infty}}^{+}(x)$. Then either
(i) $y \in X_{\infty}$, in which case we can find feasible $x y$-flows of arbitrarily large value, and there is no finite capacity $x y$-cut. No maximum flow value, but supremum of values of feasible $x y$-flows $=\infty$ $=$ capacity of minimum $x y$-cut, so MFMC Theorem holds in some sense.
(ii) $y \notin X_{\infty}$, in which case there is a finite capacity $x y$-cut $\left(\delta_{D}^{+} X_{\infty}\right)$, a maximum $x y$-flow of finite value, and MFMC Theorem holds. Can prove by replacing infinite capacities by a large finite value.
(F18) Vertex capacities: Suppose at flow-conserving v we want $f^{+}(v)=f^{-}(v) \leq c(v)$. To implement, split v into v^{-}with all in-arcs, v^{+}
 with all out-arcs (both flow-conserving), and arc $v^{-} v^{+}$of capacity $c(v)$.

Decomposing flows

Will show any nonnegative flow is actually positive linear combination of flows along directed cycles and directed paths. Important for applications. Book does this in halfhearted way in $\S 7.3$ but jumps to Cor. 7.15 without proper explanation.
Example: Remove flow first along directed cycles, then along maximal directed paths.

Remove
4 along $C_{1}=(a b e)$,
2 along $C_{2}=(c e f)$, 3 along $P_{1}=a b c d$, 6 along $P_{2}=c e f d$, now all flow is gone.
So $f_{0}=4 \chi_{C_{1}}+2 \chi_{C_{2}}+3 \chi_{P_{1}}+6 \chi_{P_{2}}$.

- support of $f, \operatorname{supp} f=\{a \in A(D) \mid f(a) \neq 0\}$.
- acyclic flow $f: D[\operatorname{supp} f]$ is acyclic.

Flow Decomposition Algorithm: What we did in example.
$f=f_{0}$, a nonnegative flow;
Phase 1:
while $\operatorname{supp} f$ has a directed cycle $C\{$

$$
\alpha=\min \{f(a) \mid a \in A(C)\} ; f=f-\alpha \chi_{C} ; \quad \text { remove } f_{C}=\alpha_{1} \chi_{C_{1}}+\ldots+\alpha_{s} \chi_{C_{s}}
$$

\}

Phase 2:
while supp $f \neq \emptyset$ \{
take maximal nontrivial directed path P;
$\beta=\min \{f(a) \mid a \in A(P)\} ; f=f-\beta \chi_{P} ;$
\}
remove $f_{A}=\beta_{1} \chi_{P_{1}}+\ldots+\beta_{t} \chi_{P_{t}}$
here $f=0$

Gallai's Flow Decomposition Theorem (FDT): Every nonnegative flow f_{0} may be written

$$
f_{0}=\overbrace{\alpha_{1} \chi_{C_{1}}+\alpha_{2} \chi_{C_{2}}+\ldots+\alpha_{s} \chi_{C_{s}}}^{f_{C}}+\overbrace{\beta_{1} \chi_{P_{1}}+\beta_{2} \chi_{P_{2}}+\ldots+\beta_{t} \chi_{P_{t}}}^{f_{A}}
$$

where
(i) f_{C} is a nonnegative circulation, $s \geq 0, \alpha_{1}, \ldots, \alpha_{s}>0$, and C_{1}, \ldots, C_{s} are directed cycles;
(ii) f_{A} is a nonnegative acyclic flow, $t \geq 0, \beta_{1}, \ldots, \beta_{t}>0$, and each P_{i} is a directed $x_{i} y_{i}$-path with $\partial f_{0}\left(x_{i}\right)>0, \partial f_{0}\left(y_{i}\right)<0 ;$ and
(iii) if f_{0} is integer-valued then we may choose $\alpha_{1}, \ldots, \alpha_{s}, \beta_{1}, \ldots, \beta_{t}$ to all be integers, so that f_{C} and f_{A} are also integer-valued.
Proof: Apply the algorithm. It terminates because at each iteration in each phase supp f loses at least one arc. Everything is then obvious except for the claims about ∂f_{0} in (ii).

For each vertex $v, \partial f(v)$ does not change during Phase 1. During Phase 2, by maximality of P_{i}, x_{i} is a source and y_{i} a sink in $D[\operatorname{supp} f]$ when P_{i} is chosen. Therefore, whenever $\partial f(v)$ changes in Phase 2 it moves towards 0 . Moreover, when P_{i} is chosen $\partial f\left(x_{i}\right)>0$ and $\partial f\left(y_{i}\right)<0$, so we must have had $\partial f_{0}\left(x_{i}\right)>0, \partial f_{0}\left(y_{i}\right)<0$.
Note: In general flow decomposition is not unique. E.g. in example could have started by removing 3 along (abce).

Consequences:

(F19) For every feasible $x y$-flow f_{0}, there is a feasible acyclic $x y$-flow f_{A} of equal value. In particular, there exists a maximum $x y$-flow that is acyclic.
(F20) Every nonnegative acyclic $x y$-flow f_{0} of positive value can be written as a positive linear combination of flows along directed $x y$-paths.
(F21) Every nonnegative circulation f_{0} can be decomposed entirely as $f_{0}=f_{C}=\alpha_{1} \chi_{C_{1}}+\alpha_{2} \chi_{C_{2}}+$ $\ldots+\alpha_{s} \chi_{C_{s}}: t=0$ in FDT(ii) because there are no vertices v with $\partial f_{0}(v) \neq 0$.
(F22) An acyclic digraph D has no nonnegative circulation f_{0} except the zero flow: by (F21) $f_{0}=\alpha_{1} \chi C_{1}+\ldots+\alpha_{s} \chi C_{s}$, but $s=0$ since D is acyclic.
(F23) A digraph without isolated vertices in which every vertex has indegree $=$ outdegree is the union of arc-disjoint directed cycles.
(F24) A graph without isolated vertices in which every vertex has even degree is the union of edge-disjoint cycles.

