
Math 275 Graph Theory Fall 2019

DIRECTED GRAPHS

Reading: 1.5, 2.1, 2.5, 3.4, 6.3

ψD(q) = (b, a) = ba
d+(c) = 1, d−(c) = 3
N+(a) = {c}, N−(a) = {b, c}

underlying graph

◦ directed graph or digraph: D has vertex set V (D), set of arcs/ or directed edges A(D), incidence
function ψD mapping each arc to ordered pair of vertices.

◦ strict digraph: no loops or parallel arcs (but opposite arcs are allowed); denote arc as uv.
◦ Arc from u to v: head v, tail u, u dominates v.
◦ outdegree d+(v), indegree d−(v).
◦ Set of outneighbours N+(v) = {u ∈ V (D) | u 6= v, v dominates u}; inneighbours N−(v).
◦ underlying graph: ignore directions.

◦ associated digraph of graph G: replace each edge by pair of opposite arcs.
◦ orientation of graph G: replace each edge by one of possible arcs; oriented graph = orientation

of simple graph.
◦ tournament : orientation of complete graph Kn.
◦ source: vertex of indegree 0; sink : vertex of outdegree 0.
◦ converse of D: reverse all arcs.

Mark Ellingham D1 Vanderbilt University



Math 275 Graph Theory Fall 2019

Moving around in digraphs: Have directed versions of walks,
trails, paths, cycles: must follow edges in correct direction. Di-
rected uv-walk goes from u to v.

◦ connected : underlying graph connected.
◦ AD(X,Y ) = A(X,Y ) = edges with tail in X, head in Y for

X,Y ⊆ V (D), not necessarily disjoint.
◦ δ+

D
(X) = δ+(X) = δ+X = A(X,X) and δ−X = A(X,X),
where X = V (D)−X. Notation in book is confused (p. 59,
62 of 2nd pr.) Standard symbol here is δ (coboundary),
book uses ∂ (boundary). Probably trying to keep δ for
minimum degree, but generally there’s no confusion.

◦ strong or strongly connected : δ+X 6= ∅ for all proper nonempty subsets X of V (D). (Or equiva-
lently, δ−X 6= ∅ for all such X.)

◦ reachability in digraphs means directed reachability: uR+v if there is a directed uv-walk; say
u can reach v or v is reachable from u. Not necessarily an equivalence relation now: not
symmetric. Can define converse (transpose) relation R−.

◦ R+
D
(v) means vertices reachable from v; R−

D
(v) means vertices that can reach v.

(D1) δ+(R+
D
(v)) = ∅. If e ∈ δ+(R+

D
(v)) has tail w, head x, then x ∈ R+

D
(v), a contradiction.

(D2) If v ∈ S and δ+S = ∅ then R+
D
(v) ⊆ S. If there was w ∈ R+

D
(v) ∩ S then the edge following

the last vertex of S on a vw-path would contradict δ+S = ∅.

(D3) (directed M9) ∃ a directed uv-walk if and only if ∃ a directed uv-path. Remove repetitions.

Theorem D4 (directed M3/M10): For a digraph D, the following are equivalent.
(i) G is strongly connected;
(ii) ∀ u, v ∈ V (D) ∃ a directed uv-walk (i.e., uRv);
(iii) ∀ u, v ∈ V (D) ∃ a directed uv-path.

Proof: (i) ⇒ (ii) by (D1), (ii) ⇒ (i) by (D2), and (ii) ⇔ (iii) by (D3).

◦ strong component : maximal strongly connected subgraph (not definition in B&M).

Can use Theorem D4 to show vertex set of strong component is an equivalence class for bidirectional
reachability, intersection of R+ and R−.

Lemma D5: If D has a nontrivial closed directed walk, then D has a directed cycle.

Proof: Proceed until first repeated vertex, must form cycle.

Note: Corresponding result for undirected graphs NOT true because can use same edge in both
directions, so get unavoidable repeated edges.

Mark Ellingham D2 Vanderbilt University



Math 275 Graph Theory Fall 2019

◦ branching or arborescence: rooted tree where all edges directed outward from root. Can be
constructed via Directed Local TCM ; special cases Directed BFS and Directed DFS (only
consider edges going outward from root).

(D6) (need for flows, later) Starting from v, Directed Local TCM constructs R+
D
(v).

◦ acyclic digraph or DAG : no directed cycles.

Lemma D7 (directed T2): An acyclic digraph has at least one
source and at least one sink.

Proof: Look at ends of a maximal (cannot be extended in
either direction) directed path.

Can define directed euler trail/tour : again uses all edges and

vertices.

Theorem D8 (directed M13): A digraph D has a directed
euler tour if and only if it is connected and every vertex v has
d+(v) = d−(v).

Proof similar to undirected version: if maximal trail doesn’t
use all edges, can find something to splice into it. Note we
don’t need strongly connected; follows automatically.

Shortest paths

One-terminal shortest path problem: Given digraph D, nonnegative weight (distance) w(a)
for each arc, vertex x, find shortest (minimum total weight) directed xv-path for all vertices v
(length d(x, v)). May assume D strict: loops don’t help, for parallel arcs keep one of least weight.

Dijkstra’s Algorithm: Loosely, we have a set S of vertices for which we know a shortest path
from x (we start off with S empty but can immediately add x). We also have tentative shortest
paths to vertices that are one arc away from vertices in S. At each step we choose the vertex u
with smallest tentative distance and add it to S, making its tentative shortest path a permanent
shortest path. Then we update the tentative shortest paths to other vertices by seeing if we get an
improvement going via u.

Formally, we keep a set S (S = V (G) − S),
parent function p (predecessor on shortest path
from x), estimate ℓ(v) of d(x, v).

for all vertices v {
p(v) = ∅; ℓ(v) = ∞;

}
S = ∅; ℓ(x) = 0;

while there is v /∈ S with ℓ(v) <∞ {
choose u /∈ S with ℓ(u) minimum;
add u to S;
for each v ∈ N+(u) with v /∈ S {

if ℓ(v) > ℓ(u) + w(uv) {
p(v) = u; ℓ(v) = ℓ(u) + w(uv);

}
}

}

5

2

15

3
4

9

10

1

7

a

b

c

d

e

f

add to S consequences
a : b 5, c 10
b : c 8, d 7
d : e 16, f 22
c : e 9
e : f 16
f :

Mark Ellingham D3 Vanderbilt University



Math 275 Graph Theory Fall 2019

Example: See graph above. At each stage we have outbranching with permanent part on vertices
of S (solid) and tentative arcs from S to other vertices (dashed). Assume ℓ(v) = ∞ if no value
shown.

add a: 5

2

15

3
4

9

10

1

7

a

b

c

d

e

f0

5

10

add b: 5

2

15

3
4

9

10

1

7

a

b

c

d

e

f0

5

8

7

add d: 5

2

15

3
4

9

10

1

7

a

b

c

d

e

f0

5

8

7

16

22

add c: 5

2

15

3
4

9

10

1

7

a

b

c

d

e

f0

5

8

7

9

22

add e: 5

2

15

3
4

9

10

1

7

a

b

c

d

e

f0

5

8

7

9

16

add f : 5

2

15

3
4

9

10

1

7

a

b

c

d

e

f0

5

8

7

9

16

Proof this works: For brevity ‘path’ means directed path. Any any stage let F = {v | ℓ(v) <∞}.
We claim that at the end of the algorithm S = F = R+(x), and that p indicates an xv-path of
length ℓ(u) = d(x, u) for every u ∈ S. Observe:

(1) ℓ(u) is nonincreasing.
(2) Once we add u to S, p(u) and ℓ(u) are fixed, and ℓ(u) <∞.
(3) If u 6= x then ℓ(u) <∞ ⇒ p(u) ∈ S and following p backwards gives an xu-path of length ℓ(u).

By (2) and (3), S ⊆ F ⊆ R+(x). When we add u to S we
ensure thatN+(u) ⊆ F , so δ+S ⊆ A(S,F−S). The algorithm
ends when F = S, which means δ+S ⊆ A(S, S − S) = ∅, so
R+(x) ⊆ S by (D2). Thus, at the end S = F = R+(x).

By (3), p agrees with ℓ, and by (2), ℓ(u) never changes
once u ∈ S. So it suffices to show that ℓ(u) = d(x, u) at
the point u is added to S. We may assume this is true for
vertices already in S. (We can let u be the first vertex for
which it fails, or we can argue by induction.) (3) guarantees
that ℓ(u) ≥ d(x, u). Assume that ℓ(u) > d(x, u), so when we
add u, there is an xu-path Q = v0v1 . . . vk of length < ℓ(u)
(v0 = x, vk = u). Let vi be the first vertex of Q in S. Then

Mark Ellingham D4 Vanderbilt University



Math 275 Graph Theory Fall 2019

ℓ(u) > w(Q) ≥ w(v0Qvi−1) + w(vi−1vi) ≥ d(x, vi−1) + w(vi−1vi)

= ℓ(vi−1) + w(vi−1vi) since vi−1 ∈ S, so d(x, vi−1) = ℓ(vi−1)

≥ ℓ(vi) since this was true when we put vi−1 in S, and stays true by (1) and (2).

Thus, u 6= vi and we should have chosen vi rather than u, a contradiction.

Mark Ellingham D5 Vanderbilt University


