DIRECTED GRAPHS

Reading: 1.5, 2.1, 2.5, 3.4, 6.3

$$
\begin{aligned}
& \psi_{D}(q)=(b, a)=b a \\
& d^{+}(c)=1, d^{-}(c)=3 \\
& N^{+}(a)=\{c\}, N^{-}(a)=\{b, c\}
\end{aligned}
$$

- directed graph or digraph: D has vertex set $V(D)$, set of arcs/ or directed edges $A(D)$, incidence function ψ_{D} mapping each arc to ordered pair of vertices.
- strict digraph: no loops or parallel arcs (but opposite arcs are allowed); denote arc as uv.
- Arc from u to v : head v, tail u, u dominates v.
- outdegree $d^{+}(v)$, indegree $d^{-}(v)$.
- Set of outneighbours $N^{+}(v)=\{u \in V(D) \mid u \neq v, v$ dominates $u\}$; inneighbours $N^{-}(v)$.
- underlying graph: ignore directions.

- associated digraph of graph G : replace each edge by pair of opposite arcs.
- orientation of graph G : replace each edge by one of possible arcs; oriented graph $=$ orientation of simple graph.
- tournament: orientation of complete graph K_{n}.
- source: vertex of indegree $0 ; \operatorname{sink}$: vertex of outdegree 0 .
- converse of D : reverse all arcs.

Moving around in digraphs: Have directed versions of walks, trails, paths, cycles: must follow edges in correct direction. Diretted $u v$-walk goes from u to v.

- connected: underlying graph connected.
- $A_{D}(X, Y)=A(X, Y)=$ edges with tail in X, head in Y for $X, Y \subseteq V(D)$, not necessarily disjoint.
- $\delta_{D}^{+}(X)=\delta^{+}(X)=\delta^{+} X=A(X, \bar{X})$ and $\delta^{-} X=A(\bar{X}, X)$, where $\bar{X}=V(D)-X$. Notation in book is confused (p. 59, 62 of 2 nd pr.) Standard symbol here is δ (coboundary),
 book uses ∂ (boundary). Probably trying to keep δ for minimum degree, but generally there's no confusion.
- strong or strongly connected: $\delta^{+} X \neq \emptyset$ for all proper nonempty subsets X of $V(D)$. (Or equivalently, $\delta^{-} X \neq \emptyset$ for all such X.)
- reachability in digraphs means directed reachability: $u R^{+} v$ if there is a directed $u v$-walk; say u can reach v or v is reachable from u. Not necessarily an equivalence relation now: not symmetric. Can define converse (transpose) relation R^{-}.
- $R_{D}^{+}(v)$ means vertices reachable from $v ; R_{D}^{-}(v)$ means vertices that can reach v.

remove repetitions
(Di) $\delta^{+}\left(R_{D}^{+}(v)\right)=\emptyset$. If $e \in \delta^{+}\left(R_{D}^{+}(v)\right)$ has tail w, head x, then $x \in R_{D}^{+}(v)$, a contradiction.
(D2) If $v \in S$ and $\delta^{+} S=\emptyset$ then $R_{D}^{+}(v) \subseteq S$. If there was $w \in R_{D}^{+}(v) \cap \bar{S}$ then the edge following the last vertex of S on a $v w$-path would contradict $\delta^{+} S=\emptyset$.
(D3) (directed M9) \exists a directed $u v$-walk if and only if \exists a directed $u v$-path. Remove repetitions.
Theorem D4 (directed M3/M10): For a digraph D, the following are equivalent.
(i) G is strongly connected;
(ii) $\forall u, v \in V(D) \exists$ a directed $u v$-walk (i.e., $u R v$);
(iii) $\forall u, v \in V(D) \exists$ a directed $u v$-path.

Proof: (i) \Rightarrow (ii) by (D1), (ii) \Rightarrow (i) by (D2), and (ii) \Leftrightarrow (iii) by (D3).

- strong component: maximal strongly connected subgraph (not definition in B\&M).

Can use Theorem D4 to show vertex set of strong component is an equivalence class for bidirectional reachability, intersection of R^{+}and R^{-}.
Lemma D5: If D has a nontrivial closed directed walk, then D has a directed cycle.
Proof: Proceed until first repeated vertex, must form cycle.
Note: Corresponding result for undirected graphs NOT true because can use same edge in both directions, so get unavoidable repeated edges.

- branching or arborescence: rooted tree where all edges directed outward from root. Can be constructed via Directed Local TCM; special cases Directed BFS and Directed DFS (only consider edges going outward from root).
(D6) (need for flows, later) Starting from v, Directed Local TCM constructs $R_{D}^{+}(v)$.
- acyclic digraph or $D A G$: no directed cycles.

Lemma D7 (directed T2): An acyclic digraph has at least one source and at least one sink.
Proof: Look at ends of a maximal (cannot be extended in either direction) directed path.

Can define directed euler trail/tour: again uses all edges and vertices.

Theorem D8 (directed M13): A digraph D has a directed euler tour if and only if it is connected and every vertex v has $d^{+}(v)=d^{-}(v)$.
Proof similar to undirected version: if maximal trail doesn't use all edges, can find something to splice into it. Note we
 don't need strongly connected; follows automatically.

Shortest paths

One-terminal shortest path problem: Given digraph D, nonnegative weight (distance) $w(a)$ for each arc, vertex x, find shortest (minimum total weight) directed $x v$-path for all vertices v (length $d(x, v)$). May assume D strict: loops don't help, for parallel arcs keep one of least weight.
Dijkstra's Algorithm: Loosely, we have a set S of vertices for which we know a shortest path from x (we start off with S empty but can immediately add x). We also have tentative shortest paths to vertices that are one arc away from vertices in S. At each step we choose the vertex u with smallest tentative distance and add it to S, making its tentative shortest path a permanent shortest path. Then we update the tentative shortest paths to other vertices by seeing if we get an improvement going via u.

Formally, we keep a set $S(\bar{S}=V(G)-S)$, parent function p (predecessor on shortest path from x), estimate $\ell(v)$ of $d(x, v)$.

```
for all vertices \(v\{\)
    \(p(v)=\emptyset ; \ell(v)=\infty ;\)
\}
\(S=\emptyset ; \ell(x)=0\);
while there is \(v \notin S\) with \(\ell(v)<\infty\{\)
    choose \(u \notin S\) with \(\ell(u)\) minimum;
    add \(u\) to \(S\);
    for each \(v \in N^{+}(u)\) with \(v \notin S\) \{
        if \(\ell(v)>\ell(u)+w(u v)\{\)
            \(p(v)=u ; \ell(v)=\ell(u)+w(u v) ;\)
        \}
    \}
\}
```

Example: See graph above. At each stage we have outbranching with permanent part on vertices of S (solid) and tentative arcs from S to other vertices (dashed). Assume $\ell(v)=\infty$ if no value shown.
add a :

10
add d :

add b :

add c :

add f :

Proof this works: For brevity 'path' means directed path. Any any stage let $F=\{v \mid \ell(v)<\infty\}$. We claim that at the end of the algorithm $S=F=R^{+}(x)$, and that p indicates an $x v$-path of length $\ell(u)=d(x, u)$ for every $u \in S$. Observe:
(1) $\ell(u)$ is nonincreasing.
(2) Once we add u to $S, p(u)$ and $\ell(u)$ are fixed, and $\ell(u)<\infty$.
(3) If $u \neq x$ then $\ell(u)<\infty \Rightarrow p(u) \in S$ and following p backwards gives an $x u$-path of length $\ell(u)$.

By (2) and (3), $S \subseteq F \subseteq R^{+}(x)$. When we add u to S we ensure that $N^{+}(u) \subseteq F$, so $\delta^{+} S \subseteq A(S, F-S)$. The algorithm ends when $F=S$, which means $\delta^{+} S \subseteq A(S, S-S)=\emptyset$, so $R^{+}(x) \subseteq S$ by (D2). Thus, at the end $S=F=R^{+}(x)$.

By (3), p agrees with ℓ, and by (2), $\ell(u)$ never changes once $u \in S$. So it suffices to show that $\ell(u)=d(x, u)$ at the point u is added to S. We may assume this is true for vertices already in S. (We can let u be the first vertex for which it fails, or we can argue by induction.) (3) guarantees that $\ell(u) \geq d(x, u)$. Assume that $\ell(u)>d(x, u)$, so when we add u, there is an $x u$-path $Q=v_{0} v_{1} \ldots v_{k}$ of length $<\ell(u)$ $\left(v_{0}=x, v_{k}=u\right)$. Let v_{i} be the first vertex of Q in \bar{S}. Then

$$
\begin{aligned}
\ell(u) & >w(Q) \geq w\left(v_{0} Q v_{i-1}\right)+w\left(v_{i-1} v_{i}\right) \geq d\left(x, v_{i-1}\right)+w\left(v_{i-1} v_{i}\right) \\
& =\ell\left(v_{i-1}\right)+w\left(v_{i-1} v_{i}\right) \quad \text { since } v_{i-1} \in S, \text { so } d\left(x, v_{i-1}\right)=\ell\left(v_{i-1}\right) \\
& \geq \ell\left(v_{i}\right) \quad \text { since this was true when we put } v_{i-1} \text { in } S, \text { and stays true by (1) and (2). }
\end{aligned}
$$

Thus, $u \neq v_{i}$ and we should have chosen v_{i} rather than u, a contradiction.

