
Math 4710/6710 Graph Theory Fall 2019

TREES

Reading: 4.1-2

◦ acyclic graph or forest : no cycles;
◦ tree: (nonnull) connected forest;
◦ leaf : degree 1 vertex.
◦ trivial graph: K1.

(T1) Forests and trees are simple (loops, parallel edges give
cycles) and bipartite (no odd cycles).

Lemma T2: A nontrivial tree has at least two leaves.

Proof: Let P = v0e1v1 . . . vℓ be a maximal path (cannot be
extended at either end) (A longest path would do.) Assume
v0 is not a leaf. Then it has another incident edge besides e1,
say e′. Since P is maximal, e′ must join v0 to some vi, i ≥ 1,
and v0e1v1 . . . vie

′v0 is a cycle, a contradiction. Hence v0 is a
leaf, and similarly vℓ is a leaf.

Consequences: (T3) An acyclic graph has δ ≤ 1.

(T4) A graph with δ ≥ 2 has a cycle. (Contrapositive of (T3).)

(T5) Deleting a leaf from a connected graph G leaves a connected graph.

Proof: If G has a leaf then G is nontrivial. Deleting a leaf w does not affect the existence of a
uv-path for u, v ∈ V (G)− {w}, so G− w is still connected.

Lemma T6: A tree T has m = n− 1.

Proof: By induction. If n = 1 then T ∼= K1 and the result holds. So suppose n ≥ 2 and the
result holds for trees with fewer vertices than T . By Lemma T2, T has a leaf w, and by (T5),
T ′ = T − v is still connected and hence still a tree. So, by the induction hypothesis m′ = n′ − 1.
But m′ = m− 1 and n′ = n− 1, so m = m′ + 1 = n′ = n− 1, as required.

Consequences: (T7) If G is acyclic with c components, then m = n− c.

Proof: Add up both sides of mi = ni − 1 for all components T1, T2, . . . , Tc of G.

(T8) If G is acyclic and m = n− 1 then G is a tree.

Proof: By (T7), c = 1.

◦ cutedge e: G− e has more components than G;
◦ cutvertex v: G− v has more components than G.

(T9) If we add edge e joining u, v to a graph, then the number
of components goes down by 1 if u, v are in different
components, and stays the same otherwise.

Reversing this, e is a cutedge if and only if u and
v are in different components of G − e, and in that case
G− e has one more component than G,

Lemma T10: e is a cutedge ⇔ e is not in a cycle.

Proof: A loop is never a cutedge, so we may assume e has two distinct ends u, v.
(⇒) Suppose e is a cutedge. If e is in a cycle C then C − e is a path joining u and v in G− e,

contradicting (T9).

Mark Ellingham T1 Vanderbilt University

Math 4710/6710 Graph Theory Fall 2019

(⇐) Suppose e is not in a cycle. If e is not a cutedge then there is a path P joining u and v
in G− e. But then P ∪ e is a cycle containing e, a contradiction.

Consequence: (T11) Every edge is a cutedge ⇔ the graph is acyclic.

(T12) Every connected graph has a spanning tree.

Proof: Repeatedly remove an edge that belongs to a cycle. At each stage we are not removing
a cutedge, by Lemma T10, so the graph remains connected. Continue until there are no cycles
left. The result, T , is acyclic and connected and a spanning subgraph of G (we did not remove any
vertices), i.e., a spanning tree of G.

(T13) A connected graph with m = n− 1 is a tree.

Proof: By (T12), there is a spanning tree T ′. Then by Lemma T6, m′ = n′ − 1 = n − 1 = m so
T ′ is the whole graph.

Theorem T14: For a nonnull graph T the following are equivalent.
(i) T is a tree, i.e., acyclic and connected.
(ii) T is connected and m = n− 1.
(iii) T is acyclic and m = n− 1.

Proof: (i) ⇒ (ii) by Lemma T6. (ii) ⇒ (iii) by (T13). (iii) ⇒ (i) by (T8).

From (i), (ii), (iii) any two of acyclic, connected, m = n− 1 imply the third.

(T15) Every connected graph on at least 2 vertices has at least two vertices that are not cutvertices.

Proof: Take leaves of a spanning tree.

Notation: If P is a path, uPv denotes the subpath from u to v.

Lemma T16: A graph G is a tree ⇔ G is nonnull and loopless and ∀ u, v ∈ V (G) there exists
exactly one uv-path (which we denote uGv).

Proof: (⇒) Suppose G is a tree, then G is loopless. Let u, v ∈ V (G). Since G is connected there
is at least one uv-path. Suppose that there are distinct uv-paths P1, P2. Let s be the vertex after
which P1 and P2 differ, and let t be the next vertex of P2 after s that also belongs to P1. Then t
cannot be before s on P1 or P2. So sP2tP

−1
1 s is a cycle, a contradiction. Thus, there is a unique

uv-path.
(⇐) Suppose G is nonnull and loopless, and ∀ u, v ∈ V (G) there is exactly one uv-path. Then

G is connected; we must show G is acyclic. Since G is loopless there are no cycles of length 1. If
there is a cycle of length 2 or more, say v0e1v1 . . . (vℓ = v0) then we have two distinct v0v1-paths,
a contradiction. Thus, G is acyclic, as required.
Need loopless!

Can write down two more characterizations of trees.

Theorem T17: For a nonnull graph T the following are equivalent.
(i) T is a tree.
(iv) T is connected and every edge is a cutedge.
(v) T is loopless and ∀ u, v ∈ V (T) there is exactly one uv-path in T .

Proof: (i) ⇔ (iv) by Lemma T10. (i) ⇔ (v) by Lemma T16.

Mark Ellingham T2 Vanderbilt University

Math 4710/6710 Graph Theory Fall 2019

Rooted trees

Later will be convenient to pick particular vertex in tree and
think of tree in relation to this vertex.

◦ r-tree or tree rooted at r is tree with special designated
vertex r, the root .

In an r-tree there is a unique rv-path rTv.
◦ ancestor of v: any vertex of rTv (inc. v)
◦ parent p(v): immediate predecessor on rTv (root has no

parent)
◦ proper ancestor (not v itself), descendant , related
◦ level of v: ℓ(v) = dT (r, v)

Counting spanning trees
Won’t spend much time on this. Just want to make the point that spanning trees can be counted

fairly easily.

Cayley’s Formula: There are nn−2 labelled n-vertex trees. Equivalently, Kn has nn−2 spanning
trees.
For proof see B&M section 4.2.

Deletion-contraction formula: If t(G) is the number of spanning trees of G and e is a link of
G, then t(G) = t(G− e) + t(G/e). [If e is a loop then t(G) = t(G− e).]

Matrix Tree Theorem: Expresses number of spanning trees in any graph G as the determinant
of a matrix obtained by modifying the adjacency matrix.

Next will look at some tree-based algorithms. First want to briefly discuss ideas from computational
complexity.

Tree construction methods

Want to construct spanning trees, maybe with given properties, reasonably efficiently. Can use to
tell if graph connected, find components if not.

Read: 6.1.

Assume for now: G is connected.

Global Tree Construction Method (Global TCM): Start
with edgeless spanning subgraph F . At each step choose an edge
not forming a cycle (equivalently, joining two distinct components)
with F and add it to F . When we cannot continue F is a spanning
tree.

Could also call this ‘Generic’ TCM.
Know it will grow spanning tree: never creates cycles, decreases

components by one each step so takes n − 1 steps, get acyclic
graph with n− 1 edges: tree.

Notes: (1) At each step every component of F has at least one edge leaving it. So can choose a
specific component for one end of edge.

(2) If apply to disconnected graph will build spanning forest consisting of spanning tree for each
component. So can identify components. Can use to test if graph connected.

Mark Ellingham T3 Vanderbilt University

Math 4710/6710 Graph Theory Fall 2019

Local Tree Construction Method (Local TCM): Choose par-
ticular vertex r. Apply Global TCM, at each step adding an edge
leaving the component containing r.

Notes: (1) At each step F has one component T containing r; all
other components are isolated vertices. When we finish, F = T .
Think of as method to grow T outward from root r.

(2) At each step add uv with u ∈ V (T), v /∈ V (T): then u = p(v).
So can build up parent function as build up tree.

(3) If we apply Local TCM to a disconnected graph, it finds all
vertices reachable from r, i.e. T ends up a spanning tree of r’s
component.

Now look at two common implementations of Local TCM with useful properties.

Breadth-first search (BFS): implements Local TCM using
a queue Q; tree stored using parent function p.

Q = (r); mark r seen; now = 1; t(r) = now;
for all vertices v, p(v) = ∅;
while Q nonempty {

take x from front of Q;
for each unseen neighbour y of x {

p(y) = x; mark y seen; add y to back of Q;
now = now + 1; t(y) = now;

}
}

Properties: (1) ℓ(v) = dT (r, v) = dG(r, v). So BFS com-
putes distance from a given vertex for us.

(2) |ℓ(u) − ℓ(v)| ≤ 1 for all adjacent u, v.

(3) Implementation requires O(m+ n) integer operations.

(1) and (2) proved in book; I won’t do that.
So have poly. time algorithm to check if connected, find components, find distances.

Mark Ellingham T4 Vanderbilt University

Math 4710/6710 Graph Theory Fall 2019

Depth-first search (DFS): implements Local TCM recur-
sively; tree stored using parent function p(v). Can also imple-
ment non-recursively using a stack (see book although does
not fully specify efficient implementation). Stores time vertex
seen initially and finally in tI(v), tF (v).

now = 0;
for all vertices v, p(v) = ∅;
dfs-visit(r);

dfs-visit(v) {
now = now + 1; tI(v) = now; mark v seen;
for each neighbour u of v

if u is unseen {
p(u) = v; dfs-visit(u);

}
now = now + 1; tF (v) = now;

}

Important: Cannot write code as ‘for each unseen neighbour
u of v’ because whether u is seen or not may change when
other neighbours of v are visited.

Properties: (1) If v is ancestor of u in T , [tI(u), tF (u)] ⊆
[tI(v), tF (v)]. If u and v are unrelated, [tI(u), tF (u)] ∩ [tI(v),
tF (v)] = ∅. Gives efficient way to check if ancestor.

(2) If u, v adjacent in G then related in T .

(3) Implementation requires O(m+ n) integer operations.

Again, I won’t prove these.
Useful later for finding cutvertices in graph.

Alternative descriptions of BFS, DFS: Both use Local
TCM, adding uv with u ∈ V (T), v /∈ V (T).

BFS: choose u added to T as early as possible.
DFS: choose u added to T as late as possible.

Mark Ellingham T5 Vanderbilt University

Math 4710/6710 Graph Theory Fall 2019

Want to look at min cost spanning trees, need theory first.

Read: 6.2, 8.5

Edge exchange properties: Let T,U be distinct spanning
trees of a graph G, and e ∈ E(T)− E(U).
(EE1) There is e′ ∈ E(U) − E(T) such that T − e + e′ is a

spanning tree.
(EE2) There is e′′ ∈ E(U) − E(T) such that U + e − e′′ is a

spanning tree.

Proof: (EE1) e is a cutedge of T , so T−e has two components
with vertex sets S, S = V (G) − S. Since U is connected it
contains at least one edge e′ joining S to S (e′ 6= e). Since
e is the unique edge of T joining S and S, e′ /∈ E(T). Then
T − e + e′ is connected with n − 1 edges, so it is a spanning
tree.

(EE2) U + e contains a unique cycle C formed by e and the
unique path in U between the ends of e. Since T is acyclic,
at least one edge e′′ of C is not an edge of T (e′′ 6= e). Now
U + e− e′′ is acyclic and has n − 1 edges so it is a spanning
tree.

Minimum Weight Spanning Tree Problem: Given a connected graph G with nonnegative
weights (or costs) w(e) for each e ∈ E(G), find a spanning tree T so that w(T) (sum of weights of
edges of T) is minimum.

Obvious applications to minimum cost networks. Min cost spanning tree is min cost connected
network since minimal connected networks are spanning trees.

Kruskal’s Algorithm: Apply Global TCM, being greedy,
i.e., picking an available edge of minimum weight at each step.

Proof this works: Suppose Kruskal constructs T by choos-
ing edges e1, e2, . . . , en−1 in that order. Let U be an min.
weight spanning tree that also maximizes the value of k such
that U contains e1, e2, . . . , ek. We claim that U = T , i.e.,
k = n− 1. Assume for a contradiction that k < n− 1.

Then ek+1 ∈ E(T) − E(U). By (EE2) there is e′′ ∈
E(U) − E(T) such that U ′ = U + ek+1 − e′′ is also a span-
ning tree. Now e1, e2, . . . ek, e

′′ ∈ E(U), so they do not form
a cycle, so e′′ was an available edge at the same time as ek+1.
Since Kruskal chose ek+1, we must have w(ek+1) ≤ w(e′′).
Then then w(U ′) ≤ w(U) so U ′ must also be a min. weight
spanning tree. But U ′ contains e1, e2, . . . , ek, ek+1, contra-
dicting the choice of U .

Thus k = n− 1, U = T , and so T is optimal.

Easy to implement. First sort all edges by weight, go through in increasing order of weight adding
any edge that does not create a cycle.

Important general idea: can apply greedy algorithm to get minimum weight ‘cycle-free’ object when
exchange property applies. Leads to objects called matroids, generalize graphs in certain ways.

Mark Ellingham T6 Vanderbilt University

Math 4710/6710 Graph Theory Fall 2019

Notes: (1) If tie, choose any available min. wt. edge.
(2) Also works, modified suitably, for maximum wt. sp. tree.
(3) Don’t actually need weights ≥ 0.

Jarńık-Prim Algorithm: Apply Local TCM, being greedy,
i.e., picking an available edge of minimum weight at each step.

Proof this works: Similar to proof of Kruskal; just choose
e′′ in slightly different way. Start off the same. Second para-
graph:

Then ek+1 ∈ E(T)−E(U). Let Sk be the set of vertices
after adding e1, e2, . . . , ek; then ek+1 joins Sk to Sk = V (G)−
Sk. Now U + ek+1 contains a unique cycle C, which must
contain another edge e′′ joining Sk to Sk. We know that
e′′ /∈ {e1, e2, . . . , ek} (although possibly e′′ ∈ E(T)). Since
J-P chose ek+1 instead of e′′, we must have w(ek+1) ≤ w(e′′).
Now U ′ = U +ek+1−e′′ is acyclic with n−1 edges and hence
a spanning tree.

Proof now concludes in the same way.

Book gives complicated implementation with tentative weights, ignore! Just know that implemen-
tation can be done efficiently. Book also does alternative proof based on contracting edges.

Third method: Bor ◦uvka algorithm, not same as Kruskal as book claims.

Mark Ellingham T7 Vanderbilt University

