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MOVING AROUND

◦ walk in G: alternating sequence of vertices and edges
W = v0e1v1e2v2 . . . vℓ−1eℓvℓ where ψG(ei) = vi−1vi
for each i. Direction in which a loop is used mat-
ters. (In simple graph can just write W = v0v1v2
. . . vℓ−1vℓ.) Length is ℓ. Initial vertex v0, termi-
nal or * final vertex vℓ, ends v0 and vℓ, internal
vertices v1, v2, . . . , vℓ−1.

◦ reverse of walk W : W−1 = vℓeℓvℓ−1 . . . v1e1v0.
◦ uv-walk has initial vertex u, final vertex v.
◦ closed walk has initial vertex = final vertex.
◦ trail is walk with no repeated edges.

◦ path is walk with no repeated vertices. (So defines subgraph that is path graph.)
◦ cycle (sometimes circuit) is closed walk with no repeated vertices except that initial vertex = final

vertex, at least one edge, and no repeated edges. (So defines subgraph that is cycle graph.) In
simple graph write (v0v1v2 . . . vℓ−1).

∗ reachability relation RG: uRGv or just uRv or v is reachable from u (in G) if there is a uv-walk
in G. RG(u) = {v ∈ V (G) | uRGv}, set of vertices reachable from u.

(M1) RG is an equivalence relation. (R) trivial walk; (S) reverse walk; (T) concatenate two walks.
Transitive closure of adjacency relation.

Recall: G is connected if for every partition of V (G) into nonempty X and Y there is at least one
edge from X to Y .

(M2) If G has a connected spanning subgraph, then G is connected. I.e., any supergraph of a
connected graph with the same vertex set is connected.

Theorem M3: For a graph G, the following are equivalent.
(i) G is connected;
(ii) ∀ u, v ∈ V (G), uRGv (i.e., ∃ a uv-walk);
(iii) ∃ x ∈ V (G) such that ∀ v ∈ V (G), xRGv.

Proof: (i) ⇒ (ii): Suppose G is connected and let u ∈ V (G). There is no edge xy with x ∈ X =
RG(v) and y ∈ Y = V (G) − X, for we could extend a ux-walk with wy to get a uy-walk. Since
X 6= ∅ (u ∈ X) and G is connected, we must have Y = ∅, i.e., there is a uv-walk for every v ∈ V (G).

(ii) ⇒ (iii): Obvious.

(iii) ⇒ (i) Suppose that ∀ v ∈ V (G) there is an xv-walk. Assume (for a contradiction) that G is
disconnected, with V (G) partitioned into nonempty X and Y with no edge from X to Y . We may
assume x ∈ X; choose y ∈ Y . By supposition there is an xy-walk W = v0e1v1 . . . vℓ with v0 = x,
vℓ = y. Let vi be the last vertex of W that belongs to X. Then vi exists because x ∈ X, i < ℓ
because y /∈ X, and vi+1 ∈ Y by choice of vi. But then ei+1 is an edge from vi ∈ X to vi+1 ∈ Y , a
contradiction. Hence G is connected.

Now we define components and make deductions about the component structure of a graph.

Recall: A component is a maximal connected subgraph. So every connected subgraph lies inside
some component. Book defines components in an indirect way, hard to use for proofs.

(M4) The subgraph consisting of vertices and edges of a walk is connected, by M3(ii). In particular,
any single edge with its ends is connected.
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(M5) The union of two connected subgraphs is connected if and only if they have a common vertex.
Suppose common vertex; by M3(ii) there is a walk from the common vertex to a vertex in
either graph, but then by M3(iii) the union is connected. If no common vertex, vertex sets of
subgraphs provide partition showing graph is disconnected.

(M6) If C is a component of G and v is a vertex of C, then C contains every edge of G incident
with v. In particular, C is an induced subgraph. If some edge e incident with v is not in C,
then C and e together form a larger connected subgraph, a contradiction.

(M7) Every connected subgraph of G is contained in a unique component of G. Contained in some
component since connected; if in two then by (M5) their union is a larger connected subgraph.
Therefore, the components of G partition the vertices of G and the edges of G. Thus, G is the
disjoint union of its components.

(M8) The vertex sets of the components are the equivalence classes of RG. If two vertices u, v
are in the same component C, then uRCv (by M3(ii)) so uRGv. On the other hand, if uRGv,
then the uv-walk W is connected and lies inside some component, so u, v belong to the same
component.

So far we have been working with walks. Sometimes convenient to know we can get paths.

(M9) Any walk with repeated vertex x can be shortened by removing the segment between two
occurrences of x. Applying this repeatedly, any uv-walk can be shortened to a uv-path. So if
uRGv, i.e. a uv-walk exists, then a uv-path also exists. And a shortest uv-walk is a uv-path.

Can regard as algorithm: start with uv-walk, repeatedly remove redundant bits, get uv-path.

Corollary M10: Connectedness of G is also equivalent to
(iv) ∀ u, v ∈ V (G), ∃ a uv-path.

Often useful to look not just at existence of uv-walk or path, but how long it is.
The distance from u to v in G, dG(u, v), is the length of a shortest uv-path (or shortest uv-walk,

by the proof of Lemma M9). Is ∞ if no uv-path. Convenient to be able to choose between
walks or paths in proofs. Later see how to compute distance efficiently. Diameter, radius, etc.
defined using distance.

Now relate cycles to bipartiteness. Book does later in different way in Section 4.2 (Theorem 4.7).
Lemma first.

Lemma M11: A graph G has an odd (length) closed walk ⇔ it has an odd cycle.

Proof: (⇐) An odd cycle is an odd closed walk.

(⇒) Suppose G has an odd closed walk. Then there is a shortest odd length closed walk W =
v0e1v1 . . . vℓ. Assume (for a contradiction) that vi = vj with i < j and (i, j) 6= (0, ℓ). Then
W ′ = v0e1v1 . . . vi−1ei(vi = vj)ej+1vj+1 . . . vℓ and W ′′ = viei+1vi+1 . . . vj are closed walks, and
since their lengths sum to the odd number ℓ, one of them is odd. But then we have a shorter odd
closed walk, a contradiction. Hence W has no repeated vertices except v0 = vℓ, since W has odd
length it has at least one edge and no repeated edges. Thus, W is an odd cycle.
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Again, can consider as algorithm to get odd cycle from odd closed walk, by applying repeatedly.

Not true for even walks and even cycles, e.g. K2.

Allows us to connect bipartiteness to cycles.

Theorem M12: For a graph G the following are equivalent.
(i) G is bipartite.
(ii) G has no odd closed walks.
(iii) G has no odd cycles.

Proof: (ii) ⇔ (iii) by Lemma M11.

(i) ⇒ (ii): Suppose G[X,Y ] is bipartite. Every walk must alternate between vertices in X and
vertices in Y , and so every closed walk must have even length.

(ii) ⇒ (i): Suppose G has no odd closed walks. Let the components of G be G1, G2, . . . , Gc. Choose
ri ∈ V (Gi), and let

Xi = {x ∈ V (Gi) | d(ri, x) is even} and Yi = V (Gi)−Xi = {y ∈ V (Gi) | d(ri, y) is odd}.
For each v ∈ V (Gi), let Pv be a riv-path of length d(ri, v). Suppose Gi has an edge e between u
and v. Then PueP

−1
v is a closed walk, so its length d(ri, u) + 1 + d(ri, v) must be even, meaning

that one of d(ri, u) and d(ri, v) is even and the other is odd. Thus, one of u and v belongs to Xi

and the other to Yi. Thus, (Xi, Yi) is a bipartition of Gi. Hence, (X1 ∪X2∪ . . . Xc, Y1 ∪Y2∪ . . . Yc)
is a bipartition of G.

Two useful concepts associated with cycles:
◦ When G has at least one cycle:

girth = length of shortest cycle,
circumference = length of longest cycle.

Euler trails and tours

Euler, 1736: Königsberg Bridges Problem.
Start of graph theory.

∗ euler trail = trail using all vertices and

edges of G (standard definition just says
all edges, but then get into problems
with isolated vertices),

◦ euler tour = closed euler trail,
◦ G is eulerian if it has an euler tour.

Theorem M13: A graph G is eulerian if
and only if it is even (every vertex has even
degree) and connected.

Proof: (Essentially the one in the first edition of West.)

(⇒) Suppose there is an euler tour T . At each vertex T leaves and enters the same number of
times, so there must be an even number of ends of edges at each vertex. G is connected by (M4).

(⇐) SupposeG is even and connected. Let T be a longest closed trail in G, and let R = E(G)−E(T ).
Assume (for a contradiction) that R 6= ∅.
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First we claim that there is an edge of R incident with a vertex of T . If V (G) = V (T ) then any
edge of R is suitable; otherwise, since G is connected, there is an edge joining V (T ) to V (G)−V (T ),
which must belong to R.

So let e ∈ R with end x ∈ V (T ). Construct a trail S = xe . . . y in G using only edges of R
that is maximal—it cannot be extended from y. If y 6= x, then since dG(y) is even, T uses an even
number of ends of edges at y, and S uses an odd number of ends of edges at y, there is at least
one unused edge-end at y that may be used to extend S, a contradiction. Therefore S = xe . . . x.
Since x ∈ V (T ) we may splice S into T at x to get a longer closed trail, which is a contradiction.

Hence, R = E(G)−E(T ) = ∅. Therefore, there are no edges between V (T ) and V (G)−V (T ),
but G is connected, so V (G) − V (T ) = ∅. Thus, T is an euler tour.

Again, can transform proof into algorithm to construct an euler tour.

Book gives alternate proof based on different construction method, Fleury’s algorithm, relies on
idea of cutedge which we will look at soon.

Corollary: A graph has an euler trail if and only if it is connected and has at most two odd degree
vertices.

Proof idea is to add edge between two odd degree vertices.
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