
Math 4710/6710 Graph Theory Fall 2019

BASIC GRAPH THEORY DEFINITIONS

If book and instructor disagree, follow instructor!

Graphs

◦ graph G consists of
vertex set V (G),
edge set E(G),
incidence relation ψG mapping each edge

to unordered pair of vertices.

In example:
V (G) = {a, b, c, d, e, f, g},
E(G) = {u, v, w, x, y},
ψG maps a 7→ uv (i.e. ψG(a) = {u, v} =

uv), b 7→ vw, c 7→ vx, d 7→ wy, e 7→
wy, f 7→ xy.

identical to

◦ incident vertex and edge, related by ψG (in example, v and b).
◦ vertices u and v are adjacent if there is an edge e whose two ends are u and v, i.e., ψG(e) = uv

(in example, w ∼ y and x ∼ x).
◦ neighbours are distinct adjacent vertices, NG(v) or justN(v) is set of neighbours of v (in example,

NG(x) = {v, y}).

Conventions: If G understood, write V for V (G), E for E(G), n for |V |, m for |E|.
◦ null graph has V (G) = E(G) = ∅.
Assume all graphs are finite and non-null unless otherwise stated.

◦ loopless graph: no loops.
◦ simple graph: no loops or parallel edges: each edge associated by ψG with unique pair of distinct

vertices. So may as well assume an edge is a pair of distinct vertices.

∗ standard (model) simple graph: E(G) ⊆

(

V (G)

2

)

(pairs of distinct vertices), ψG is identity map.

(My terminology, not standard, not in book.)
◦ underlying (standard) simple graph: delete loops, reduce parallel edges to single edge.

◦ complement G of standard simple graph G: V (G) = V (G), E(G) =
(

V (G)
2

)

− E(G): put edges
between nonadjacent vertices.

Observe: G = G.
Convention: All simple graphs are assumed to be standard unless otherwise stated. B&M do this

implicitly, but do not say so.

Degrees

◦ degree dG(v) or d(v): number of ends of edges incident with v (so loops count as 2).

Mark Ellingham B1 Vanderbilt University



Math 4710/6710 Graph Theory Fall 2019

◦ k-regular : all degrees are k.
◦ cubic = 3-regular.
◦ maximum degree ∆(G), minimum degree δ(G), average degree d(G).
◦ degree sequence of G is list of all degrees (in no particular order, usually put in descending or

ascending order). E.g., 4, 3, 3, 3, 1 for example.

Degree-Sum Formula:
∑

v∈V (G) dG(v) = 2|E(G)| = 2m.
Proof: Count ends of edges in two ways. Typical counting proof idea: count same thing two
different ways.) Book proof adds entries in MG, whichis why they do matrices first.

Example: Is there a 3-regular graph on 47 vertices?
Solution: No,

∑

v∈V (G) dG(v) = 47× 3, odd so cannot be 2m. In general sum of degrees must be
even, i.e. must have even number of odd degree vertices.

Corollary: d(G) = 2m/n.

Complement degrees: for simple G, d
G
(v) = n− 1− dG(v).

Matrices

◦ incidence matrix (V × E)

MG =













a b c d e f g

u 1 0 0 0 0 0 0
v 1 1 1 0 0 0 0
w 0 1 0 1 1 0 0
x 0 0 1 0 0 1 2
y 0 0 0 1 1 1 0













loop indicated by 2 .

◦ adjacency matrix (V × V )

AG =













u v w x y

u 0 1 0 0 0
v 1 0 1 1 0
w 0 1 0 0 2
x 0 1 0 2 1
y 0 0 2 1 0













each loop adds 2 (2 ends
inc, with vertex)

for parallel edges give num-
ber

.

For some purposes may want each loop to count as just 1 in AG, but counting as 2 means
row/column sums are degrees, see below.

Isomorphisms and automorphisms

◦ identical graphs: V (G) = V (H), E(G) = E(H), ψG = ψH .
◦ isomorphism (θ, ϕ) from G to H:

bijection θ : V (G) → V (H),
bijection ϕ : E(G) → E(H),
preserve incidence: ψG(e) = uv ⇔ ψH(ϕ(e)) = θ(u)θ(v) for all e ∈ E(G).

Then G and H are isomorphic, G ∼= H.

Mark Ellingham B2 Vanderbilt University



Math 4710/6710 Graph Theory Fall 2019

θ
u 7→ 4
v 7→ 2
w 7→ 3
x 7→ 1

ϕ
a 7→ s
b 7→ t
c 7→ m
d 7→ q
e 7→ p
f 7→ r

For standard simple graphs enough to give θ. Isomorphism is bijection θ : V (G) → V (H) so that
uv ∈ E(G) ⇔ θ(u)θ(v) ∈ E(H). Then φ(uv) defined implicitly as θ(u)θ(v).

Note: In general definition, enough to show ⇒ because we know ϕ is a bijection. For simple graph
definition, ⇒ is not enough unless we know |E(G)| = |E(H)| and this is finite.

Properties: (1) (idV (G), idE(G)) is an isomorphism of G to itself.
(2) If (θ, ϕ) is an isomorphism from G to H, then (θ−1, ϕ−1) is an isomorphism from H to G.
(3) If (θ1, ϕ1) is an isomorphism from G to H, and (θ2, ϕ2) is an isomorphism from H to J , then

(θ2 ◦ θ1, ϕ2 ◦ ϕ1) is an isomorphism from G to J .
(1), (2) and (3) show that isomorphism is reflexive, symmetric, and transitive, so is an equivalence
relation.

◦ labelled graph = graph.
◦ unlabelled graph = isomorphism class (equiv-

alence class under isomorphism) of graphs
(draw as graph without names on vertices or
edges).

◦ invariant = quantity or property that is same for all isomorphic graphs (does not depend on
names of vertices, edges).

◦ automorphism of G: isomorphism from G to G.

θ
i 7→ (i+ 3) mod 9 for i 6= 9
9 7→ 9

Order 3 automorphism of Petersen graph; after redrawing see also has order 5 automorphism.

By (1), (2), (3) and associativity of composition, automorphisms form a group, automorphism group
of G, AutG. (1) gives identity, (2) gives inverse, (3) gives closure.

◦ asymmetric graph: only automorphism is identity.
◦ similar vertices u and v: some automorphism maps u to v (equivalence relation on vertices; also

have similarity for edges).
◦ vertex-transitive graph: all vertices similar.
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Common invariant properties

◦ planar graph: can be drawn in plane without edge crossings.

planar
not planar

◦ embeddable in surface Σ: can be drawn in Σ without edge crossings. E.g., K5 not planar, but
embeddable in torus.

Connectedness

∗ coboundary δX of X ⊆ V (G): set of all edges with one
end in X, other end in V (G)−X. Book uses notation
∂X, perhaps trying to keep δ for minimum degree, but
usually no confusion.

◦ disconnected graph has X ⊆ V (G) with X 6= ∅, V (G) and
δX = ∅. So can partition V (G) into two nonempty sets
X, Y = V (G) −X with no edges from X to Y .

◦ connected = not disconnected.

Cycles and paths (definitions slightly different from book but equivalent)

∗ cycle Cn = connected n-vertex 2-regular (unlabelled) graph (unique up to isomorphism).

∗ path Pn = Cn with one edge deleted (also unique up to isomorphism).

(Book defines these using vertices in cyclic or linear order, join pairs of consecutive vertices.)

Independent sets and cliques

◦ independent or stable set S ⊆ V (G): no loops on S and vertices of S pairwise nonadjacent.
◦ independence number α(G) = maximum number of vertices in an independent set.
◦ clique S ⊆ V (G): any two distinct vertices of S are adjacent (clique may refer to subgraph as

well as vertex set).
◦ clique number ω(G) = maximum number of vertices in a clique.
For simple graphs α(G) = ω(G), ω(G) = α(G).
Finding α(G), ω(G) in general is hard (NP-complete for decision version).

◦ complete graph Kn: simple n-vertex, any two distinct vertices adjacent (whole vertex set is clique).
K1 is trivial graph.
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∗ supercomplete graph: not necessarily simple, any two distinct
vertices are adjacent. Nonstandard, but useful concept later,
particularly for vertex connectivity.

◦ empty or ∗ edgeless graph Kn: n vertices, no edges.

◦ bipartite graph: can partition V (G) into X,Y (may be empty) so every edge has one end in X,
other end in Y . Write G = G[X,Y ]. So X, Y are independent. Can think of colouring vertices
with 2 colours, every edge has ends of different colours.

X = solid
Y = open

◦ complete bipartite graph Km,n: simple G[X,Y ], |X| = m, |Y | = n, every x ∈ X adjacent to every
y ∈ Y . Not complete and bipartite!

◦ k-partite graph: can partition V (G) into V1, V2, . . . , Vk (may be empty) so each Vi is independent.
I.e., all edges have ends in two different Vi’s. Can think of in terms of k-colouring vertices.

vertices of Vi labelled
with i

◦ complete k-partite graph Kn1,n2,...,nk
: k-partite simple graph with |V1| = n1, |V2| = n2, . . .,

|Vk| = nk, simple, any two vertices adjacent unless in the same Vi.

Subgraphs

◦ subgraph F of G, F ⊆ G: graph F , V (F ) ⊆ V (G), E(F ) ⊆ E(G), and ψF = ψG|E(F ). Also say
G is supergraph of F .
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◦ proper subgraph, F ⊂ G: F ⊆ G, F 6= G. Say G is proper supergraph of F .
◦ G− v: delete v and all incident edges. Repeat: G− S, S ⊂ V (G).
◦ G− e: delete edge e (do not delete any vertices). Repeat: G− T , T ⊆ E(G).
◦ G/e (G contract e): delete e, identify ends of e if distinct. Repeat: G/T , T ⊆ E(G).

◦ G/{u, v}: identify vertices u and v.
◦ G+ e: add edge e with known incidences. Repeat: G+ T , T set of edges.
◦ induced subgraphG[S], S ⊆ V (G): has vertex set S, all edges of G with both ends in S (equivalent

to deleting vertices not in S).
◦ edge-induced subgraph G[T ], T ⊆ E(G): has edge set T , vertex set all ends of edges in T .

◦ disjoint subgraphs: no common vertices; edge-
disjoint subgraphs: no common edges (may
share vertices).

∗ component =maximal connected subgraph (max-
imal under subgraph ordering). Book defines
in indirect way, hard to use.

◦ spanning subgraph F of G: V (F ) = V (G);
- spanning path/cycle = hamilton path/cycle,
- spanning k-regular subgraph = k-factor .
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Graphs from other graphs

◦ line graph L(G) of simple G: V (L(G)) =
E(G), join e and f if incident with a com-
mon vertex (‘line’ is old term for ‘edge’).
- Can extend to loopless graphs.
- Not every graph is a line graph.
- Many vertex properties have edge coun-

terparts: vertex property of line graph.

∗ union and intersection of graphs G, H can be defined (in obvious way) if consistent : ψG(e) =
ψH(e) ∀ e ∈ E(G) ∩ E(H). If G, H both subgraphs of some larger graph then are consistent.

◦ cartesian product G�H of simple G,H:
V (G�H) = V (G) × V (H) = {(u, v) | u ∈ V (G), v ∈ V (H)};
E(G�H) = {(u1, v)(u2, v) | u1u2 ∈ E(G), v ∈ V (H)} ∪ {(u, v1)(u, v2) | u ∈ V (G), v1v2 ∈

E(H)}
Old notation G×H. Can also be defined for non-simple graphs, just longer to write down.

◦ m× n grid = Pm�Pn; n-prism = Cm�K2.
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◦ join G∨H of disjoint G, H: join every vertex of G to every vertex of H. (Also denoted G+H.)
If simple, G ∨H = G ∪H.
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