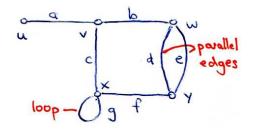
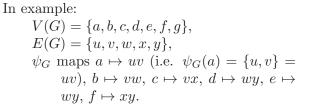
BASIC GRAPH THEORY DEFINITIONS

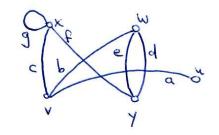
If book and instructor disagree, follow instructor!

Graphs

• graph G consists of vertex set V(G), edge set E(G), incidence relation ψ_G mapping each edge to unordered pair of vertices.







• *incident* vertex and edge, related by ψ_G (in example, v and b).

• vertices u and v are *adjacent* if there is an edge e whose two ends are u and v, i.e., $\psi_G(e) = uv$ (in example, $w \sim y$ and $x \sim x$).

identical to

• *neighbours* are **distinct** adjacent vertices, $N_G(v)$ or just N(v) is set of neighbours of v (in example, $N_G(x) = \{v, y\}$).

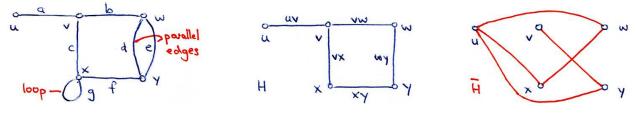
Conventions: If G understood, write V for V(G), E for E(G), n for |V|, m for |E|. \circ null graph has $V(G) = E(G) = \emptyset$.

Assume all graphs are **finite** and **non-null** unless otherwise stated.

- \circ loopless graph: no loops.
- simple graph: no loops or parallel edges: each edge associated by ψ_G with unique pair of distinct vertices. So may as well assume an edge is a pair of distinct vertices.

* standard (model) simple graph: $E(G) \subseteq \binom{V(G)}{2}$ (pairs of distinct vertices), ψ_G is identity map. (My terminology, not standard, not in book.)

• underlying (standard) simple graph: delete loops, reduce parallel edges to single edge.



• complement \overline{G} of standard simple graph G: $V(\overline{G}) = V(G)$, $E(\overline{G}) = {\binom{V(G)}{2}} - E(G)$: put edges between **nonadjacent** vertices.

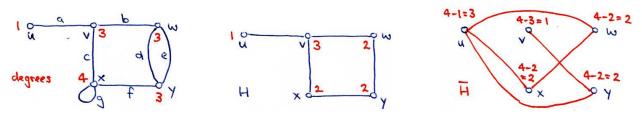
Observe: $\overline{G} = G$.

Convention: All simple graphs are assumed to be standard unless otherwise stated. B&M do this implicitly, but do not say so.

Degrees

• degree $d_G(v)$ or d(v): number of ends of edges incident with v (so loops count as 2).

- \circ k-regular: all degrees are k.
- \circ *cubic* = 3-regular.
- \circ maximum degree $\Delta(G)$, minimum degree $\delta(G)$, average degree d(G).
- \circ degree sequence of G is list of all degrees (in no particular order, usually put in descending or ascending order). E.g., 4, 3, 3, 3, 1 for example.



Degree-Sum Formula: $\sum_{v \in V(G)} d_G(v) = 2|E(G)| = 2m$. *Proof:* Count ends of edges in two ways. \blacksquare Typical counting proof idea: count same thing two different ways.) Book proof adds entries in M_G , which is why they do matrices first.

Example: Is there a 3-regular graph on 47 vertices?

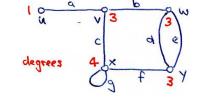
Solution: No, $\sum_{v \in V(G)} d_G(v) = 47 \times 3$, odd so cannot be 2m. In general sum of degrees must be even, i.e. must have even number of odd degree vertices.

Corollary: d(G) = 2m/n.

Complement degrees: for simple G, $d_{\overline{G}}(v) = n - 1 - d_G(v)$.

Matrices

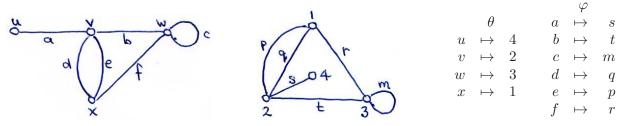
\circ incidence matrix $(V imes E)$								
		a	b	c	d	e	f	g
	u	1	0	0	0	0	0	0]
	v	1	1	1	0	0	0	0
$M_G =$	w	0	1 0 0	0	1	1	0	$0 \mid \text{loop indicated by } 2$.
	x	0	0	1	0	0	1	2
	y	0	0	0	1	1	1	0
\circ adjacency matrix $(V imes V)$								
		u	v	w	x	y		
	u	0	1	0	0	0]	
	v	1	$\begin{array}{c} 1 \\ 0 \end{array}$	1	1	0		each loop adds 2 (2 ends
$A_G =$	$w \mid$	0	1	0	0	2		inc, with vertex)
	$x \mid$	0	1 1	0	2	1		for parallel edges give num-
	y	0	0	2	1	0		ber



For some purposes may want each loop to count as just 1 in A_G , but counting as 2 means row/column sums are degrees, see below.

Isomorphisms and automorphisms

• *identical* graphs: $V(G) = V(H), E(G) = E(H), \psi_G = \psi_H$. \circ isomorphism (θ, φ) from G to H: bijection $\theta: V(G) \to V(H)$, bijection $\varphi: E(G) \to E(H)$, preserve incidence: $\psi_G(e) = uv \Leftrightarrow \psi_H(\varphi(e)) = \theta(u)\theta(v)$ for all $e \in E(G)$. Then G and H are isomorphic, $G \cong H$.



For standard simple graphs enough to give θ . Isomorphism is bijection $\theta : V(G) \to V(H)$ so that $uv \in E(G) \Leftrightarrow \theta(u)\theta(v) \in E(H)$. Then $\phi(uv)$ defined implicitly as $\theta(u)\theta(v)$.

Note: In general definition, enough to show \Rightarrow because we know φ is a bijection. For simple graph definition, \Rightarrow is not enough unless we know |E(G)| = |E(H)| and this is finite.

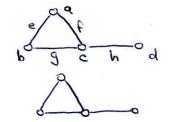
Properties: (1) $(id_{V(G)}, id_{E(G)})$ is an isomorphism of G to itself.

- (2) If (θ, φ) is an isomorphism from G to H, then $(\theta^{-1}, \varphi^{-1})$ is an isomorphism from H to G.
- (3) If (θ_1, φ_1) is an isomorphism from G to H, and (θ_2, φ_2) is an isomorphism from H to J, then $(\theta_2 \circ \theta_1, \varphi_2 \circ \varphi_1)$ is an isomorphism from G to J.

(1), (2) and (3) show that isomorphism is reflexive, symmetric, and transitive, so is an *equivalence* relation.

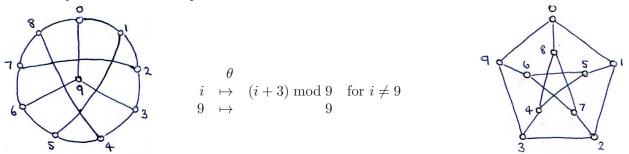
 \circ *labelled* graph = graph.

• unlabelled graph = isomorphism class (equivalence class under isomorphism) of graphs (draw as graph without names on vertices or edges).



 \circ invariant = quantity or property that is same for all isomorphic graphs (does not depend on names of vertices, edges).

 \circ automorphism of G: isomorphism from G to G.



Order 3 automorphism of *Petersen graph*; after redrawing see also has order 5 automorphism. By (1), (2), (3) and associativity of composition, automorphisms form a group, *automorphism group*

of G, Aut G. (1) gives identity, (2) gives inverse, (3) gives closure.

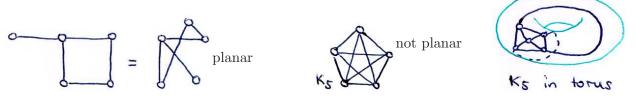
• asymmetric graph: only automorphism is identity.

- \circ similar vertices u and v: some automorphism maps u to v (equivalence relation on vertices; also have similarity for edges).
- vertex-transitive graph: all vertices similar.

Graph Theory

Common invariant properties

• planar graph: can be drawn in plane without edge crossings.



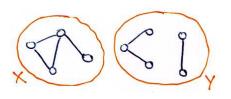
 \circ embeddable in surface Σ: can be drawn in Σ without edge crossings. E.g., K_5 not planar, but embeddable in torus.

Connectedness

* coboundary δX of $X \subseteq V(G)$: set of all edges with one end in X, other end in V(G) - X. Book uses notation ∂X , perhaps trying to keep δ for minimum degree, but usually no confusion.

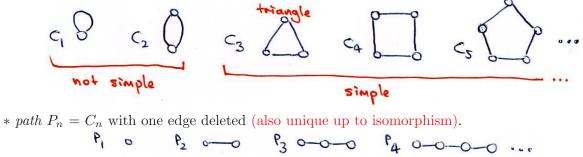
• disconnected graph has $X \subseteq V(G)$ with $X \neq \emptyset, V(G)$ and $\delta X = \emptyset$. So can partition V(G) into two nonempty sets X, Y = V(G) - X with no edges from X to Y.

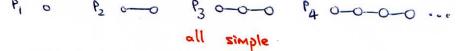
 \circ connected = not disconnected.



Cycles and paths (definitions slightly different from book but equivalent)

* cycle C_n = connected *n*-vertex 2-regular (unlabelled) graph (unique up to isomorphism).





(Book defines these using vertices in cyclic or linear order, join pairs of consecutive vertices.)

Independent sets and cliques

 \circ independent or stable set $S \subseteq V(G)$: no loops on S and vertices of S pairwise nonadjacent.

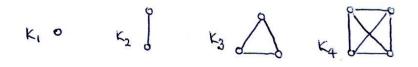
- \circ independence number $\alpha(G)$ = maximum number of vertices in an independent set.
- clique $S \subseteq V(G)$: any two distinct vertices of S are adjacent (clique may refer to subgraph as well as vertex set).

• clique number $\omega(G)$ = maximum number of vertices in a clique.

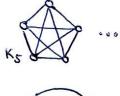
For simple graphs $\alpha(\overline{G}) = \omega(G), \ \omega(\overline{G}) = \alpha(G).$

Finding $\alpha(G)$, $\omega(G)$ in general is hard (NP-complete for decision version).

• complete graph K_n : simple *n*-vertex, any two distinct vertices adjacent (whole vertex set is clique). K_1 is trivial graph. Graph Theory



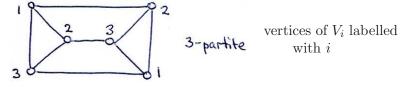
- * *supercomplete graph*: not necessarily simple, any two distinct vertices are adjacent. Nonstandard, but useful concept later, particularly for vertex connectivity.
- \circ empty or * edgeless graph $\overline{K_n}$: n vertices, no edges.



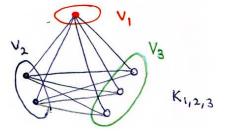
• bipartite graph: can partition V(G) into X, Y (may be empty) so every edge has one end in X, other end in Y. Write G = G[X, Y]. So X, Y are independent. Can think of colouring vertices with 2 colours, every edge has ends of different colours.

• complete bipartite graph $K_{m,n}$: simple G[X, Y], |X| = m, |Y| = n, every $x \in X$ adjacent to every $y \in Y$. Not complete and bipartite!

• *k-partite* graph: can partition V(G) into V_1, V_2, \ldots, V_k (may be empty) so each V_i is independent. I.e., all edges have ends in two different V_i 's. Can think of in terms of *k*-colouring vertices.

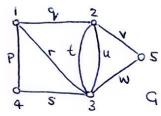


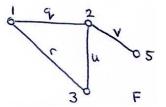
• complete k-partite graph K_{n_1,n_2,\ldots,n_k} : k-partite simple graph with $|V_1| = n_1, |V_2| = n_2, \ldots, |V_k| = n_k$, simple, any two vertices adjacent unless in the same V_i .



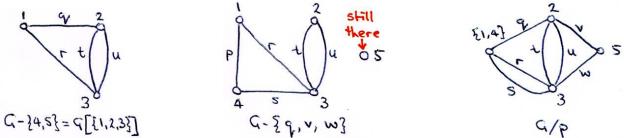
Subgraphs

◦ subgraph F of G, $F \subseteq G$: graph F, $V(F) \subseteq V(G)$, $E(F) \subseteq E(G)$, and $\psi_F = \psi_G|_{E(F)}$. Also say G is supergraph of F.





o proper subgraph, F ⊂ G: F ⊆ G, F ≠ G. Say G is proper supergraph of F.
o G − v: delete v and all incident edges. Repeat: G − S, S ⊂ V(G).
o G − e: delete edge e (do not delete any vertices). Repeat: G − T, T ⊆ E(G).
o G/e (G contract e): delete e, identify ends of e if distinct. Repeat: G/T, T ⊆ E(G).

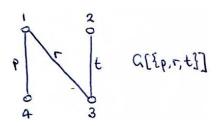


 $\circ G/\{u, v\}$: identify vertices u and v.

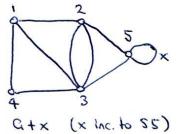
 $\circ G + e$: add edge e with known incidences. Repeat: G + T, T set of edges.

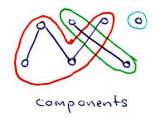
• induced subgraph $G[S], S \subseteq V(G)$: has vertex set S, all edges of G with both ends in S (equivalent to deleting vertices not in S).

 \circ edge-induced subgraph $G[T], T \subseteq E(G)$: has edge set T, vertex set all ends of edges in T.



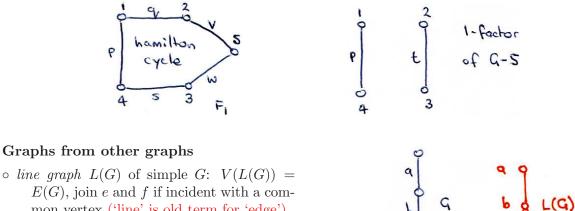
- *disjoint* subgraphs: no common vertices; *edge-disjoint* subgraphs: no common edges (may share vertices).
- * component = maximal connected subgraph (maximal under subgraph ordering). Book defines in indirect way, hard to use.
- \circ spanning subgraph F of G: V(F) = V(G);
 - spanning path/cycle = hamilton path/cycle,
 - spanning k-regular subgraph = k-factor.





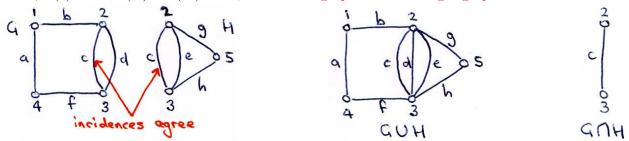
Graph Theory

Fall 2019



- mon vertex ('line' is old term for 'edge').
 - Can extend to loopless graphs.
 - Not every graph is a line graph.
 - Many vertex properties have edge counterparts: vertex property of line graph.
- * union and intersection of graphs G, H can be defined (in obvious way) if consistent: $\psi_G(e) =$ $\psi_H(e) \forall e \in E(G) \cap E(H)$. If G, H both subgraphs of some larger graph then are consistent.

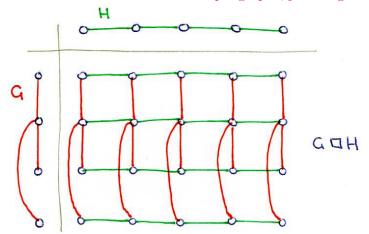
e



 \circ cartesian product $G \Box H$ of simple G, H:

 $V(G\Box H) = V(G) \times V(H) = \{(u, v) \mid u \in V(G), v \in V(H)\};$ $E(G \Box H) = \{(u_1, v)(u_2, v) \mid u_1 u_2 \in E(G), v \in V(H)\} \cup \{(u, v_1)(u, v_2) \mid u \in V(G), v_1 v_2 \in V(G)\} \cup \{(u, v_1)(u_2, v_2) \mid u \in V(G), v_1 v_2 \in V(G)\} \cup \{(u, v_1)(u_2, v_2) \mid u \in V(G), v_1 v_2 \in V(G)\} \cup \{(u, v_1)(u_2, v_2) \mid u \in V(G), v_1 v_2 \in V(G)\} \cup \{(u, v_1)(u_2, v_2) \mid u \in V(G), v_1 v_2 \in V(G)\} \cup \{(u, v_1)(u_2, v_2) \mid u \in V(G), v_1 v_2 \in V(G)\} \cup \{(u, v_1)(u_2, v_2) \mid u \in V(G), v_1 v_2 \in V(G)\} \cup \{(u, v_1)(u_2, v_2) \mid u \in V(G), v_1 v_2 \in V(G)\} \cup \{(u, v_1)(u_2, v_2) \mid u \in V(G), v_1 v_2 \in V(G)\}$ E(H)

Old notation $G \times H$. Can also be defined for non-simple graphs, just longer to write down.



 $\circ m \times n \ grid = P_m \Box P_n; \ n \text{-} prism = C_m \Box K_2.$

◦ join $G \lor H$ of disjoint G, H: join every vertex of G to every vertex of H. (Also denoted G + H.) If simple, $\overline{G \lor H} = \overline{G} \cup \overline{H}$.

