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Combinatorial induction proofs

Combinatorial induction proofs often follow a typical framework, as follows.

Theorem: Every object with property P has property Q.

Proof: By induction on the size s of an object J with property P.

Basis: Suppose s ∈ {some small numbers}. Then the result holds because . . . .

Induction step: Suppose s /∈ {some small numbers} and the result holds for all objects of size < s.
Construct from J some object J ′ with property P of size s′ < s. Then J ′ has property Q. Use this
to show that J also has property Q.

Induction proofs as above often also use a ‘proof by contradiction’ approach, using the idea of
a ‘minimum counterexample’.

Alternative proof: Let J be an object of smallest size s that is a counterexample, i.e., J has
property P but does not have property Q.

Then we cannot have s ∈ {some small numbers} beacuse . . . .
So we may suppose that s /∈ {some small numbers}. Construct from J some object J ′ of size

s′ < s with property P. Now conclude that J ′ has property Q and use that to show that J has
property Q, a contradiction. (Alternatively and equivalently, use the fact that J does not have
property Q to show that J ′ does not have property Q, a contradiction.)

The minimum counterexample approach is often used in research when we do not actually
know whether a result is true or not. By considering a hypothetical minimum counterexample and
studying its properties we have a hope of either proving the result (as above) or actually figuring
out how to construct a minimum counterexample and proving that the result is incorrect.

For a standard example of a minimum counterexample proof, see the Wikipedia page on the
Fundamental Theorem of Arithmetic (the fact that every integer at least 2 has a unique prime
factorization). This gives a minimum counterexample proof of the uniqueness part of this theorem.

A very important combinatorial example of a minimum counterexample proof is the proof of
the Four Colour Theorem using an unavoidable set of reducible configurations. This is discussed
in Section 15.2 of Bondy and Murty.



HOW NOT TO DO AN INDUCTION ARGUMENT

WRONG WRONG WRONG WRONG WRONG WRONG WRONG WRONG

Claim: Every edge in a connected cubic simple graph G is in a cycle.

Proof: By induction on n, the number of vertices in G. Remember that n must be even.

Basis: If n = 4, then G is isomorphic to K4, and every edge of K4 is in a cycle.

Induction step: Suppose that n ≥ 6, and the result
holds for graphs on (n−2) vertices. Let G′ be a con-
nected cubic simple graph on n−2 vertices; then the
result holds for G′. Construct G from G′ by taking
two edges uv, wx of G′, subdividing these edges to
get uav and wbx, and adding the edge ab. Then G
is a connected cubic simple graph on n vertices. We
prove that every edge e of G is in a cycle.
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Every cycle C ′ in G′ extends to a cycle in G: if uv is an edge of C ′ we replace it by uav, and
if wx is an edge of C ′, we replace it by wbx.

If we have an edge e ∈ E(G)−{ua, av,wb, bx, ab} then e is also an edge of G′, so by induction
it is in a cycle C ′ in G′, which extends to a cycle C of G containing e, as above.

If e = ua or av, we find by induction a cycle C ′ in G′ containing uv, and then we extend C ′

to a cycle C in G, which contains e. Similarly, if e = wb or bx, we extend a cycle C ′ containing wx
in G′ to a cycle C in G containing e.

Finally, suppose e = ab. Since G′ is connected, there is a path from {u, v} to {w, x} in G′; let
P ′ be a shortest such path. Then P ′ does not contain uv or wx (because if it did we could find a
shorter path). Suppose the ends of P ′ are c ∈ {u, v} and d ∈ {w, x}. Then C = cabd∪P ′ is a cycle
containing e in G.

Since every edge of G is in a cycle, the result follows.

WRONG WRONG WRONG WRONG WRONG WRONG WRONG WRONG

But this is obviously false since e in the graph below is not in a cycle.
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What is wrong with the above proof? (You may want to circle or underline bits of the proof, if
that is helpful.)


