Math 4710/6710 - Graph Theory - Fall 2019

Combinatorial induction proofs

Combinatorial induction proofs often follow a typical framework, as follows.
Theorem: Every object with property P has property Q.
Proof: By induction on the size s of an object J with property P .
Basis: Suppose $s \in\{$ some small numbers $\}$. Then the result holds because
Induction step: Suppose $s \notin\{$ some small numbers $\}$ and the result holds for all objects of size $<s$. Construct from J some object J^{\prime} with property P of size $s^{\prime}<s$. Then J^{\prime} has property Q . Use this to show that J also has property Q .

Induction proofs as above often also use a 'proof by contradiction' approach, using the idea of a 'minimum counterexample'.
Alternative proof: Let J be an object of smallest size s that is a counterexample, i.e., J has property P but does not have property Q .

Then we cannot have $s \in\{$ some small numbers $\}$ beacuse
So we may suppose that $s \notin\{$ some small numbers $\}$. Construct from J some object J^{\prime} of size $s^{\prime}<s$ with property P. Now conclude that J^{\prime} has property Q and use that to show that J has property Q, a contradiction. (Alternatively and equivalently, use the fact that J does not have property Q to show that J^{\prime} does not have property Q , a contradiction.)

The minimum counterexample approach is often used in research when we do not actually know whether a result is true or not. By considering a hypothetical minimum counterexample and studying its properties we have a hope of either proving the result (as above) or actually figuring out how to construct a minimum counterexample and proving that the result is incorrect.

For a standard example of a minimum counterexample proof, see the Wikipedia page on the Fundamental Theorem of Arithmetic (the fact that every integer at least 2 has a unique prime factorization). This gives a minimum counterexample proof of the uniqueness part of this theorem.

A very important combinatorial example of a minimum counterexample proof is the proof of the Four Colour Theorem using an unavoidable set of reducible configurations. This is discussed in Section 15.2 of Bondy and Murty.

HOW NOT TO DO AN INDUCTION ARGUMENT

WRONG WRONG WRONG WRONG WRONG WRONG WRONG WRONG

Claim: Every edge in a connected cubic simple graph G is in a cycle.
Proof: By induction on n, the number of vertices in G. Remember that n must be even.
Basis: If $n=4$, then G is isomorphic to K_{4}, and every edge of K_{4} is in a cycle.
Induction step: Suppose that $n \geq 6$, and the result holds for graphs on $(n-2)$ vertices. Let G^{\prime} be a connected cubic simple graph on $n-2$ vertices; then the result holds for G^{\prime}. Construct G from G^{\prime} by taking two edges $u v, w x$ of G^{\prime}, subdividing these edges to get uav and $w b x$, and adding the edge $a b$. Then G
 is a connected cubic simple graph on n vertices. We prove that every edge e of G is in a cycle.

Every cycle C^{\prime} in G^{\prime} extends to a cycle in G : if $u v$ is an edge of C^{\prime} we replace it by $u a v$, and if $w x$ is an edge of C^{\prime}, we replace it by $w b x$.

If we have an edge $e \in E(G)-\{u a, a v, w b, b x, a b\}$ then e is also an edge of G^{\prime}, so by induction it is in a cycle C^{\prime} in G^{\prime}, which extends to a cycle C of G containing e, as above.

If $e=u a$ or $a v$, we find by induction a cycle C^{\prime} in G^{\prime} containing $u v$, and then we extend C^{\prime} to a cycle C in G, which contains e. Similarly, if $e=w b$ or $b x$, we extend a cycle C^{\prime} containing $w x$ in G^{\prime} to a cycle C in G containing e.

Finally, suppose $e=a b$. Since G^{\prime} is connected, there is a path from $\{u, v\}$ to $\{w, x\}$ in G^{\prime}; let P^{\prime} be a shortest such path. Then P^{\prime} does not contain $u v$ or $w x$ (because if it did we could find a shorter path). Suppose the ends of P^{\prime} are $c \in\{u, v\}$ and $d \in\{w, x\}$. Then $C=c a b d \cup P^{\prime}$ is a cycle containing e in G.

Since every edge of G is in a cycle, the result follows.

WRONG WRONG WRONG WRONG WRONG WRONG WRONG WRONG

But this is obviously false since e in the graph below is not in a cycle.

What is wrong with the above proof? (You may want to circle or underline bits of the proof, if that is helpful.)

