Math 4710/6710 – Graph Theory – Fall 2019

Basic concepts II

Note: Many definitions are different from those in the book.

Trees

- Edge exchange properties: Let T, U be distinct spanning trees of a graph G, and $e \in E(T) E(U)$. (EE1) There is $e' \in E(U) - E(T)$ such that T - e + e' is a spanning tree.
 - (EE2) There is $e'' \in E(U) E(T)$ such that U + e e'' is a spanning tree.
- Kruskal's Algorithm: Apply Global TCM, being greedy, i.e., picking an available edge of minimum weight at each step.
- Jarník-Prim Algorithm: Apply Local TCM, being greedy, i.e., picking an available edge of minimum weight at each step.

Directed graphs

directed graph or digraph: D has vertex set V(D), set of arcs/ or directed edges A(D), incidence function ψ_D mapping each arc to ordered pair of vertices.

strict digraph: no loops or parallel arcs (but opposite arcs are allowed); denote arc as uv.

Arc from u to v: head v, tail u, u dominates v.

outdegree $d^+(v)$, indegree $d^-(v)$.

Set of outneighbours $N^+(v) = \{u \in V(D) \mid u \neq v, v \text{ dominates } u\}$; inneighbours $N^-(v)$.

underlying graph: ignore directions.

associated digraph of graph G: replace each edge by pair of opposite arcs.

- orientation of graph G: replace each edge by one of possible arcs; oriented graph = orientation of simple graph.
- tournament: orientation of complete graph K_n .

source: vertex of indegree 0; sink: vertex of outdegree 0.

converse of D: reverse all arcs.

Moving around in digraphs: Have directed versions of walks, trails, paths, cycles, euler trails and euler tours: must follow edges in correct direction. Directed uv-walk goes from u to v.

connected: underlying graph connected.

If $X, Y \subseteq V(D)$, A(X, Y) = edges with tail in X, head in Y. Let \overline{X} denote V(D) - X. $\delta^+(X) = A(\overline{X}, \overline{X})$ and $\delta^-(X) = A(\overline{X}, X)$.

- strong or strongly connected: $\delta^+(X) \neq \emptyset$ for all proper nonempty subsets X of V(D). (Or equivalently, $\delta^-(X) \neq \emptyset$ for all such X.)
- reachability in digraphs means directed reachability: uR^+v if there is a directed uv-walk (or equivalently a directed uv-path); say v is reachable from u.

 $R_D^+(v)$ means vertices reachable from v; $R_D^-(v)$ means vertices that can reach v.

branching or outbranching or arborescence: rooted tree where all edges directed outward from root. Can be constructed via *Directed Local TCM*; special cases *Directed BFS* and *Directed DFS* (only consider edges going outward from root).

acyclic digraph (computer scientists call it a DAG): no directed cycles.

Lemma: An acyclic digraph has at least one source and at least one sink.

distance in networks: given digraph D, nonnegative weight (distance) w(a) for each arc, d(u, v) is minimum length (total weight) of uv-path.

Flows

Network (D, c): digraph D (V = V(D), A = A(D)), each arc has nonnegative capacity c(a). $\delta^+ X, \, \delta^+ v, \, \delta^- X, \, \delta^- v$: arcs out of/into set of vertices X or single vertex v. $\overline{X} = V - X$.

A flow is $f \in \mathbf{R}^A$, i.e., f is a function $f : A \to \mathbf{R}$.

- If $S \subseteq A$ then f(S) means $\sum_{a \in S} f(a)$.
- If $X \subseteq V$ and $v \in V$ then $f^+(X)$, $f^+(v)$, $f^-(X)$, $f^-(v)$ mean $f(\delta^+X)$, $f(\delta^+v)$, $f(\delta^-X)$, $f(\delta^-v)$ respectively.
- $\partial f(X) = f^+(X) f^-(X)$ is net outflow from X and $\partial f(v)$ is defined similarly.

Proposition (Vertex additivity of net flow): For any $f : A(D) \to \mathbf{R}$ and any $X \subseteq V(D)$, $\partial f(X) = \sum_{v \in X} \partial f(v)$.

Say f conserved at v if $f^+(v) = f^-(v)$, i.e., $\partial f(v) = 0$.

f is a *circulation* if f is conserved at all $v \in V$.

Given supply vertex x and demand vertex y an xy-flow (or often just flow) is a flow $f : A \to \mathbf{R}$ conserved at every $v \in V - \{x, y\}$.

Feasible flow in (D, c): flow (not necessarily xy-flow) that satisfies $0 \le f(a) \le c(a) \ \forall \ a \in A(D)$.

The value of an xy-flow is val $f = \partial f(x)$ (net flow out of x). (Linear function on xy-flows.)

Special flows: - if P directed xy-path, $\chi_P(a) = 1$ if $a \in A(P)$, 0 otherwise. val $\chi_P = 1$.

- if P direction-insensitive xy-path, $\overrightarrow{\chi}_P(a) = 1$ if P uses a forwards, -1 if P uses a backwards, 0 otherwise. val $\overrightarrow{\chi}_P = 1$.
- if C directed cycle (may or may not contain x or y), $\chi_C(a) = 1$ if $a \in A(C)$, 0 otherwise. val $\chi_C = 0$.

An *xy*-cut is a set of arcs K for which there exists some set of vertices X with $x \in X$, $y \notin X$ and $K = \delta^+ X$. The capacity of the cut $K = \delta^+ X$ is just $c(K) = c^+(X)$.

A minimum xy-cut means an xy-cut of minimum capacity.

Lemma: $\partial f(X) = \operatorname{val} f$ for any *xy*-cut $\delta^+ X$.

Observation: For any feasible xy-flow f and xy-cut $K = \delta^+ X$, we have val $f \leq c(K)$. Moreover, equality holds if and only if $f(a) = c(a) \forall a \in \delta^+ X$ and $f(a) = 0 \forall a \in \delta^- X$.

Residual network $(D^*, c^*) = \text{Res}(D, c, f)$: shows how we can modify flow f. Same vertex set as D. Up to two arcs for every arc a of D:

- if f(a) < c(a) add a^+ , copy of a, to D^* with capacity $c^*(a) = c(a) f(a)$ (shows we can push extra flow along a);
- if f(a) > 0 add a^- , opposite to a, to D^* with capacity $c^*(a) = f(a)$ (shows that we can 'push some flow backwards' along a, i.e., reduce flow in a).

f-augmenting path: directed xy-path in D^* .

Observe: If P is an f-augmenting path then we can augment along f to get a new feasible xy-flow of higher value. Ford-Fulkerson Algorithm repeatedly searches for f-augmenting path and augments; if no f-augmenting path, vertices X reachable from x in D^* give minimum cut $\delta^+ X$. Edmonds-Karp Algorithm is special version guaranteed to terminate in polynomial time.

Note: If all capacities integral, F-F Algorithm shows that an integer-valued maximum flow exists.

Max Flow Min Cut Theorem: The value of a maximum *xy*-flow equals the capacity of a minimum *xy*-cut.

Note: Can allow infinite capacities, MFMC Theorem still holds.

Note: Vertex capacities c(v) implemented by splitting v into v^- with all in-arcs, v^+ with all out-arcs, and arc v^-v^+ of capacity c(v).

Support of f, supp $f = \{a | f(a) \neq 0\}$. Acyclic flow has acyclic support.

Flow Decomposition Algorithm: Given nonnegative flow f_0 , first remove flow around directed cycles (remove circulation f_C) to get acyclic f_A , then remove flow along maximal directed paths to get 0.

Gallai's Flow Decomposition Theorem (FDT): Every nonnegative flow f_0 may be written

$$f_0 = \overbrace{\alpha_1 \chi_{C_1} + \alpha_2 \chi_{C_2} + \ldots + \alpha_s \chi_{C_s}}^{f_C} + \overbrace{\beta_1 \chi_{P_1} + \beta_2 \chi_{P_2} + \ldots + \beta_t \chi_{P_t}}^{f_A}$$

where

- (i) f_C is a nonnegative circulation, $s \ge 0, \alpha_1, \ldots, \alpha_s > 0$, and C_1, \ldots, C_s are directed cycles;
- (ii) f_A is a nonnegative acyclic flow, $t \ge 0, \beta_1, \ldots, \beta_t > 0$, and each P_i is a directed $x_i y_i$ -path with $\partial f_0(x_i) > 0$, $\partial f_0(y_i) < 0$; and
- (iii) if f_0 is integer-valued then we may choose $\alpha_1, \ldots, \alpha_s, \beta_1, \ldots, \beta_t$ to all be integers, so that f_C and f_A are also integer-valued.