Math 4710/6710 - Graph Theory - Fall 2019

Basic concepts II

Note: Many definitions are different from those in the book.

Trees

Edge exchange properties: Let T, U be distinct spanning trees of a graph G, and $e \in E(T)-E(U)$.
(EE1) There is $e^{\prime} \in E(U)-E(T)$ such that $T-e+e^{\prime}$ is a spanning tree.
(EE2) There is $e^{\prime \prime} \in E(U)-E(T)$ such that $U+e-e^{\prime \prime}$ is a spanning tree.
Kruskal's Algorithm: Apply Global TCM, being greedy, i.e., picking an available edge of minimum weight at each step.
Jarník-Prim Algorithm: Apply Local TCM, being greedy, i.e., picking an available edge of minimum weight at each step.

Directed graphs

directed graph or digraph: D has vertex set $V(D)$, set of arcs/ or directed edges $A(D)$, incidence function ψ_{D} mapping each arc to ordered pair of vertices.
strict digraph: no loops or parallel arcs (but opposite arcs are allowed); denote arc as $u v$.
Arc from u to v : head v, tail u, u dominates v.
outdegree $d^{+}(v)$, indegree $d^{-}(v)$.
Set of outneighbours $N^{+}(v)=\{u \in V(D) \mid u \neq v, v$ dominates $u\}$; inneighbours $N^{-}(v)$.
underlying graph: ignore directions.
associated digraph of graph G : replace each edge by pair of opposite arcs.
orientation of graph G : replace each edge by one of possible arcs; oriented graph $=$ orientation of simple graph.
tournament: orientation of complete graph K_{n}.
source: vertex of indegree 0 ; sink: vertex of outdegree 0 .
converse of D : reverse all arcs.
Moving around in digraphs: Have directed versions of walks, trails, paths, cycles, euler trails and euler tours: must follow edges in correct direction. Directed $u v$-walk goes from u to v.
connected: underlying graph connected.
If $X, Y \subseteq V(D), A(X, Y)=$ edges with tail in X, head in Y. Let \bar{X} denote $V(D)-X . \delta^{+}(X)=A(X, \bar{X})$ and $\delta^{-}(X)=A(\bar{X}, X)$.
strong or strongly connected: $\delta^{+}(X) \neq \emptyset$ for all proper nonempty subsets X of $V(D)$. (Or equivalently, $\delta^{-}(X) \neq \emptyset$ for all such $\left.X.\right)$
reachability in digraphs means directed reachability: $u R^{+} v$ if there is a directed $u v$-walk (or equivalently a directed $u v$-path); say v is reachable from u.
$R_{D}^{+}(v)$ means vertices reachable from $v ; R_{D}^{-}(v)$ means vertices that can reach v.
branching or outbranching or arborescence: rooted tree where all edges directed outward from root. Can be constructed via Directed Local TCM; special cases Directed BFS and Directed DFS (only consider edges going outward from root).
acyclic digraph (computer scientists call it a $D A G$): no directed cycles.
Lemma: An acyclic digraph has at least one source and at least one sink.
distance in networks: given digraph D, nonnegative weight (distance) $w(a)$ for each arc, $d(u, v)$ is minimum length (total weight) of $u v$-path.

Flows

Network (D, c) : digraph $D(V=V(D), A=A(D))$, each arc has nonnegative capacity $c(a)$.
$\delta^{+} X, \delta^{+} v, \delta^{-} X, \delta^{-} v$: arcs out of/into set of vertices X or single vertex v.
$\bar{X}=V-X$.
A flow is $f \in \mathbf{R}^{A}$, i.e., f is a function $f: A \rightarrow \mathbf{R}$.
If $S \subseteq A$ then $f(S)$ means $\sum_{a \in S} f(a)$.
If $X \subseteq V$ and $v \in V$ then $f^{+}(X), f^{+}(v), f^{-}(X), f^{-}(v)$ mean $f\left(\delta^{+} X\right), f\left(\delta^{+} v\right), f\left(\delta^{-} X\right), f\left(\delta^{-} v\right)$ respectively. $\partial f(X)=f^{+}(X)-f^{-}(X)$ is net outflow from X and $\partial f(v)$ is defined similarly.
Proposition (Vertex additivity of net flow): For any $f: A(D) \rightarrow \mathbf{R}$ and any $X \subseteq V(D), \partial f(X)=$ $\sum_{v \in X} \partial f(v)$.
Say f conserved at v if $f^{+}(v)=f^{-}(v)$, i.e., $\partial f(v)=0$.
f is a circulation if f is conserved at all $v \in V$.
Given supply vertex x and demand vertex y an $x y$-flow (or often just flow) is a flow $f: A \rightarrow \mathbf{R}$ conserved at every $v \in V-\{x, y\}$.
Feasible flow in (D, c) : flow (not necessarily $x y$-flow) that satisfies $0 \leq f(a) \leq c(a) \forall a \in A(D)$.
The value of an $x y$-flow is val $f=\partial f(x)$ (net flow out of x). (Linear function on $x y$-flows.)
Special flows: - if P directed $x y$-path, $\chi_{P}(a)=1$ if $a \in A(P), 0$ otherwise. val $\chi_{P}=1$.

- if P direction-insensitive $x y$-path, $\vec{\chi}_{P}(a)=1$ if P uses a forwards, -1 if P uses a backwards, 0 otherwise. val $\vec{\chi}_{P}=1$.
- if C directed cycle (may or may not contain x or y), $\chi_{C}(a)=1$ if $a \in A(C), 0$ otherwise. val $\chi_{C}=0$.

An $x y$-cut is a set of arcs K for which there exists some set of vertices X with $x \in X, y \notin X$ and $K=\delta^{+} X$.
The capacity of the cut $K=\delta^{+} X$ is just $c(K)=c^{+}(X)$.
A minimum $x y$-cut means an $x y$-cut of minimum capacity.
Lemma: $\partial f(X)=\operatorname{val} f$ for any $x y$-cut $\delta^{+} X$.
Observation: For any feasible $x y$-flow f and $x y$-cut $K=\delta^{+} X$, we have val $f \leq c(K)$. Moreover, equality holds if and only if $f(a)=c(a) \forall a \in \delta^{+} X$ and $f(a)=0 \forall a \in \delta^{-} X$.
Residual network $\left(D^{*}, c^{*}\right)=\operatorname{Res}(D, c, f)$: shows how we can modify flow f. Same vertex set as D. Up to two arcs for every arc a of D :
if $f(a)<c(a)$ add a^{+}, copy of a, to D^{*} with capacity $c^{*}(a)=c(a)-f(a)$ (shows we can push extra flow along $a)$;
if $f(a)>0$ add a^{-}, opposite to a, to D^{*} with capacity $c^{*}(a)=f(a)$ (shows that we can 'push some flow backwards' along a, i.e., reduce flow in a).
f-augmenting path: directed $x y$-path in D^{*}.
Observe: If P is an f-augmenting path then we can augment along f to get a new feasible $x y$-flow of higher value. Ford-Fulkerson Algorithm repeatedly searches for f-augmenting path and augments; if no f augmenting path, vertices X reachable from x in D^{*} give minimum cut $\delta^{+} X$. Edmonds-Karp Algorithm is special version guaranteed to terminate in polynomial time.
Note: If all capacities integral, F-F Algorithm shows that an integer-valued maximum flow exists.
Max Flow Min Cut Theorem: The value of a maximum $x y$-flow equals the capacity of a minimum $x y$-cut.
Note: Can allow infinite capacities, MFMC Theorem still holds.
Note: Vertex capacities $c(v)$ implemented by splitting v into v^{-}with all in-arcs, v^{+}with all out-arcs, and $\operatorname{arc} v^{-} v^{+}$of capacity $c(v)$.
Support of $f, \operatorname{supp} f=\{a \mid f(a) \neq 0\}$. Acyclic flow has acyclic support.

Flow Decomposition Algorithm: Given nonnegative flow f_{0}, first remove flow around directed cycles (remove circulation f_{C}) to get acyclic f_{A}, then remove flow along maximal directed paths to get 0 .
Gallai's Flow Decomposition Theorem (FDT): Every nonnegative flow f_{0} may be written

$$
f_{0}=\overbrace{\alpha_{1} \chi_{C_{1}}+\alpha_{2} \chi_{C_{2}}+\ldots+\alpha_{s} \chi_{C_{s}}}^{f_{C}}+\overbrace{\beta_{1} \chi_{P_{1}}+\beta_{2} \chi_{P_{2}}+\ldots+\beta_{t} \chi_{P_{t}}}^{f_{A}}
$$

where
(i) f_{C} is a nonnegative circulation, $s \geq 0, \alpha_{1}, \ldots, \alpha_{s}>0$, and C_{1}, \ldots, C_{s} are directed cycles;
(ii) f_{A} is a nonnegative acyclic flow, $t \geq 0, \beta_{1}, \ldots, \beta_{t}>0$, and each P_{i} is a directed $x_{i} y_{i}$-path with $\partial f_{0}\left(x_{i}\right)>0$, $\partial f_{0}\left(y_{i}\right)<0$; and
(iii) if f_{0} is integer-valued then we may choose $\alpha_{1}, \ldots, \alpha_{s}, \beta_{1}, \ldots, \beta_{t}$ to all be integers, so that f_{C} and f_{A} are also integer-valued.

