
Math 4710/6710 – Graph Theory – Fall 2019

Basic concepts I, I, III

* indicates a definition different from the one in the book.

Graphs

Graph G consists of vertex set V (G), edge set E(G), incidence relation ψG mapping each edge to unordered
pair of vertices.

Convention: n = |V (G)|, m = |E(G)|.
If ψG(e) = uv say e incident with u, v.
Parallel edges are incident with same vertices. Loop is incident with same vertex twice.
Adjacent vertices u, v: some edge with ψG(e) = uv. Write u ∼ v. (Can have u ∼ u if loop at u.)
Neighbor of v is u with u 6= v, u ∼ v. (A vertex is never its own neighbor.) NG(v) or N(v) is set of neighbors

of v.
Null graph: V (G) = E(G) = ∅. Usually assume all graphs nonnull and finite.
Loopless graph has no loops. Simple graph has neither loops nor parallel edges.
* Standard (model) simple graph has E(G) ⊆

(
V (G)

2

)
, ψG defined implicitly as identity map. Usually assume

all simple graphs are standard model.
Underlying (standard) simple graph: delete loops, reduce parallel edges to single edge.

Complement G of standard simple graph G: V (G) = V (G), E(G) =
(
V (G)

2

)
− E(G). Note that G = G.

Matrices

Incidence matrix MG: index rows by vertices, columns by edges, ve-entry is how many times e is incident
with v (2 for a loop).

Adjacency matrix AG: index both rows and columns by vertices. For u 6= v, uv-entry is number of edges
incident with both u and v. For u = v, uu-entry is TWICE number of loops incident with u.

Degrees

Degree dG(v) or d(v): number of ends of edges incident with v. (Loops count twice. Degree is sum of v’s
row in MG, and sum of v’s row or v’s column in AG.)

k-regular : all degrees are k. Cubic = 3-regular.
Maximum degree is ∆(G), minimum degree is δ(G), average degree is d(G).
Degree sequence of G: list of all degrees, in no particular order. (Technically, multiset of degrees. Often

convenient to list in ascending or descending order.)
Degree-Sum Formula:

∑

v∈V (G) dG(v) = 2|E(G)| = 2m. Proof: Count ends of edges in two ways.

(Hence sum of degrees must be even.)
Corollary: d(G) = 2m/n.
Complement degrees: d

G
(v) = n− 1− dG(v).

Isomorphisms and automorphisms

Identical graphs G and H have V (G) = V (H), E(G) = E(H), ψG = ψH .
Isomorphism from G to H is pair (θ, ϕ) where θ : V (G) → V (H) is a bijection, ϕ : E(G) → E(H) is

a bijection, and incidence is preserved: ψG(e) = uv ⇔ ψH(ϕ(e)) = θ(u)θ(v) for all e ∈ E(G). If
isomorphism exists say G and H are isomorphic, write G ∼= H .

For standard simple graphs G and H , just give θ. If u ∼ v in G ⇔ θ(u) ∼ θ(v) in H for all u, v ∈ V (G) then
we have isomorphism; ϕ is given by natural extension of θ to pairs of vertices.

For finite graphs, if know |E(G)| = |E(H)| and θ, ϕ are bijections, enough to check one direction, ψG(e) = uv
⇒ ψH(ϕ(e)) = θ(u)θ(v).

Properties of isomorphisms:
(1) (idV (G), idE(G)) is an isomorphism of G to itself.
(2) If (θ, ϕ) is an isomorphism from G to H , then (θ−1, ϕ−1) is an isomorphism from H to G.
(3) If (θ1, ϕ1) is an isomorphism from G to H , and (θ2, ϕ2) is an isomorphism from H to K, then

(θ2 ◦ θ1, ϕ2 ◦ ϕ1) is an isomorphism froM G to K.

1

For any well-defined class of graphs, (1), (2) and (3) show that isomorphism is reflexive, symmetric, and
transitive. Hence it is an equivalence relation.
Labelled graph = graph, as previously defined. Unlabelled graph represents equivalence class of graphs, draw

picture of graph with no labels on vertices or edges.
Invariant of graphs is property that is same for all isomorphic graphs.
Automorphism of G is isomorphism of G to itself. Properties (1), (2), (3) above, together with associativity

of composition, show that set of all automorphisms of G, AutG, is a group under composition.
Asymmetric graph: only automorphism is identity.
Similar vertices u and v: there is an automorphism mapping u to v; equivalence relation. Vertex-transitive

graph: all vertices are similar.

Common invariant properties

* Coboundary δGX or δX of X ⊆ V (G): set of edges of G with one end in X , other end in V (G) −X .
Disconnected if can partition V (G) into two nonempty sets X , Y so no edge from X to Y . Equivalently,

there is X 6= ∅, V (G) with δX = ∅. Connected if not disconnected. (Equivalent condition in terms of
paths, later.)

Planar graph: can be drawn in plane without edge crossings. Embeddable in surface Σ if can be drawn in Σ
without edge crossings.

Cycles and paths

* Cycle Cn = connected n-vertex 2-regular (unlabelled) graph.
* Path Pn = Cn with one edge deleted.

Independent sets and cliques

Independent or stable set S ⊆ V (G): no loops on S and vertices of S are pairwise nonadjacent. Independence
number α(G) = maximum number of vertices in an independent set.

Clique S ⊆ V (G): any two distinct vertices of S are adjacent. Clique number ω(G) = maximum number of
vertices in a clique. (Clique also used to refer to subgraph.)

For simple graphs α(G) = ω(G), ω(G) = α(G).

Complete graph Kn: simple n-vertex, any two distinct vertices are adjacent. (E(Kn) =
(
V (Kn)

2

)
), whole

vertex set is clique.)
Trivial graph is K1.
* Supercomplete graph is not necessarily simple, but any two distinct vertices are adjacent.
Empty or * edgeless graph Kn: n vertices, no edges.
Bipartite graph: can partition V (G) into X,Y (may be empty) so that every edge has one end in X , other

end in Y . Write G = G[X,Y]. (So X , Y are independent.)
Complete bipartite graph Km,n: simple G[X,Y], |X | = m, |Y | = n, every x ∈ X adjacent to every y ∈ Y .
k-partite graph: can partition V (G) into V1, V2, . . . , Vk (sets may be empty) so that each Vi is independent.
Complete k-partite graphKn1,n2,...,nk

: k-partite simple graph with |V1| = n1, |V2| = n2, etc., any two vertices
adjacent unless in the same Vi.

Subgraphs

Subgraph F of G, F ⊆ G: F is a graph, V (F) ⊆ V (G), E(F) ⊆ E(G), and ψF = ψG|E(F).
Proper subgraph, F ⊂ G: F ⊆ G, F 6= G.
G− v: delete vertex v and all incident edges. Repeat: G− S, S ⊂ V (G).
G− e: delete edge e (do not delete any vertices). Repeat: G− T , T ⊆ E(G).
G/e (G contract e): delete e, identify ends of e if distinct. Repeat: G/T , T ⊆ E(G).
G/{u, v}: identify vertices u and v.
G+ e: add edge e with known incidences. Repeat: G+ T , T set of edges.
Disjoint subgraphs: no common vertices. Edge-disjoint subgraphs: no common edges.
* Component is a maximal connected subgraph (maximal under subgraph ordering).
Spanning subgraph F of G: V (F) = V (G). Spanning path or cycle usually called hamilton path or cycle.

Spanning k-regular subgraph usually called k-factor .

2

Induced subgraph G[S] for S ⊆ V (G): vertex set is S, all edges of G with both ends in S.
Edge-induced subgraph G[T] for T ⊆ E(G): edge set is T , vertex set is all ends of all edges in T .

Graphs from other graphs

Line graph L(G) of simple graph G: V (L(G)) = E(G), make e and f adjacent in L(G) if they are incident
with a common vertex in G.

* Union and intersection of graphs G, H can be defined if they are consistent : incidence function agrees for
any edges in E(G)∩E(H). Take union/intersection of vertex and edge sets, and inherit incidence from
G or H (or both).

Cartesian product G�H of simple G,H :
V (G�H) = V (G)× V (H) = {(u, v) | u ∈ V (G), v ∈ V (H)};
E(G�H) = {(u1, v)(u2, v) | u1u2 ∈ E(G), v ∈ V (H)} ∪ {(u, v1)(u, v2) | u ∈ V (G), v1v2 ∈ E(H)}

(Sometimes also denoted G×H .)
m× n grid = Pm�Pn.
Join G ∨ H of disjoint G, H : join every vertex of G to every vertex of H by one edge. (Sometimes also

denoted G+H .) If simple, G ∨H = G ∪H .

Moving around

Walk in G: alternating sequence of vertices and edgesW = v0e1v1e2v2 . . . vℓ−1eℓvℓ where ψG(ei) = vi−1vi for
each i. (In simple graph can just write W = v0v1v2 . . . vℓ−1vℓ.) Length is ℓ. Initial vertex v0, terminal
or * final vertex vℓ, ends v0 and vℓ, internal vertices v1, v2, . . . , vℓ−1.

Reverse of walk W : W−1 = vℓeℓvℓ−1 . . . v1e1v0.
uv-walk has initial vertex u, final vertex v.
Closed walk has initial vertex = final vertex.
Trail is walk with no repeated edges.
* Path is walk with no repeated vertices. (So defines subgraph that is path graph.)
* Cycle is closed walk with no repeated vertices except that initial vertex = final vertex, no repeated edges,

and at least one edge. (So defines subgraph that is cycle graph.) In simple graph write (v0v1v2 . . . vℓ−1).
* Reachability relation RG: uRGv if there is a uv-walk in G. RG(u) = {v ∈ V (G) | uRGv}. This is an

equivalence relation.

The distance from u to v in G, dG(u, v), is the length of a shortest uv-path.
* Euler trail = trail using all edges and vertices of G,
Euler tour = closed euler trail,

Trees

acyclic graph or forest: no cycles;
tree: (nonnull) connected forest;
leaf : degree 1 vertex.
cutedge e: G− e has more components than G;
cutvertex v: G− v has more components than G.

Lemma: A nontrivial tree has at least two leaves.

Equivalent characterizations of a tree:
(i) connected and acyclic (definition!);
(ii) connected, m = n− 1;
(iii) acyclic, m = n− 1;
(iv) connected, every edge is a cutedge;
(v) loopless, unique uv-path for all vertices u, v.

Rooted trees: r-tree or tree rooted at r is tree with special designated vertex r, the root . In an r-tree T
there is a unique rv-path rT v.

ancestor of v: any vertex of rT v (inc. v)
parent p(v): immediate predecessor on rT v (root has no parent)
proper ancestor (not v itself), descendant , related

3

level of v: ℓ(v) = dT (r, v)

* Global Tree Construction Method (Global TCM): Start with edgeless spanning subgraph F . At
each step choose an edge not forming a cycle (equivalently, joining two distinct components) with F
and add it to F . When we cannot continue F is a spanning tree.

* Local Tree Construction Method (Local TCM): Choose particular vertex r. Apply Global TCM,
at each step adding an edge leaving the component containing r.

* Breadth First Search (BFS): Use Local TCM, adding uv with u ∈ V (T), v /∈ V (T), where u was added
to T as early as possible.

Edge exchange properties: Let T, U be distinct spanning trees of a graph G, and e ∈ E(T)− E(U).
(EE1) There is e′ ∈ E(U)− E(T) such that T − e+ e′ is a spanning tree.
(EE2) There is e′′ ∈ E(U)− E(T) such that U + e − e′′ is a spanning tree.

Kruskal’s Algorithm: Apply Global TCM, being greedy, i.e., picking an available edge of minimum weight
at each step.

Jarńık-Prim Algorithm: Apply Local TCM, being greedy, i.e., picking an available edge of minimum
weight at each step.

Directed graphs

directed graph or digraph: D has vertex set V (D), set of arcs/ or directed edges A(D), incidence function
ψD mapping each arc to ordered pair of vertices.

strict digraph: no loops or parallel arcs (but opposite arcs are allowed); denote arc as uv.
Arc from u to v: head v, tail u, u dominates v.
outdegree d+(v), indegree d−(v).
Set of outneighbours N+(v) = {u ∈ V (D) | u 6= v, v dominates u}; inneighbours N−(v).
underlying graph: ignore directions.
associated digraph of graph G: replace each edge by pair of opposite arcs.
orientation of graph G: replace each edge by one of possible arcs; oriented graph = orientation of simple

graph.
tournament : orientation of complete graph Kn.
source: vertex of indegree 0; sink : vertex of outdegree 0.
converse of D: reverse all arcs.

Moving around in digraphs: Have directed versions of walks, trails, paths, cycles, euler trails and euler
tours: must follow edges in correct direction. Directed uv-walk goes from u to v.

connected : underlying graph connected.
If X,Y ⊆ V (D), A(X,Y) = edges with tail in X , head in Y . Let X denote V (D) −X . δ+(X) = A(X,X)

and δ−(X) = A(X,X).
strong or strongly connected : δ+(X) 6= ∅ for all proper nonempty subsets X of V (D). (Or equivalently,

δ−(X) 6= ∅ for all such X .)
reachability in digraphs means directed reachability: uR+v if there is a directed uv-walk (or equivalently a

directed uv-path); say v is reachable from u.
R+

D(v) means vertices reachable from v; R−
D(v) means vertices that can reach v.

branching or outbranching or arborescence: rooted tree where all edges directed outward from root. Can be
constructed via Directed Local TCM; special cases Directed BFS and Directed DFS (only consider edges
going outward from root).

acyclic digraph (computer scientists call it a DAG): no directed cycles.

Lemma: An acyclic digraph has at least one source and at least one sink.

distance in networks: given digraph D, nonnegative weight (distance) w(a) for each arc, d(u, v) is minimum
length (total weight) of uv-path.

4

Flows

Network (D, c): digraph D (V = V (D), A = A(D)), each arc has nonnegative capacity c(a).
δ+X , δ+v, δ−X , δ−v: arcs out of/into set of vertices X or single vertex v.
X = V −X .
A flow is f ∈ RA, i.e., f is a function f : A→ R.

If S ⊆ A then f(S) means
∑

a∈S f(a).
If X ⊆ V and v ∈ V then f+(X), f+(v), f−(X), f−(v) mean f(δ+X), f(δ+v), f(δ−X), f(δ−v)

respectively.
∂f(X) = f+(X)− f−(X) is net outflow from X and ∂f(v) is defined similarly.

Proposition (Vertex additivity of net flow): For any f : A(D) → R and any X ⊆ V (D), ∂f(X) =
∑

v∈X ∂f(v).
Say f conserved at v if f+(v) = f−(v), i.e., ∂f(v) = 0.
f is a circulation if f is conserved at all v ∈ V .
Given supply vertex x and demand vertex y an xy-flow (or often just flow) is a flow f : A → R conserved

at every v ∈ V − {x, y}.
Feasible flow in (D, c): flow (not necessarily xy-flow) that satisfies 0 ≤ f(a) ≤ c(a) ∀ a ∈ A(D).
The value of an xy-flow is val f = ∂f(x) (net flow out of x). (Linear function on xy-flows.)

Special flows: - if P directed xy-path, χP (a) = 1 if a ∈ A(P), 0 otherwise. valχP = 1.
- if P direction-insensitive xy-path, −→χ P (a) = 1 if P uses a forwards, −1 if P uses a backwards, 0 otherwise.

val−→χ P = 1.
- if C directed cycle (may or may not contain x or y), χC(a) = 1 if a ∈ A(C), 0 otherwise. valχC = 0.

An xy-cut is a set of arcs K for which there exists some set of vertices X with x ∈ X , y /∈ X and K = δ+X .
The capacity of the cut K = δ+X is just c(K) = c+(X).
A minimum xy-cut means an xy-cut of minimum capacity.

Lemma: ∂f(X) = val f for any xy-cut δ+X .

Observation: For any feasible xy-flow f and xy-cut K = δ+X , we have val f ≤ c(K). Moreover, equality
holds if and only if f(a) = c(a) ∀ a ∈ δ+X and f(a) = 0 ∀ a ∈ δ−X .

Residual network (D∗, c∗) = Res(D, c, f): shows how we can modify flow f . Same vertex set as D. Up to
two arcs for every arc a of D:
if f(a) < c(a) add a+, copy of a, to D∗ with capacity c∗(a) = c(a)− f(a) (shows we can push extra flow

along a);
if f(a) > 0 add a−, opposite to a, to D∗ with capacity c∗(a) = f(a) (shows that we can ‘push some flow

backwards’ along a, i.e., reduce flow in a).
f -augmenting path: directed xy-path in D∗.

Observe: If P is an f -augmenting path then we can augment along f to get a new feasible xy-flow of higher
value. Ford-Fulkerson Algorithm repeatedly searches for f -augmenting path and augments; if no f -
augmenting path, vertices X reachable from x in D∗ give minimum cut δ+X . Edmonds-Karp Algorithm
is special version guaranteed to terminate in polynomial time.

Note: If all capacities integral, F-F Algorithm shows that an integer-valued maximum flow exists.

Max Flow Min Cut Theorem: The value of a maximum xy-flow equals the capacity of a minimum
xy-cut.

Note: Can allow infinite capacities, MFMC Theorem still holds.

Note: Vertex capacities. c(v) implemented by splitting v into v− with all in-arcs, v+ with all out-arcs, and

arc v−v+ of capacity c(v).

Support of f , supp f = {a|f(a) 6= 0}. Acyclic flow has acyclic support.

Flow Decomposition Algorithm: Given nonnegative flow f0, first remove flow around directed cycles
(remove circulation fC) to get acyclic fA, then remove flow along maximal directed paths to get 0.

5

Gallai’s Flow Decomposition Theorem (FDT): Every nonnegative flow f0 may be written

f0 =

fC
︷ ︸︸ ︷

α1χC1
+ α2χC2

+ . . .+ αsχCs
+

fA
︷ ︸︸ ︷

β1χP1
+ β2χP2

+ . . .+ βtχPt

where
(i) fC is a nonnegative circulation, s ≥ 0, α1, . . . , αs > 0, and C1, . . ., Cs are directed cycles;
(ii) fA is a nonnegative acyclic flow, t ≥ 0, β1, . . . , βt > 0, and each Pi is a directed xiyi-path with ∂f0(xi) > 0,

∂f0(yi) < 0; and
(iii) if f0 is integer-valued then we may choose α1, . . . , αs, β1, . . . , βt to all be integers, so that fC and fA are

also integer-valued.

New

Connectivity

. edge cutset: S ⊆ E(G) so G− S is disconnected.

. edge cut: S ⊆ E(G) so that there exists X ⊆ V (G), X 6= ∅, V (G), with S = δX .

p′(x, y) = maximum number of edge-disjoint xy-paths.

xy-edge cutset : S ⊆ E(G) so that G − S has no xy-path; s′(x, y) = minimum cardinality of an xy-edge
cutset.

xy-edge cut : S = δX = E(X,X) where x ∈ X , y ∈ X ; c′(x, y) = minimum cardinality of an xy-edge cut.

Observe: Any xy-edge cut is an xy-edge cutset. Any xy-edge cutset contains an xy-edge cut. Hence
s′(x, y) = c′(x, y).

Also, p′(x, y) ≤ s′(x, y) = c′(x, y) for every distinct x, y. So if they are equal we have maximum number
of edge-disjoint xy-paths, minimum xy-edge cutset and minimum xy-edge cut.

Menger’s Theorem (Edge Version): If x, y are distinct vertices of a graphG, p′(x, y) = c′(x, y) = s′(x, y).

G is k-edge-connected if G− S is connected for all S ⊆ E(G) with |S| < k. (Equivalent to s′/c′/p′(x, y) ≥ k
∀ distinct x, y ∈ V (G).)

Edge-connectivity κ′(G) is maximum k for which G is k-edge-connected.

p(x, y) = maximum number of internally disjoint xy-paths (nothing in common except x and y).
xy-vertex cut(set): S ⊆ V (G)− {x, y} so that G− S has no xy-path; cv(x, y) = minimum cardinality of an

xy-vertex cutset.

Unit in a graph is either a vertex or an edge;
xy-unit cutset : U ⊆ (V (G) − {x, y}) ∪ E(G) so G− U has no xy-path;
c(x, y) = minimum size of xy-unit cutset.

Notes: xy-vertex cut only exists if x, y not adjacent, and then cv(x, y) = c(x, y).
We have p(x, y) ≤ c(x, y) so if they are equal we have a maximum number of internally disjoint xy-paths

and a minimum xy-unit cutset.

Menger’s Theorem (Vertex or Unit Version): If x, y are distinct vertices of a graphG, p(x, y) = c(x, y).

G is k-connected if G − U is connected for every set of vertices and edges U with |U | < k. (Equivalent to
c/p(x, y) ≥ k ∀ distinct x, y ∈ V (G).)

Connectivity κ(G) is the largest k for which G is k-connected.

m(x, y) = number of edges between x and y.
x ∼ y means x, y adjacent.
G is supercomplete if every pair of distinct vertices are adjacent. (My term, not standard.)

Observe: If G is supercomplete then p(x, y) = n − 2 + m(x, y) for distinct vertices x, y. Hence κ(G) =
n− 2 + minx 6=ym(x, y).

6

Lemma: If G is not supercomplete and c(u, v) ≥ k for all distinct nonadjacent u, v, then c(x, y) ≥ k for all
distinct adjacent x, y. Hence κ(G) = minx 6∼y c(x, y) = minx 6∼y p(x, y) = minx 6∼y c

v(x, y): only need to look
at nonadjacent vertices (not adjacent ones) and vertex (not unit) cuts.

Lemma: If G is k-connected and add new vertex v adjacent to at least k vertices of G, result is also
k-connected.

Fan Lemma: Suppose G is k-connected and S ⊆ V (G) with |S| ≥ k, and x ∈ V (G). Then there are k
paths from x to S that are vertex-disjoint except at x and have no internal vertices in S (a k-fan from x to
S).

Corollary: Suppose G is k-connected and S, T ⊆ V (G) with |S|, |T | ≥ k. Then there are k vertex-disjoint
paths from S to T (with no internal vertices in S ∪ T).

Application (Dirac): Suppose G is k-connected, k ≥ 2, and S ⊆ V (G) with |S| = k. Then there is a cycle
C in G that includes all vertices of S.

Hamilton cycles

hamilton path or cycle: spanning.
hamiltonian graph: has hamilton cycle.
traceable graph: has hamilton path.
c(G): number of components of G.
G is t-tough if c(G− S) ≤ |S|/t ∀ S ⊆ V (G) with c(G− S) ≥ 2. Hamiltonian ⇒ 1-tough (or just ‘tough’).

Theorem (Dirac): If G is a simple graph with δ ≥ n/2, n ≥ 3, then G is hamiltonian.

Theorem (Ore): Suppose G is an n-vertex simple graph, n ≥ 3, and d(u) + d(v) ≥ n for all distinct
nonadjacent u, v. Then G is hamiltonian.

Lemma: Let G be an n-vertex simple graph with distinct nonadjacent vertices u, v. If d(u) + d(v) ≥ n (uv
is addable edge) then G is hamiltonian ⇔ G+ uv is hamiltonian.

Bondy-Chvátal closure: Given G, repeatedly add addable edges until reach graph Gc with no more
addable edges. Can show Gc is unique: Bondy-Chvátal closure of G. G hamiltonian ⇔ Gc hamiltonian.
Theorems of Dirac and Ore just cases where Gc is complete.

Chvátal-Erdős Theorem: If n ≥ 3 and κ(G) ≥ α(G) then G is hamiltonian.

Matchings

Matching M : set of independent edges (pairwise nonadjacent, no common vertices).
M -saturated vertex : incident with edge of M , otherwise M -unsaturated .
Perfect matching or 1-factor : saturates all vertices.
α′(G) = size of maximum matching.
M -alternating path: Edges alternately in, not in, M .
M -augmenting path: M -alternating, ends are M -unsaturated.

Berge’s Theorem: A matching M is maximum if and only if there is no M -augmenting path.

Vertex cover K is set of vertices, every edge has at least one end in K.
β(G) = cardinality of minimum vertex cover.

Observe: α′(G) ≤ β(G), so if we have matchingM and vertex coverK with |M | = |K| thenM is maximum
and K is minimum.

König-Egerváry Theorem: For bipartite G, α′(G) = β(G). (Not true for general graphs.)

König-Ore Formula: For bipartite G(X,Y), α′(G) = |X | −maxS⊆X(|S| − |N(S)|).

Hall’s Theorem: Bipartite G(X,Y) has a matching saturating X ⇔ |N(S)| ≥ |S| ∀ S ⊆ X .

Corollary: Every k-regular bipartite graph, k ≥ 1, has a perfect matching. Hence every k-regular bipartite
graph, k ≥ 0, has a partition of its edges into perfect matchings (a 1-factorization).

Defect of M is def(M) = number of M -unsaturated vertices = n− 2|M |.

7

Observe: For any matching M and S ⊆ V (G), def(M) ≥ codd(G− S)− |S| = shf(S), shortfall of S (not
standard term).

Berge’s Formula, 1958: For any G,

min
matchings M of G

def(M) = max
S⊆V (G)

shf(S)

or equivalently α′(G) =
1

2

(

|V (G)| − max
S⊆V (G)

(codd(S)− |S|)

)

.

Tutte’s 1-Factor Theorem: G has a perfect matching ⇔ codd(S) ≤ |S| ∀ S ⊆ V (G).

Colourings

k-colouring: c : V (G) → S, |S| = k (often S = {1, 2, . . . , k}.
Proper colouring: no two adjacent vertices get the same colour.
k-colourable: G has a proper k-colouring.
Chromatic number χ(G): smallest k for which G is k-colourable.

Brooks’ Theorem: If G is simple and connected and not a complete graph or odd cycle, then χ(G) ≤ ∆(G).

Chromatic polynomial P (G, k) is number of proper k-colourings of G with colours 1, 2, . . . , k. Turns out to
be polynomial in k.
P (Kn, k) = k(k − 1)(k − 2) . . . (k − n+ 1).
P (Kn, k) = kn.
P (T, k) = k(k − 1)n−1 for any n-vertex tree T .

Expansion formula: If xy /∈ E(G), P (G, k) = P (G+ xy, k) + P (Gx=y, k).

Deletion-contraction formula: If xy ∈ E(G), P (G, k) = P (G− xy, k)− P (G/xy, k).

Euler’s formula: Let G be a plane graph (specific crossing-free drawing of planar graph) with r faces
(regions determined by graph, including outside). If G is connected then n−m+ r = 2.

. degree d(f) of face f = total length of all boundary walks.

. F (G) = set of faces of G.

Face Degree-Sum Formula:
∑

f∈F (G) d(f) = 2m. (Every face has two sides. Or apply Degree-Sum

Formula to dual.)

Theorem. Let G be a simple planar graph with n ≥ 3. Then m ≤ 3n− 6.

Corollary. K5 is not planar.

Corollary. (a) The average degree of a simple planar graph is less than 6. (b) Thus, a planar graph G must
have a vertex of degree at most 5.

Observation: Every planar graph is 6-colourable (by greedy colouring).

Five Colour Theorem. Every planar graph G is 5-colourable.

Four Colour Theorem (Appel and Haken, 1976): Every planar graph G is 4-colourable.

8

