
Math 4710/6710 – Graph Theory – Fall 2019

Assignment 3

Usual instructions:
• Solutions to problems should be fully explained, using clear English sentences where necessary.
• Solutions should be written (or typed) neatly on one side only of clean paper with straight

(not ragged) edges.
• Multiple pages should be stapled (not clipped or folded) together.
• Problems are from the newer printings of the textbook. If the problem has a different number

in older printings, this will be indicated by ‘(old x.y.z)’.

Special instructions:
• Part A is regular problems. They may be typed or handwritten. They are due in class on

Friday, October 11, and will be graded once by the instructor. All students should do
3A1, 3A2 and 3A3. Math 6710 students should also do 3A4.

• The website contains a file that has copies of the graphs for problems 3A1, 3A2 and 3A3 so
that you can print them out instead of drawing them if you like.

• Part B consists of problems that will be peer-edited. Details are still being worked out!
However, all students will be required to submit a first attempt at problems 3B1 and 3B2
by 1 p.m. on Wednesday, October 9. Solutions must be typed. (You may use any suitable
software to do this. I will provide some information about using LaTeX if you wish to use
that.) Solutions will be submitted electronically. (I have not yet decided whether this will
be done by email or using Brightspace.)

Part A

3A1. Using the algorithm described in class, find a BFS tree rooted at a in the graph shown at
right below.

Process the neighbours of each vertex in alphabetical
order. List the vertices in the order they were added to the
tree, along with the time at which each was added. Mark
the edges of your tree on a copy of the graph, and label
each vertex with its level in the tree. Draw a nice copy of
your final tree separate from the graph, with the vertices
at each level on the same horizontal line, occurring left to
right according to the time when they were found.

a b

c

d

e

f

g

hij

k

ℓ

m

n

o

p

1



3A2. Using the algorithm described in class, find a DFS tree rooted at a in the graph shown at
right below. (Note: this is NOT the same as the graph in 3A1 above.)

Process the neighbours of each vertex in alphabetical
order. Show the initial (arrival) and final (departure) times
for each vertex. Mark the edges of your tree on a copy of
the graph, and label each vertex with its level in the tree.
Draw a nice copy of your final tree separate from the graph,
with the vertices at each level on the same horizontal line,
occurring left to right according to the time when they were
found. (Since DFS trees tend to be long and thin, you may
alternatively draw the tree sideways by reflecting it in the
line y = −x, with the vertices at each level on the same
vertical line, occurring top to bottom according to the time
when they were found.)

a b

c

d

e

f

g

hij

k

ℓ

m

n

o

p

3A3. For the graph shown below, find a minimum weight spanning tree by using (i) Kruskal’s
algorithm, and (ii) the Jarńık-Prim algorithm, starting at h. In each case show the edges of the
tree on the graph, and provide a list of the edges of the tree in the order in which you added them
to the tree.

21 38 40 22

8
5

41
31

17

18

35 37 28

13
33 9 6

10 30

24 12 15 25

a b c d e

g i

h

k ℓ m n o

f j

3A4, Math 6710 students only, modified version of B&M (2nd pr.) 3.4.5. (a) Use Rédei’s
Theorem (Section 2.2 of B&M) to show that every tournament with three or more vertices is either
strong or can be transformed into a strong tournament by the reversal of just one arc.

(b) Is this true for tournaments with one or two vertices?

Part B

3B1, B&M (2nd pr.) 3.2.4. Let G be a k-regular bipartite graph with k ≥ 2. Show that G has
no cutedge.

3B2, adapted from B&M (2nd pr.) 2.1.11(b). A topological sort of a digraph D is a linear
ordering of its vertices such that, for every arc a of D, the tail of a precedes its head in the ordering.
Show that a digraph admits a topological sort if and only if it is acyclic. (You may find it helpful
to use the fact that an acyclic digraph always has a source and a sink.)

2


