
INSTRUCTIONS FOR LA 1.01
LA is a calculator-like program for manipulating matrices and vectors. The user tells the program what

to do by typing commands when prompted by the computer. Once the commands have been learnt, the
program is very convenient to use.

In this guide, examples appear in typewriter text. What you type appears underlined.

USING LA

LA is written using the Free Pascal Compiler and should run on any system where that compiler can
be implemented. Currently it runs on Windows systems (32- or 64-bit) and on Apple Mac systems running
OS X.

For Windows systems, install the file la.exe in any suitable directory (folder). Click on the file to run
the program; it will open in its own window. If the installation directory is on your system path you can
also start the program in a command prompt window by typing la in that window.

For Apple Mac systems, rename the executable file to la and install it in a suitable directory on your
system path. You may then run the program by typing la in a Terminal window.

HELP

Commands in LA are divided into four main groups: (1) general commands, (2) commands for manipu-
lating matrices, (3) commands for operating on the internal structure of a single matrix, and (4) commands
for manipulating vectors. Help messages are available listing the commands in each of these four groups, by
typing

LA >> h general

LA >> h matrix

LA >> h single

LA >> h vector

There is also a help message available describing the special matrices which LA makes available to the user
(see below). To get this message, type

LA >> h special

MATRICES AND VECTORS

LA can store up to 30 matrices and/or vectors. Vectors are treated as just 1 × n matrices - they are
stored in the same place as the matrices and can be used in any command as if they were a 1 × n matrix.
Henceforth, the term ‘matrix’ will include vectors as a special case. The maximum dimensions of a matrix
are 25× 25, and so the maximum length of a vector is 25.

Matrix and vector names

The 32 available matrices can be identified by names of the user’s choosing. Each name must begin with
a letter (a to z and A to Z) but the remaining characters can be any non-space characters. The maximum
length of a name is 15 characters: longer names will be truncated. Names are the ONLY place where LA
differentiates between upper and lower case, so that aa, AA and Aa all refer to different matrices.

LA also has some built-in special matrices, such as identity matrices, zero matrices and a few others,
which you can use in commands. These special matrices are given names beginning with a dollar sign. The
available special matrices are:

$en,i 1× n row vector, the ith standard basis vector in real n-space, with a one in column
i and zeroes elsewhere

$hn n× n Hilbert matrix
$in n× n identity matrix
$jm,n m× n matrix of all ones – $jn is short for $jn,n
$sn,i n× 1 standard basis vector, like $en,i except it is a column vector instead of a row

vector

1

$zm,n m× n matrix of all zeroes – $zn is short for $zn,n
For example, $i5 (or $I5) means a 5× 5 identity matrix.

The current matrix or vector

LA has the concept of a ‘current matrix.’ This concept is mostly used with the ‘single matrix’ commands,
where you are working with one matrix at a time, but there is normally a current matrix no matter what
command you are currently using. Usually the current matrix is the matrix which was produced as a result
of the last operation you did. For example, if you typed

LA >> mm A $j4 C

to multiply matrix A by a 4× 4 matrix of all ones to get matrix C, then C would become the current matrix
if the multiplication was successful. You can refer to the current matrix in commands as . (a period), so
that, for example,

LA >> cr . b f

puts the cross product of the current matrix (remember that vectors are just special matrices!) and b in f.
There are two occasions when no current matrix will be defined: when LA first starts up, and when

you have killed the last current matrix using the k command. If there is no current matrix and you try to
use it, you will receive an error message: No current matrix if you try to use it implicitly (in a single
matrix command or in a p command without an argument), or Illegal matrix/vector if you try to use an
explicit .. The current matrix will become defined again as soon as you do something which stores a result
in a matrix or vector.

Source and target matrices and vectors

Matrices in commands can be divided in two classes: sources and targets. A source matrix is a matrix
which is used as input by a command; a target matrix is used to store the result of a command. A source
matrix can be a matrix name, a period (for the current matrix) or a special matrix like $i6. A target matrix
can only be a matrix name or a period. For example, in

LA >> mm A $j3,2 D

which multiplies A by a 3 × 2 matrix of all ones to get D, the source matrices are A and $j3,2, and the
target matrix is D. In the list of commands below, source matrices are indicated by s and target matrices
by t.

Note on vectors

The fact that vectors are represented as 1×n matrices, or row vectors, rather than as n× 1 matrices, or
column vectors, needs to be remembered. Thus, if A is a 3 × 3 matrix and e is a 3-vector, then you cannot
multiply A by e (in that order) because e is 1 × 3, not 3 × 1. To do the required multiplication you would
first have to transpose e. Thus, you might issue the following commands

LA >> t e e

LA >> mm A e g

which put A times e in g. Also, all vector operations work with row vectors. Thus, if c and d are 3 × 1
matrices, you would have to type

LA >> t c c

LA >> t d d

LA >> cr c d e

to calculate their cross product e: c and d have to be transposed using the t command before e can be
calculated - and e will be 1× 3, not 3× 1.

2

NUMBERS

Rationals

All matrix and vector entries in LA are rational numbers. Rational numbers are also required in certain

commands – this is indicated in the list of commands below by the letter q. The following forms are legal:

{+/-}ℓ e.g. 3, +72, -346, 0

{+/-}m/n e.g. 3/4, +17/6, -12/439

{+/-}ℓ m/n e.g. 13 1/4, +3 4/5, -13 3/147

where ℓ, m and n are unsigned integers. Rational numbers cannot contain spaces.

Rational number arithmetic can quickly lead to large integers in the numerator and denominator. This

may result in an overflow, because the computer can only store integers of limited size. LA tries to catch

problems of this sort. If you receive a message of the form

Overflow: ... <> ... - approx to ...

then you should assume that the result of your calculation is junk.

Integers

Certain commands require integers as part of their arguments - this is indicated in the list of commands

below by the letter n. In all cases the integers are unsigned; in other words, 2 is legal but +2 and -2 will not

be accepted.

ROWS AND COLUMNS

Many single matrix commands require you to specify rows or columns of the matrix you are working

on. A row is specified by an expression of the form rn, and a column by an expression of the form cn -

for example, r4 means row 4 and c5 means column 5. You cannot put a space between the r or c and the

number. In the list of commands below, r means a row expression is required, c means a column expression

is needed, and p means that either a row or a column expression is necessary.

OUTPUT FILE

LA (as of 0.31) now has the capability to copy its matrices and vectors into an output file. To open and

close the output file, use the fi command, and to print matrices to the file use the np command. See the

command list below for details.

As of 0.32, there is also a tp command, which prints to the output file in Plain TEX format, so that

users can easily include matrices produced by LA in their TEX files.

COMMANDS

Here is a summary of the types of command argument used in the list of commands below:

n unsigned integer

q rational number

s source matrix or vector

t target matrix or vector

r row

c column

p row or column

3

General commands

c s t

Copy source s to target t. For example,

LA >> c $i6 B

copies a 6× 6 identity matrix into B.

fi {filename}

Opens and/or closes output file. First, the current output file (if any) is closed. Then, if a filename is

specified, that file is opened as the new output file. Any previous contents in the file are destroyed. When

LA starts up there is no output file. For example,

LA >> fi b:ques1.out

opens the file ques1.out on your B disk, and then later

LA >> fi

would close it.

h {topic}

Prints help messages on given topics. Valid topics are general, matrix, single, vector and special.

If you give no topic, or an invalid topic, you will be given a list of topics.

k t1 t2 ...

Kill listed matrices: their contents are destroyed. For example,

LA >> k . D E

erases the current matrix and matrices D and E.

ls

List all matrices. Lists the names and dimensions of all matrices. The current matrix is indicated by

an arrow > pointing to it.

np t1 t2 ...

Print listed matrices to output file in normal format. Operation is the same as the p command below,

except that the matrices are printed in the current output file instead of on the screen.

p t1 t2 ...

Print listed matrices. Prints the given matrices. If there is no current matrix, then the last matrix

printed becomes the current matrix. If no matrices are given, just prints the current matrix. Thus, if there

is no current matrix, then

LA >> p A B C

prints A, then B, then C, and C becomes the current matrix. If the current matrix is F, then

LA >> p

just prints F and

LA >> p A . B

prints A, then F, then B (and the current matrix is still F).

q

Quit. Exits from LA. The program will also stop if the user types Control-Z (the end of file character).

4

r n t

Read a row vector. Reads a row vector of length n into target t. The user will be prompted for the

elements of the vector, which should be rational numbers in one of the forms mentioned above. The entries
should be separated by spaces and/or tabs, and need not all appear on the same line. For example,

LA >> r 8 A

Enter vector: 1 1/2 -3/2 5/3 0

7 -6 -5 1/2 18

makes A the 1× 8 vector (3/2,−3/2, 5/3, 0, 7,−6,−11/2, 18). If you type an illegal character (not part of a

number) when typing your vector entries, LA will ignore anything that follows the illegal character, and fill

out the rest of the vector with zeroes. Thus,

LA >> r 7 A

Enter vector: 1 2 # 4 5 6 7

will result in A being the vector (1, 2, 0, 0, 0, 0, 0), and you will receive an End of line ignored message.

(This can actually be a useful feature if you have a vector with a lot of zeroes at the end.)

r n1 n2 t

Read a matrix. Reads an n1 × n2 matrix into target t. The user will be prompted for the elements of

the matrix, which should be entered row by row. The elements should be legal rational numbers, separated
by spaces and/or tabs, on one or more lines. It is NOT necessary to enter the numbers so that each row is

on a separate line. For example,

LA >> r 3 4 B

Enter matrix:

1 2 -3/2

0 4 6 -9/7 5 0 8 8 1/3 9

makes B the matrix

B:

1 2 -3/2 0

4 6 -9/7 5

0 8 25/3 9
As with reading a vector, typing an illegal character will cause LA to ignore all later entries, and fill the

remainder of the matrix with zeroes.

rc n t

Read a column vector. Reads a column vector of length n into target t. The user will be prompted

for the elements of the vector, which should be rational numbers in one of the forms mentioned above. The
entries should be separated by spaces and/or tabs, and need not all appear on the same line. For example,

LA >> rc 3 c

Enter vector: 1 1/2 -3/2 5/3

makes c the 3× 1 vector

c:

3/2

-3/2

5/3
Behaviour when illegal characters are encountered is the same as for the r command above: the remainder

of the vector is filled with zeroes.

rn t1 t2

Rename the matrix (or vector) t1 to t2. There must currently be no other matrix named t2. For example,

LA >> rn A A1

renames the matrix A to A1.

5

se t

Select t as the current matrix. For example,

LA >> se G

LA >> p

would make G the current matrix, so that the p command would print G.

tp t1 t2 ...

Print listed matrices to output file in Plain TEX format, for inclusion in a TEX file. Apart from the

format used, operation is the same as the p and np commands.

vf {+/-}

Turn verification on (+) or off (-). Verification is a feature which prints the current matrix after most

commands, to show you the result of your command. For example, if verification is on, and you type

LA >> c $e2,1 A

then the program would print

A:

1 0

to show you the result. Typing vf + turns this on, vf - turns it off, and just typing vf changes it to the

reverse of what it currently is. Notice that there must be a space between the vf and the + or -. When LA

starts up, verification is on.

w n

Change column width to n. When LA prints matrices or vectors, it tries to print them so that all

columns are the same width, but this may not be possible if the numbers involved are too large. To get

around this problem, the width of the columns can be controlled using this command. For example,

LA >> w 15

changes the width of printed columns to 15. Just typing w returns the width to the value it has when LA

starts up, namely 7. The number n must be between 1 and 40 inclusive.

$ system-command

A dollar sign followed by a space indicates that the remainder of the line is to be treated as a command

to your operating system. This allows the user to issue operating system commands, such as dir, from inside

LA. For example,

LA >> $ dir

$$ command-interpreter-path

The double dollar command tells LA where your command interpreter lives. LA needs this information

in order to implement the $ command, above. The default setting is cmd.exe (without an explicit path),

which should work on most Windows systems. However, you may have to tell LA where your command

interpreter lives; for example,

LA >> $$ c:\windows\system32\cmd.exe

Command interpreter is c:\windows\system32\cmd.exe

The $$ command with no argument will tell you where LA is currently trying to find your command

interpreter.

6

Single matrix commands

All of the commands in this section operate on the current matrix.

a q p1 p2

Add q times p1 to p2. If q is omitted it is assumed to be 1, and if q is given as just + or - it is assumed

to be 1 or −1 respectively. Here p1 and p2 must be of the same type: both rows, or both columns. For

example,

LA >> a 3/2 r1 r2

adds 3/2 times row 1 to row 2 of the current matrix, and

LA >> a - c1 c4

adds −1 times column 1 to column 4, while

LA >> a 2 r1 c2

Cannot mix rows and columns

produces an error message.

ar p1 p2 ...

Create a new matrix by arranging specified rows and columns of the current matrix. This command

is very versatile: for example, it lets you form a submatrix of a matrix, permute the rows or columns of a

matrix, or duplicate some of the rows or columns of a matrix. If rows r1, r2, r3, ..., rk and columns c1, c2,

c3, ..., cℓ are specified (in that order) then the new matrix formed has in its i, j entry the entry which was

in row ri and column cj of the original matrix. If no rows are given, then the original rows are used in their

original order, and similarly for the columns. Suppose for example that the current matrix is a 4× 5 matrix.

Then the command

LA >> ar r1 r2 c2 c4 c5

would form the submatrix consisting of rows 1 and 2 and columns 2, 4 and 5 of the original matrix. The

command

LA >> ar r3 r4 r2 r1

would rearrange the rows of the matrix, making row 3 the new first row, row 4 the new second row, row 2

the new third row, and row 1 the new fourth row. The command

LA >> ar c1 c1 c1 c2 c3 c4 c5

would add two extra copies of column 1 to the beginning of the matrix. If an illegal row or column is

specified, the whole command will have no effect.

d p q

Divide p by q. For example,

LA >> d r4 -5/2

divides row 4 by −5/2, and

LA >> d c5 17

divides column 5 by 17.

de p1 p2 ...

Delete specified rows and columns from current matrix. For example,

LA >> de r1 c3 r5 c2 c5

deletes rows 1 and 5 and columns 2, 3 and 5. If an illegal row or column is given, the whole command will

have no effect.

7

e q r c

Enter the value q in position r, c. This command is often used to edit entries of a matrix. For example,
if you mistype the entry in row 2, column 3 of matrix A as 0 instead of 10, you could fix it as follows:

LA >> r 5 4 A

Enter matrix:

...

LA >> e 10 r2 c3

The column specification can come before the row specification, and if there is only one row or column, the
row or column (respectively) need not be specified.

gp r c

Pivot on entry at position r, c, using a ‘lower pivot’ as employed by Gaussian elimination. Tells program
to use elementary row operations to make entry at r, c equal to 1, and then make all entries in column c
below the pivot position equal to 0. Rows above the pivot row remain unchanged. The entry at position r, c
must be nonzero. Example:

LA >> gp c3 r4

As shown in this example, the row need not come before the column. Compare with pi command, below.

m p q

Multiply p by q. Similar to d command above. Note that q is not allowed to be zero, because then this
would not be an elementary row or column operation. Use the ze command below to make a row or column
all zero.

pi r c

Pivot on entry at position r, c, using a ‘full pivot’ as employed by Gauss-Jordan elimination. Tells
program to use elementary row operations to make entry at r, c equal to 1, and then make all other entries
in column c equal to 0. The entry at position r, c must be nonzero. Useful for simplex algorithm. Example:

LA >> pi r3 c2

The row need not come before the column. Compare with gp command, above.

rp p1 p2 ...

Replace specified rows and columns, reading new values from the keyboard. The user will first be
prompted for the rows specified, and then for the columns specified. Note that if both rows and columns are
specified, then the value at the intersection of one of the specified rows and one of the specified columns will
be taken from the specification for the column, overriding the value specified for the row if it is different.
For example, if we have a 3× 4 matrix:

LA >> rp c4 r1 c2

Enter new row 1: 1 2 5 -3

Enter new column 2: 2 4 6

Enter new column 4: 7 5 1

The value in row 1, column 4 ends up as 7, not as −3. As with the r and rc commands, extra numbers at
the end of a row or column are ignored, and illegal characters result in the rest of the row or column being
filled with zeroes.

s q p1 p2

Subtract q times p1 from p2. Same comments apply as for a command above.

sa t

Save a copy of the current matrix in t. This is NOT the same as ‘c . t’ because ‘c . t’ changes the
current matrix to t, while ‘sa t’ leaves the current matrix unchanged. For example, if the current matrix is
E then

LA >> sa B

copies E to B and leaves E as the current matrix.

8

un

Undo the last single matrix command. Will work provided there has been no intervening command
which could affect either the identity or contents of the current matrix (for example, a command which
stores results in a target matrix). Example:

LA >> p

a:

1 2 3

LA >> de c2

a:

1 3

LA >> un

a:

1 2 3

x p1 p2

Exchange p1 and p2. Here p1 and p2 must be the same type: both rows or both columns. For example,
LA >> x r3 r2

exchanges rows 2 and 3 of the current matrix.

ze p1 p2 ...

Zero out specified rows and columns. Overwrites the given rows and columns with zeroes. For example,
LA >> ze c3 r4 r6 c1

makes everything in rows 4 and 6 and columns 1 and 3 equal to zero. If an illegal row or column is specified,
the whole command will have no effect.

Matrix commands

am q1 s1 q2 s2 t

Add q1 times s1 to q2 times s2 and put the result in t. If one of q1 or q2 is left out then it is assumed
to be 1. If one of q1 or q2 is given as just a sign, + or -, then it is assumed to be 1 or −1 respectively. For
example,

LA >> am 3 A - B C

puts C equal to 3A−B.

cp s

Find the characteristic polynomial of s. The matrix s must be square. Example:
LA >> cp $i3

Characteristic polynomial is x^3 - 3 x^2 + 3 x - 1

This command is currently implemented using the fact that the coefficient of xi in the characteristic poly-
nomial of an n× n matrix is (−1)n−i times the sum of the determinants of all the principal submatrices of
side n − i. Thus, it requires 2n − 1 determinant evaluations. THIS COMMAND MAKE TAKE A LONG
TIME FOR LARGE MATRICES.

dt s

Find the determinant of s. The matrix s must be square. Example:
LA >> dt $i4

Determinant is 1

ga s t

Put row echelon form of s in t, i.e. apply Gaussian elimination to s and store the result in t. For
example,

LA >> ga A AR

reduces the matrix A to row echelon form, using Gaussian elimination, and stores the result in the matrix
AR. Note that the row echelon form of a matrix is not in general unique. Compare to gj command, below.

9

gi s t

Find a general inverse of s and put in t. A general inverse of a matrix A is a matrix G so that GA = R,
where R is the reduced row echelon form of A. It is useful for solving equations of the form Ax = b: these
can be reduced to the form Rx = Gb which is easy to solve. If A is square and invertible then G is just the
ordinary inverse of A. Example:

LA >> gi . B

A matrix may have more than one general inverse.

gj s t

Put reduced row echelon form of s in t, i.e. apply Gauss-Jordan elimination to s and store the result in
t. For example,

LA >> gj . .

reduces the current matrix to reduced row echelon form, using Gauss-Jordan elimination. The reduced row
echelon form of a matrix is unique. Compare to ga command, above.

i s t

Find inverse of s and put in t. The matrix s must be square. LA will tell you if s is not invertible;
otherwise its inverse will be stored in t. Example:

LA >> i A B

Not invertible

jh s1 s2 t

This joins s1 and s2 horizontally to form a new matrix, which is stored in t. Obviously, s1 and s2 must
have the same number of rows. For example, if A is

A:

1 2 3

4 5 6
then the command

LA >> jh A $i2 B

results in B being the matrix
B:

1 2 3 1 0

4 5 6 0 1

jv s1 s2 t

This joins s1 and s2 vertically to form a new matrix, which is stored in t. The matrices s1 and s2 must
have the same number of columns. For example,

LA >> jv $j1,3 $z2,3 X

results in X being the matrix
X:

1 1 1

0 0 0

0 0 0

mm s q t

Multiply s by q and put result in t. For example,
LA >> mm A 2/3 B

makes B = (2/3)A.

mm s1 s2 t

Multiply s1 by s2 and put result in t. For example,
LA >> mm A G D

makes D = AG.

10

nu s t

Find a basis for the nullspace of s, i.e. a basis for the set of vectors {x : sx = 0}, and put this basis
into the matrix t as its columns. The elements of the nullspace are then exactly the vectors of the form tx,
where x is a vector with the same number of rows as t has columns. Example:

LA >> nu A K

rk s

Find rank of s. Example:
LA >> rk A

Rank is 3

so t s1 s2 t
so s1 t s2 t

Solve matrix equations of the form t s1 = s2 or s1 t = s2 for t. For example,
LA >> so A x b x

means to solve Ax=b for x, and
LA >> so Y C D Y

means to solve YC=D for Y. You will be told whether there are no, one, or many solutions. In the case
where there are many solutions only one will be given, but you can use the nullspace command nu above to
work out the complete solution space.

t s t

Put the transpose of s in t. For example
LA >> t $e3,3 A

makes A a 3× 1 column vector corresponding to the unit vector k ($e3,3).

Vector commands

av q1 s1 q2 s2 t

Adds q1 times s1 to q2 times s2 to get t. Same as the matrix command am: see above.

cr s1 s2 t

Put the cross product of s1 and s2 in t. Both s1 and s2 must be 3-vectors, i.e 1 × 3 matrices. For
example,

LA >> cr a g h

makes h = a × g.

do s1 s2

Calculate the dot product of s1 and s2. Example:
LA >> do a $e4,3

Dot product is -7/8

mv s q t

Multiply s by q to get t. Same as the matrix command mm: see above.

oc s1 s2 t

Put part of s1 orthogonal to s2 in t. The vector t is also known as the ‘vector component of s1 orthogonal
to s2.’ Note that s2 cannot be the zero vector. Example:

LA >> oc $j1,3 a h

11

pc s1 s2 t

Put part of s1 parallel to s2 into t. t is also known as the ‘vector component of s1 parallel to s2’ or as
the ‘orthogonal projection of s1 onto s2.’ As in the oc command, s2 cannot be the zero vector. For example,

LA >> pc . $e3,2 .

replaces the current vector by its projection onto the unit vector j ($e3,2).

COPYRIGHT NOTICE

LA 1.01 was written by Mark Ellingham, 24th August 2015. Vanderbilt University claims copyright of
software written by Vanderbilt faculty members.

12

