Math 175 Section 3 – Second-Year Accelerated Calculus – Spring 2003
Homework and Extra Material for Chapter 13

Homework problems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Homework problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>821</td>
<td>5 7 13 15 23 29 33 35</td>
</tr>
<tr>
<td>13.2</td>
<td>828</td>
<td>3 5 7 11 13 19 25 31 33 41</td>
</tr>
<tr>
<td>13.3</td>
<td>836</td>
<td>1 3 7 11 17 21 25 31 35 41 45 49 51 55</td>
</tr>
<tr>
<td>13.4</td>
<td>843</td>
<td>1 5 9 11 15 19 23 27 31 35 39</td>
</tr>
<tr>
<td>13.5</td>
<td>852</td>
<td>3 9 19 25 29 31 51 61 X1 X2 X3 X4 X5</td>
</tr>
<tr>
<td>(X questions are given below on this handout)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.6</td>
<td>859</td>
<td>3 5 7 8 9 11 13 15 17 19 21–28 33 41 45</td>
</tr>
<tr>
<td>13.7</td>
<td>865</td>
<td>7 11 17 21 25 29 31 35 37 39 41 53 57 59</td>
</tr>
</tbody>
</table>

Answers for even-numbered problems from book

Extra questions for Section 13.5

13.5.X1. For each point P and corresponding line l below, determine whether P is on l. If P is not on l, find the closest point on l to P, the distance from l to P, and a second line through P intersecting l at right angles.

(a) $P = (1, 2, 3)$, $l: x = 2 + t$, $y = 2 - 3t$, $z = 5t$.
(b) $P = (1, 4, 2)$, $l: x = 3 - t$, $y = t + 2$, $z = 2t - 2$.
(c) $P = (1, 0, -1)$, $l: 5 - x = y/3 = (z - 1)/2$.

13.5.X2. For each pair of lines l_1 and l_2 below:
(i) Find the angle between them.
(ii) Determine if they are equal, parallel, intersecting, or skew.
(iii) If they are parallel (but not equal), find the distance between them, and a plane containing both of them. If they are intersecting (but not equal), find the point of intersection, a plane containing both of them, and a line intersecting both of them at right angles. If they are skew, find the pair of points, one on each line, that are as close as possible, the distance between the two lines, and a third line intersecting both lines at right angles.

(a) $l_1: \vec{r} = \langle 1, 2 - t, 3 + 2t \rangle$, $l_2: \vec{r} = \langle 5, 3 + 2t, 6 - 4t \rangle$.
(b) $l_1: x = 1 + t$, $y = 3t$, $z = 1 + 4t$, $l_2: x = 4t$, $y = 10 - t$, $z = 10 + 3t$.
(c) $l_1: (x - 1)/2 = (y - 2)/4 = (x - 3)/10$, $l_2: (x - 2)/3 = (y - 4)/6 = (z - 8)/15$.
(d) $l_1: x = t + 2$, $y = t + 11$, $z = t - 2$, $l_2: x = 5t - 8$, $y = 2t - 8$, $z = t + 2$.

13.5.X3. For each point P and corresponding plane π below, determine whether P is on π, and then find a line through P at right angles to π, the closest point on π to P, and the distance from π to P.

(a) $P = (2, 8, 5)$, $\pi: x - 2y - 2z = 1$.
(b) $P = (3, -2, 7)$, $\pi: -2x + 4y + 3z + 51 = 0$.
(c) $P = (1, 3, 7)$, $\pi: 2x + 5y + 3z = 38$.

13.5.X4. For each line \(l \) and corresponding plane \(\pi \) below:
(i) Find the angle between \(l \) and \(\pi \).
(ii) Determine whether \(l \) is inside \(\pi \), intersects \(\pi \), or is parallel to and disjoint from \(\pi \).
(iii) If \(l \) intersects \(\pi \), find the point of intersection. If \(l \) is disjoint from \(\pi \), find the distance from \(\pi \) to \(l \).
(a) \(l: x = 5 - 2t, y = -1 - t, z = 16 + t, \pi: x + 2y + 4z = 25. \)
(b) \(l: (x - 1)/2 = (y - 2)/7 = -(z - 3)/4, \pi: 3x + 2y + 5z = 22. \)
(c) \(l: \vec{r} = (3t, 9 - t, 9 - 2t), \pi: -4x + 6y - 2z = 8. \)

13.5.X5. For each pair of planes \(\pi_1 \) and \(\pi_2 \) below:
(i) Find the angle between them.
(ii) Determine if they are equal, parallel, or intersecting.
(iii) If they are parallel (but not equal) find the distance between them. If they are intersecting, find an equation for the line of intersection.
(a) \(\pi_1: 2x - 4y + 8z = 6, \pi_2: -5x + 10y - 20z = -15. \)
(b) \(\pi_1: 2x - 4y + 8z = 10, \pi_2: -5x + 10y - 20z = -4. \)
(c) \(\pi_1: -5x + y - 3z = -13, \pi_2: 7x - 2y + 4z = 20. \)

Answers to extra questions for Section 13.5

Answer to 13.5.X1: (a) \(P \) is not on \(l \). Closest point is \(Q = (12/5, 4/5, 2) \) [hint: \(Q \) has \(\vec{P}Q \cdot \vec{v} = 0 \) where \(\vec{v} \) is parallel to \(l \)]. Distance is \(|\vec{P}Q| = \sqrt{110}/5 = \sqrt{22/5} \). One equation for the line is \(\vec{r} = \vec{OP} + t\vec{PQ} = (1, 2, 3) + t(7/5, -6/5, 1) \) (there are others).
(b) \(P \) is on \(l \).
(c) \(P \) is not on \(l \). Closest point is \(Q = (5, 0, 1) \). Distance is \(|\vec{P}Q| = \sqrt{20} = 2\sqrt{5} \). One equation for the line is \(\vec{r} = \vec{OP} + t\vec{PQ} = (1, 0, -1) + t(4, 0, 2) \) (there are others).

Note: Distances can be calculated without finding \(Q \), by using formula from 13.4.39, or also by using projections and Pythagoras’ Theorem.

Answer to 13.5.X2: (a) \(\vec{v}_1 = (0, -1, 2), \vec{v}_2 = (0, 2, -4) = -2\vec{v}_1 \) so parallel (but not equal from \(x \) values), angle is 0. \(\vec{n} = \vec{P_1P_2} \times \vec{v}_1 = (5, -8, -4) \). Distance \(|\vec{P_1P_2} \times \vec{v}_1|/|\vec{v}_1| = \sqrt{105}/\sqrt{5} = \sqrt{21} \). Plane \(5x - 8y - 4z = -23 \).
(b) \(\vec{v}_1 = (1, 3, 4), \vec{v}_2 = (4, -1, 3) \), \(\cos \theta = 1/2, \theta = \pi/3 \), not parallel. Intersect at \((4, 9, 13) \). \(\vec{n} = \vec{v}_1 \times \vec{v}_2 = (13, 13, -13) \) or use \(\vec{n}' = \vec{n}/13 = (1, 1, -1) \). Plane \(x + y - z = 0 \). One equation of third line is \(\vec{r} = (4, 9, 1) + t(1, 1, -1) \).
(c) \(\vec{v}_1 = (2, 4, 10), \vec{v}_2 = (3, 6, 15) = (3/2)\vec{v}_1 \) so parallel, angle is 0. Moreover \(\vec{P_1P_2} = (1, 2, 5) = (1/2)\vec{v}_1 \) so \(P_2 \) on \(l_1 \), lines are equal.
(d) \(\vec{v}_1 = (1, 1, 1), \vec{v}_2 = (5, 2, 1), \) not parallel, angle \(\theta = \cos^{-1}(8/(3\sqrt{10})) \). Do not intersect: \(x \) and \(y \) give \(t_1 = -25, t_2 = -3 \) then \(z \) disagrees. So lines skew. Closest points \(Q_1 = (-1, 8, -5) \) and \(Q_2 = (2, -4, 4) \) [hint: want \(Q_1Q_2 \cdot \vec{v}_1 = Q_1Q_2 \cdot \vec{v}_2 = 0 \). Distance \(|Q_1Q_2| = 3\sqrt{26} \). One equation of third line is \(\vec{r} = \vec{OQ_1} + t\vec{Q_1Q_2} = (1, 8, -5) + t(3, -12, 9) \).
Answer to 13.5.X3: (a) P is not on π; one equation of line is $\vec{r} = \vec{OP} + t\vec{n}$ (\vec{n} normal to π) = $\langle 2, 8, 5 \rangle + t(1, -2, -2)$. Hits π when $t = 25/9$ at $Q = (43/9, 22/9, -5/9)$, closest point on π to P; distance $|\overrightarrow{PQ}| = |t\vec{n}| = 25/3$.

(b) P is not on π; one equation of line is $\vec{r} = \vec{OP} + t\vec{n} = \langle 3, -2, 7 \rangle + t(-2, 4, 3)$. Hits π when $t = -2$ at $Q = (7, -10, 1)$, closest point on π to P; distance $|\overrightarrow{PQ}| = |t\vec{n}| = 2\sqrt{29}$.

(c) P is on π; one equation of line is $\vec{r} = \vec{OP} + t\vec{n} = \langle 1, 3, 7 \rangle + t(2, 5, 3)$. Since P on π, closest point is P itself, distance is 0.

Note: Distances could have been calculated without finding closest point, using formula from Example 8, p. 851.

Answer to 13.5.X4: (a) $\vec{v} = \langle -2, -1, 1 \rangle$, $\vec{n} = \langle 1, 2, 4 \rangle$, $\vec{v} \cdot \vec{n} = 0$, angle between line and normal is $\pi/2$, angle between line and plane is 0. $P_0 = (5, -1, 16)$ not in plane, so line parallel to but not in plane. Distance [hint: use formula from Example 8, p. 851] of P_0 and hence l from π is $|67 - 25|/\sqrt{21} = 2\sqrt{21}$.

(b) $\vec{v} = \langle 2, 7, -4 \rangle$, $\vec{n} = \langle 3, 2, 5 \rangle$, $\vec{v} \cdot \vec{n} = 0$, angle between line and normal is $\pi/2$, angle between line and plane is 0. $P_0 = (1, 2, 3)$ does lie in π, so l is contained inside π.

(c) $\vec{v} = \langle 3, -1, -2 \rangle$, $\vec{n} = \langle -4, 6, -2 \rangle$, angle between \vec{v} and \vec{n} is $\cos^{-1}(-1/2) = 2\pi/3$. So angle between line and plane is $\pi/6$, line must meet plane. Intersection point is $(6, 7, 5)$ when $t = 2$.

Answer to 13.5.X5: (a) $\vec{n}_1 = \langle 2, -4, 8 \rangle$, $\vec{n}_2 = \langle -5, 10, -20 \rangle = \langle -5/2 \rangle \vec{n}_1$ so the two planes are parallel, angle is 0. For every point on π_1, $-5x + 10y - 20z = (-5/2)(2x - 4y + 8z) = -5/2(6) = -15$, so π_1 is contained in π_2, so the planes are equal.

(b) $\vec{n}_1 = \langle 2, -4, 8 \rangle$, $\vec{n}_2 = \langle -5, 10, -20 \rangle = \langle -5/2 \rangle \vec{n}_1$ so the two planes are parallel, angle is 0. For every point on π_1, $-5x + 10y - 20z = (-5/2)(2x - 4y + 8z) = (-5/2)(10) = -25 \neq -4$, so π_1 is disjoint from π_2: they are not equal. Taking the point $P_2 = (0, -2/5, 0)$ on π_2 and using formula from Example 8, p. 851, distance of P_2 from π_1 and hence π_2 from π_1 is $|8/5 - 10|/\sqrt{84} = \sqrt{21}/5$.

(c) $\vec{n}_1 = \langle -5, 1, -3 \rangle$, $\vec{n}_2 = \langle 7, -2, 4 \rangle$, angle between normals is $\cos^{-1}(-49/(\sqrt{35\sqrt{69}}))$, so ignoring sign, angle between planes is $\cos^{-1}(49/\sqrt{2415})$. Planes must intersect. Line has $\vec{v} = \vec{n}_1 \times \vec{n}_2 = \langle -2, -1, 3 \rangle$. For point on line put $x = 0$, gives $y = -4$, $z = 3$, so one equation of line is $\vec{r} = \langle 0, -4, 3 \rangle + t\langle -2, -1, 3 \rangle$.

Summary: What you should be able to do with points, lines and planes

Given a point P and a line l:
- Determine if P is on l
- Find distance of P from l
- Find closest point on l to P
- If P not on l:
 - Find line through P intersecting l perpendicularly

Given two lines l_1 and l_2:
- Find angle between l_1 and l_2
- Determine if l_1 and l_2 equal, parallel, intersecting, or skew
- If parallel (but not equal):
 - Find distance between l_1 and l_2
 - Find plane containing l_1 and l_2
- If intersecting (but not equal):
 - Find point of intersection
Find plane containing l_1 and l_2
Find line intersecting both l_1 and l_2 at right angles

If skew:
 Find distance between l_1 and l_2
 Find closest points
 Find line intersecting both l_1 and l_2 at right angles

Given a point P and a plane π:
 Determine if P is on π
 Find line through P perpendicular to π
 Find distance of P from π
 Find closest point on π to P

Given a line l and a plane π:
 Find angle between l and π
 Determine if l is inside, intersects, or is disjoint from π
 If intersects:
 Find point of intersection
 If disjoint:
 Find distance between l and π

Given two planes π_1 and π_2:
 Find angle between π_1 and π_2
 Determine if π_1 and π_2 equal, parallel or intersecting
 If parallel (but not equal):
 Find distance between π_1 and π_2
 If intersecting (but not equal):
 Find equation of line of intersection