1. Use logarithmic differentiation to find the derivative of
\[y = \frac{(x^3 + 7x^2 + 2x + 4)^{37} \cos^{12} x}{(\ln x)^{23}}. \]

Solution: We take logarithms of the absolute values of both sides of the equation:
\[\ln |y| = \ln \left| \frac{(x^3 + 7x^2 + 2x + 4)^{37} \cos^{12} x}{(\ln x)^{23}} \right|. \]

Using properties of logarithms, we have that
\[\ln |y| = 37 \ln |x^3 + 7x^2 + 2x + 4| + 12 \ln |\cos x| - 23 \ln |\ln x|. \]

Differentiating implicitly with respect to \(x \) gives
\[\frac{1}{y} \frac{dy}{dx} = 37 \cdot \frac{3x^2 + 14x + 2}{x^3 + 7x^2 + 2x + 4} + 12 \cdot \frac{-\sin x}{\cos x} - 23 \cdot \frac{1}{\ln x} \quad \text{(by the Chain Rule)}. \]

Solving for \(\frac{dy}{dx} \), we get
\[\frac{dy}{dx} = y \left(37 \cdot \frac{3x^2 + 14x + 2}{x^3 + 7x^2 + 2x + 4} - 12 \tan x - \frac{23}{x \ln x} \right). \]

We are given an expression for \(y \), so we substitute to get
\[\frac{dy}{dx} = \left(\frac{(x^3 + 7x^2 + 2x + 4)^{37} \cos^{12} x}{(\ln x)^{23}} \right) \left(37 \cdot \frac{3x^2 + 14x + 2}{x^3 + 7x^2 + 2x + 4} - 12 \tan x - \frac{23}{x \ln x} \right). \]

2. Suppose we have a coordinate system where the \(x \)-axis and \(y \)-axis are marked with scales in metres (m). A tank is in the shape of the solid obtained by rotating the area bounded by the \(y \)-axis, the curve \(y = 4 - \sqrt{4 - x^2} - 9 \) (where \(x > 0 \)), and the lines \(y = 0 \) and \(y = 4 \) around the \(y \)-axis. It is filled with a light oil weighing 6000 N/m\(^3\). The liquid is pumped out through an outlet at the top of the tank. Find the work done.

Solution: We use the formula developed in class for situations like this – the work done is given by
\[W = \int_{a}^{b} \rho d(y) A(y) \, dy \]

where \(\rho \) is the density in N/m\(^3\), \(d(y) \) is the distance by which the liquid at position \(y \) has to be lifted, and \(A(y) \) is the cross-sectional area at \(y \). We integrate with respect to \(y \) because we want to measure depths of the oil in the tank.

Here \(\rho = 6000 \) N/m\(^3\) since this is the density of the oil. From the graphs, we see that the lines \(y = 0 \) and \(y = 4 \) force us to integrate \(y \) from 0 to 4. For a fixed \(y \), the distance that the layer of oil at height \(y \) has to be raised is \(4 - y \) m, since the top of the tank is at height 4 m. Therefore \(d(y) = 4 - y \).
In order to find $A(y)$, we need to find the radius of the cross-sectional circle at height y. We solve the equation

$$y = 4 - \sqrt{\frac{4}{x^2} - 9}$$

for x.

$$y = 4 - \sqrt{\frac{4}{x^2} - 9}$$

$$y - 4 = -\sqrt{\frac{4}{x^2} - 9}$$

$$(4 - y)^2 = \frac{4}{x^2} - 9$$

$$(4 - y)^2 + 9 = \frac{4}{x^2}$$

$$x^2 = \frac{4}{(4 - y)^2 + 9}$$

$$x = \sqrt{\frac{4}{(4 - y)^2 + 9}}$$

(we are considering $x > 0$).

Therefore the radius is

$$\sqrt{\frac{4}{(4 - y)^2 + 9}}$$

so

$$A(y) = \pi \left(\sqrt{\frac{4}{(4 - y)^2 + 9}}\right)^2 = \frac{4\pi}{(4 - y)^2 + 9}.$$

Thus the work done is

$$W = \int_0^4 \rho d(y)A(y) \, dy = \int_0^4 6000 \cdot (4 - y) \cdot \frac{4\pi}{(4 - y)^2 + 9} \, dy$$

$$= 24000\pi \int_0^4 \frac{4 - y}{(4 - y)^2 + 9} \, dy$$

$$= -12000\pi \int_{y=4}^{y=0} \frac{1}{u + 9} \, du$$

(letting $u = (4 - y)^2$ so $du = -2(4 - y) \, dy$)

$$= -12000\pi \int_{u=16}^{u=0} \frac{1}{u + 9} \, du$$

(when $y = 0, u = 16$, and when $y = 4, u = 0$)

$$= -12000\pi \ln(u + 9) \bigg|_{16}^{0}$$

$$= -12000\pi \ln(9) - (-12000\pi \ln(25))$$

$$= 12000\pi (\ln(25) - \ln(9))$$

$$= 12000\pi \ln\left(\frac{25}{9}\right)$$

$$= 12000\pi \ln\left(\frac{5}{3}\right)^2$$

$$= 24000\pi \ln\left(\frac{5}{3}\right) \text{ N-m.}$$
3. The area bounded by \(y = \sqrt{\ln x}, \ y = 1 \) and \(x = e^4 \) is rotated around the \(x \)-axis. Find the volume of the resulting solid by using cylindrical shells.

Solution: Since we are rotating around the \(x \)-axis and using cylindrical shells, we will need to integrate with respect to \(y \). From the graphs of the three curves, we see that we need to find the point where \(y = \sqrt{\ln x} \) and \(x = e^4 \) intersect. The \(x \)-coordinate of this intersection point is \(e^4 \), and the \(y \)-coordinate is \(\sqrt{\ln e^4} = \sqrt{4} = 2 \) (since the \(y \)-coordinate is positive), so these curves intersect at \((e^4, 2)\). Thus we will need to integrate from \(y = 1 \) to \(y = 2 \).

We also need to solve the equation \(y = \sqrt{\ln x} \) for \(x \), since our height function will be in terms of \(y \). We have
\[
\begin{align*}
y &= \sqrt{\ln x} \\
y^2 &= \ln x \\
e^{y^2} &= e^{\ln x} \\
e^{y^2} &= x
\end{align*}
\]
so \(x = e^{y^2} \).

Now \(r(y) = y \) (since we’re rotating around the \(x \)-axis), and \(h(y) = e^4 - e^{y^2} \) (since \(e^4 \) is to the right of \(e^{y^2} \)). Thus the volume of the solid is
\[
\int_1^2 2\pi r(y)h(y) \, dy = \int_1^2 2\pi y(e^4 - e^{y^2}) \, dy
\]
\[
= 2\pi e^4 \int_1^2 y \, dy - 2\pi \int_1^2 ye^{y^2} \, dy
\]
\[
= 2\pi e^4 \left[\frac{1}{2} y^2 \right]_1^2 - 2\pi \int_{y=1}^{y=2} e^{\frac{1}{2}u} \, du \quad \text{(letting } u = y^2 \text{ so } du = 2ydy)\]
\[
= \pi e^4 y^2 \bigg|_1^2 - \pi e^{u^2} \bigg|_1^2
\]
\[
= \pi e^4 y^2 \bigg|_1^2 - \pi e^{u^2} \bigg|_1^2
\]
\[
= \left(\pi e^4 (2)^2 - \pi e^4 (1)^2 \right) - \left(\pi e^{(2)^2} - \pi e^{(1)^2} \right)
\]
\[
= \left(4\pi e^4 - \pi e^4 \right) - \left(\pi e^4 - \pi e \right)
\]
\[
= 2\pi e^4 + \pi e
\]
\[
= \pi e(2e^3 + 1).
\]