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Abstract. In this paper we explore the idea that Teichmüller space is hy-

perbolic “on average.” Our approach focuses on studying the geometry of

geodesics which spend a definite proportion of time in some thick part of Te-
ichmüller space. We consider several different measures on Teichmüller space

and find that this behavior for geodesics is indeed typical. With respect to

each of these measures, we show that the average distance between points in
a ball of radius r is asymptotic to 2r, which is as large as possible. Our tech-

niques also lead to a statement quantifying the expected thinness of random

triangles in Teichmüller space, showing that “most triangles are mostly thin.”

1. Introduction

Let S be a closed surface of genus g > 1. In this paper we continue the study
of metric properties of Teichmüller space T (S), which is the parameter space for
several types of geometric structures on S. Equipped with the Teichmüller metric
dT , it is a complete metric space homeomorphic to R6g−6. It is not δ–hyperbolic
[18], and several kinds of obstructions to hyperbolicity are known: for instance,
pairs of geodesic rays through the same point may fellow-travel arbitrarily far apart
[12], and there are large “thin parts” of the space which, up to bounded additive
error, are isometric to product spaces equipped with sup metrics (and therefore
rule out hyperbolicity in the space as a whole) [19]. However, these exceptions
to negative curvature seem to come from rare occurrences, while a long list of
properties associated with hyperbolicity do hold globally or in specialized situations.
Thus one may expect such properties to hold generically or “on average.” This
paper aims to show that this is indeed the case.

Our motivating goal is to understand the generic geometry of Teichmüller space,
particularly with regard to negative-curvature phenomena. For example, geodesics
that stay in the thick part of T (S) are well understood and exhibit many properties
characteristic of hyperbolicity. Geodesics lying completely in the thin part are also
well understood, and exhibit no negative-curvature characteristics. However, much
more typical is for a geodesic to spend time in both the thick and thin parts of
T (S)—indeed, a generic geodesic ray will switch between these parts infinitely
often. In this paper we develop tools to study these types of geodesics, and we
discover that certain negative-curvature phenomena do hold in this setting. For
example, we obtain the following variant of the thin triangle property.

Theorem A. For any ε > 0 and 0 < θ ≤ 1, there exist constants C,L such that
if I ⊂ [x, y] ⊂ T (S) is a geodesic subinterval of length at least L and at least
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proportion θ of I is ε–thick, then for all z ∈ T (S), we have

I ∩NbhdC([x, z] ∪ [y, z]) 6= ∅.

This is a generalization of a result of Rafi, Theorem 3.13 below, which gives the
same conclusion under the stronger hypothesis that the entire interval I is thick.
As a consequence (Corollary 3.15), we can assert for instance that if the three sides
of a triangle each spend more than half their time in the ε–thick part, then half
of each side is within a uniformly bounded distance of the union of the other two
sides.

Since our goal is to study the geometry of generic rays, Theorem A motivates
a consideration of whether randomly sampled geodesics are, with high probability,
likely to spend a definite fraction of time in a given thick part. To address this, we
investigate a number of a priori different measures on Teichmüller space, which are
natural from various points of view, and show that having a definite proportion in
the thick part is in fact typical for all of them.

For instance, as a metric space T (S) carries a (6g − 6)–dimensional Hausdorff
measure η. This allows us to fix x and choose y ∈ Br(x) at random from the r–ball as
a way of sampling geodesics [x, y]. Other measures come from the Finsler structure
(Busemann measure µB and Holmes–Thompson measure µHT), from the holonomy
coordinates on the cotangent bundle (holonomy, or Masur–Veech, measure m), and
from the symplectic structure. In §4, we find that all of these measures are mutu-
ally absolutely continuous and in fact are related by explicit inequalities. Further
interesting measures are provided by the identification of the metric r–sphere Sr(x)
with the unit sphere Q1(x) in the vector space of quadratic differentials on x via
the Teichmüller map. The latter has various natural measures, and corresponding
measures on Sr(x) will be called visual measures; we will pay special attention to
two standard visual measures, denoted Visr(νx) and Visr(sx). We will also use
the term visual measures for the induced measures on T (S), denoted Vis(νx) and
Vis(sx), obtained by integrating radially.

As one application of our statistical approach, we compute a statistic built by
combining a metric and a measure to quantify how fast a space “spreads out.”
Suppose we are given a family of probability measures µr on the spheres Sr(x) of a
metric space (X, d). Then let E(X) = E(X,x, d, {µr}) be the average normalized
distance between points on large spheres:

E(X) := lim
r→∞

1

r

∫
Sr(x)×Sr(x)

d(y, z) dµr(y)dµr(z),

if the limit exists. This creates a numerical index varying from 0 (least spread
out) to 2 (most spread out). It is shown in [6] that non-elementary hyperbolic
groups all have E(G,S) = 2 for any finite generating set S; this is also the case in
the hyperbolic space Hn of any dimension endowed with the natural measure on
spheres. By contrast, it is shown that E(Rn) <

√
2 for all n, and that E(Zn, S) < 2

for all n and S, with nontrivial dependence on S. (See [6] for more examples.)
Motivated by these findings, we may regard a measured metric space with E = 2
as being “statistically hyperbolic.”

We note that finding that E = 2 for hyperbolic groups makes use of homogeneity.
In contrast, it is easy to build (highly non-regular) locally finite trees, equipped with
counting measure on spheres, for which E obtains any value from 0 to 2; see [6,
p.4]. Thus neither δ–hyperbolicity nor exponential growth is sufficient to ensure



STATISTICAL HYPERBOLICITY IN TEICHMÜLLER SPACE 3

E = 2. Indeed, since the measures are normalized, the growth rate of the space
has no direct effect on E. As an illustration, note that the Euclidean plane could
be endowed with a visual measure, constructed just like the ones we study below
in §4.3, which would give it exponential volume growth while leaving E = 4/π
unchanged. On the other hand, other measures on R2 would give different values
of E; the statistic is quite sensitive to the choice of measure.

The following theorem concerns the average distance between points in the ball
Br(x) of radius r centered at x. We show that this average distance is asymptotic
to 2r, which, in light of the triangle inequality, is the maximum possible distance.

Theorem B. Let µ denote the Hausdorff measure η, holonomy measure m, or
either standard visual measure Vis(νx) or Vis(sx). Then for every point x ∈ T (S),

lim
r→∞

1

r

1

µ(Br(x))2

∫
Br(x)×Br(x)

dT (y, z) dµ(y)dµ(z) = 2.

Of course, by the remarks above, this also holds for all the other measures
discussed in the paper. Indeed, we will work with properties of measures on T (S)
that suffice to guarantee this conclusion: a thickness property (P1) defined in §5.2
guaranteeing that typical rays spend a definite proportion of their time in the thick
part, and a separation property (P2) defined in §6 asserting that typical pairs of
rays will exceed any definite amount of separation. In some places we use a stronger
separation property (P3) which is a quantified version with an exponential bound.

With respect to the standard visual measures, the same methods yield:

Theorem C. For every point x ∈ T (S) and either family {µr} of standard visual
measures µr = Visr(νx) or Visr(sx) on the spheres Sr(x), we have

E(T (S), x, dT , {µr}) = 2.

As a second application of our approach, we promote Theorem A to a quantita-
tive statement about the expected thinness of typical triangles. This is expressed
in the following theorem, which shows that “most triangles are mostly thin.” For
a fixed δ, let 0 ≤ Θδ(4) ≤ 1 denote the proportion of the perimeter of a geodesic
triangle4 that lies within δ of the other two sides. Then let Θδ(X) = Θδ(X,x, d, µ)
be the limiting average of this value:

Θδ(X) := lim inf
r→∞

1

µ(Br(x))2

∫
Br(x)×Br(x)

Θδ(4(x, y, z)) dµ(y)dµ(z).

Theorem D. Let µ denote either the Hausdorff measure η or the holonomy measure
m. Then for all x ∈ T (S) and σ > 0 there exists δ > 0 such that

Θδ(T (S), x, dT , µ) ≥ 1− σ.
In other words, the proportion of a triangle’s perimeter that is close to the other

two sides can be made arbitrarily close to 1 in expectation. By contrast, note
that Θδ(Rn) = 0 for all δ, whereas δ–hyperbolic spaces X automatically satisfy
Θδ(X) = 1 by definition.

We sketch here the main ideas in the proofs of the theorems. Theorem A
is put together with distance estimates coming from subsurface projections, us-
ing reverse triangle inequalities (following Masur–Minsky and Rafi), and antichain
bounds (Rafi and Schleimer). A crucial ingredient is to show that geodesics spend-
ing a definite proportion of time in the thick part have shadows that make definite
progress in the curve complex (Theorem 3.10).
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The idea for Theorem B is that the separation property (P2) ensures that most
pairs of geodesics will have stopped fellow-traveling in the Teichmüller metric by a
threshold time. Then one would hope that, as in a hyperbolic space, the geodesic
joining their endpoints would follow the first geodesic back to approximately where
they separate before following the other so that its length is roughly the sum of the
lengths of the two geodesics, as on the left in Figure 1.

x

y z

x

y z

y′ z′

Figure 1. We will show that the geodesic between points on
generic rays “dips back” near the basepoint. While Minsky’s prod-
uct regions theorem says that the connecting geodesic can instead
take a “shortcut” when [x, y′] and [x, z′] go through thin parts
corresponding to disjoint subsurfaces, we show this effect is rare.

One obstruction to this hyperbolic-like behavior is that the pair of geodesics
can enter thin parts corresponding to disjoint subsurfaces, in which case Minsky’s
product region theorem [19] allows the length of the third side to be smaller than
the sum, as on the right in Figure 1. The thickness property (P1) and Theorem A
together rule out this shortcut behavior. Theorem C follows from this and expo-
nential growth of the metric.

Theorem D uses Theorem A and a strengthening of the thickness property (P1)
to find thick points in various locations around a typical triangle. The proof then
concludes by applying Rafi’s fellow-traveling theorem [22] to deduce that most of
each side lies close to other sides.

In establishing the needed thickness and separation properties for the above
results, we use a variety of recently developed tools such as volume asymptotics in
Teichmüller space (Athreya–Bufetov–Eskin–Mirzakhani [3]) and the random walk
model for discretized Teichmüller geodesics (Eskin–Mirzakhani [7]). A detailed
treatment of the latter is included in Appendix B. We also make use of a simplified
version of Rafi’s distance formula [21], which is derived in Appendix A.

1.1. Acknowledgments. We would like to thank Benson Farb, Curtis McMullen,
and especially Alex Eskin and Kasra Rafi for numerous helpful comments and
explanations. In particular, we are indebted to Kasra Rafi for encouraging us
to investigate expected thinness (Theorem D) and for suggesting the idea of the
proof for Theorem 5.10. We are also grateful for the suggestions of the anonymous
referees, which led to major improvements in the paper.

2. Background

2.1. Teichmüller space and quadratic differentials. Recall that Teichmüller
space T (S) is the space of marked Riemann surfaces X that are homeomorphic to
the topological surface S. More precisely, it consists of pairs (X, f), where f : S →
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X is a homeomorphism, up to the equivalence relation that (X1, f1) ∼ (X2, f2)
when there exists a conformal map F : X1 → X2 such that F ◦ f1 is isotopic to f2.
Alternately, we may define T (S) as the space of marked hyperbolic surfaces (ρ, f);
namely, the markings are maps f : S → ρ with (ρ1, f1) ∼ (ρ2, f2) when there exists
an isometry F : ρ1 → ρ2 such that F ◦ f1 is isotopic to f2.

The space T (S) is homeomorphic to the ball R6g−6, and from now on we will
use h = 6g − 6 to designate this dimension. In this paper, we will typically denote
a point of T (S) by x, regarding it either as a Riemann surface or a hyperbolic
surface, and suppressing the marking f .

Using the first definition of T (S), the Teichmüller distance is given by

dT ((X1, f1), (X2, f2)) := inf
F∼f2◦f−1

1

1

2
logK(F ),

where the minimum is taken over all quasiconformal maps F and K(F ) is the
maximal dilatation of F . Equipped with this metric, Teichmüller space becomes a
unique geodesic metric space. For x, y ∈ T (S), the Teichmüller geodesic segment
joining x to y will usually be denoted [x, y]. We will also write yt for the time–t
point on the ray based at x and going through y.

A quadratic differential on a Riemann surface X is a holomorphic 2–tensor q =
φ(z)dz2 on X. The space of all quadratic differentials on all Riemann surfaces
homeomorphic to S is denoted Q(S). A point of Q(S) will be denoted q, with
the underlying complex structure implicit in the notation. The real dimension of
Q(S) is 12g − 12 = 2h. Reading off the Riemann surface, we obtain a projection
to the Teichmüller space π : Q(S) → T (S). Under this projection, Q(S) forms
vector bundle over T (S) which is canonically identified with the cotangent bundle
of T (S). Each fiber Q(X) is equipped with a norm given by the total area of q;
namely ‖q‖ =

∫
X
|φ(z)dz2|. Recall that dT is not a Riemannian metric on T (S),

but rather a Finsler metric; it comes from dualizing the norm on Q to give a norm
on each tangent space of T (S) that is not induced by any inner product.

It is the famous theorem of Teichmüller that the infimum in the definition of dT
is realized uniquely by a Teichmüller map from X1 to X2. A Teichmüller map is
determined by an initial quadratic differential q = φ(z)dz2 on X1 and the number
K. The Teichmüller map expands along the horizontal trajectories of q by a factor
of K1/2 and contracts along the vertical trajectories by the same factor to obtain
a terminal quadratic differential q′ on the image surface X2. If we fix q and let
K = e2t vary over t ∈ [0,∞) we get a Teichmüller geodesic ray. We will denote by
ν+ the horizontal foliation of q and by ν− the vertical foliation.

Recall that the mapping class group of S, defined by

Mod(S) := Diff+(S)/Diff0(S),

is the discrete group of orientation-preserving diffeomorphisms of S, up to isotopy.
This group acts isometrically on T (S) by changing the marking: φ · (X, f) =
(X, f ◦ φ−1). In fact, by a result of Royden [24], Mod(S) is the full group of
(orientation-preserving) isometries of (T (S), dT ).

2.2. Curve complex. When we speak of a curve on S, this will mean an isotopy
class of essential simple closed curves. Given x ∈ T (S), the length lx(α) of a curve
α is the length of the geodesic in the isotopy class in the hyperbolic metric x.
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We recall the definition of the curve complex (or curve graph) C(S) of S. The
vertices of C(S) are the curves on S. Two vertices are joined by an edge if the
corresponding curves can be realized disjointly. Assigning edges to have length 1
we have a metric graph. Properly speaking, C(S) is the flag complex associated to
this curve graph, but since we are working coarsely, we can identify C(S) with the
graph.

It is known that the curve graph is hyperbolic [17]. That is, there exists a
constant δ > 0 such that every geodesic triangle in C(S) is δ–thin: each side of
the triangle is contained in the union of the δ–neighborhoods of the other two
sides. Furthermore, in any δ–hyperbolic metric space and for any quasi-isometry
constants (K,C), there exists a constant τ , depending only on δ,K,C, such that
any two (K,C)–quasi-geodesic segments with the same endpoints remain within τ
of each other. Since actual geodesics are (1, 0)–quasi-geodesics, this implies that
every (K,C)–quasi-geodesic triangle is (δ + 2τ)–thin.

2.3. Thick parts and subsurface projections. For any given ε, we say a curve
is ε–short if its hyperbolic length is less than ε. Then define the ε–thick part of
Teichmüller space to be the subset Tε ⊂ T (S) corresponding to those hyperbolic
surfaces on which no curve is ε–short. Its complement is called the ε–thin part or,
when ε is understood, simply the thin part.

For each x ∈ T (S) there is associated a Bers marking µx. To construct µx,
greedily choose a shortest pants decomposition of the surface (a collection of 3g− 3
disjoint simple geodesics). Then for each pants curve β, choose a shortest geodesic
crossing β minimally (either once or twice depending on the topology) that is
disjoint from all other pants curves. The total collection of 6g − 6 curves is called
a Bers marking and is defined up to finitely many choices. Notice that the curves
comprising µx form a diameter–2 subset of C(S).

Recall that there exists a universal Margulis constant such that any two curves
with hyperbolic length (on any surface x ∈ T (S)) less than this value are disjoint.
When discussing the ε–thick part Tε, we always assume ε is less than the Margulis
constant. In particular, this ensures that for x ∈ T (S) \ Tε, the Bers marking µx
contains every curve α with lx(α) ≤ ε.

Throughout, a proper subsurface of S will mean a compact, properly embedded
subsurface V ⊂ S which is not equal to S and for which the induced map on
fundamental groups is injective. Subsurfaces which are isotopic to each other will
not be considered distinct. The proper subsurfaces of S fall into two categories,
annuli and non-annuli, which behave somewhat differently. Nevertheless, we will
strive to develop intuitive notation under which these two possibilities may be dealt
with on equal footing.

Every proper subsurface V has a nonempty boundary ∂V consisting of a disjoint
union of curves on S. We say that two subsurfaces V and W transversely intersect,
denoted V t W , if they are neither (isotopically) disjoint nor nested. In this case,
∂V necessarily intersects W , and ∂W intersects V .

Consider a non-annular subsurface V , possibly equal to S. The subsurface pro-
jection πV (β) of a simple closed curve β ⊂ S to V is defined as follows: Realize
β and ∂V as geodesics (in any hyperbolic metric on S). If β ⊂ V , then πV (β) is
defined to be β. If β is disjoint from V , then πV (β) is undefined. Otherwise, β ∩V
is a disjoint union of finitely many homotopy classes of arcs with endpoints on ∂V ,
and we obtain πV (β) by choosing any arc and performing a surgery along ∂V to
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create a simple closed curve contained in V . The subsurface projection of a point
x ∈ T (S) is then defined to be the collection

πV (x) := {πV (β)}β∈µx
of curves obtained by varying β in the Bers marking at x. This is a non-empty
subset of the curve complex C(V ) with uniformly bounded diameter.

Definition 2.1 (Non-annular projection distance). For a non-annular subsurface
V ⊆ S, the projection distance in V of a pair of points x, y ∈ T (S) is defined to be

dV (x, y) := diamC(V )(πV (x) ∪ πV (y)).

In particular, dS(x, y) denotes the curve complex distance. When convenient, we
will also denote this distance by dC(V ) := dV .

For an annular subsurface A ⊂ S with core curve α = ∂A, there are two kinds
of projection distances: one that measures twisting about α and is analogous to
the definition above, and a second which also incorporates the length of α. Any
simple closed curve β that crosses α may be realized by a geodesic and then lifted
to a geodesic β̃ in the annular cover Ã, that is, the quotient of H2 by the deck
transformation corresponding to α, with the Gromov compactification. For a pair
β, γ of such curves, we may then consider the intersection number i(β̃, γ̃) in Ã. The
twisting distance in A of a pair of points x, y ∈ T (S) is then defined as

dC(A)(x, y) := sup
β∈µx,γ∈µy

iÃ(β̃, γ̃).

We additionally define a hyperbolic projection distance as follows.

Definition 2.2 (Annular projection distance). For an annular subsurface A ⊂
S with core curve α = ∂A, we let Hα denote a copy of the standard horoball
{Im(z) ≥ 1} ⊂ H2. Given x, y ∈ T (S), we consider the points (0, 1/lx(α)) and
(dC(A)(x, y), 1/ly(α)) ∈ H2 and denote their closest point projections to the horoball
Hα by

πα(x) =

(
0,max

{
1,

1

lx(α)

})
, πα(y) =

(
dC(A)(x, y),max

{
1,

1

ly(α)

})
.

The projection distance in A (or hyperbolic distance dHα) between x and y is then
defined to be

dA(x, y) := dH2 (πα(x), πα(y)) .

2.4. Notation. Following Rafi [21, §2.4], we fix a parameter ε0 > 0 for the entirety
of this paper which is smaller than the Margulis constant and small enough for a
few other fundamental results to hold (Minsky’s product regions theorem and Rafi’s
distance estimates described in the following section). Note that the definition of
ε0 depends only on the topology of the surface S, and we therefore view ε0 as a
global constant.

Our analysis involves many inequalities that have controlled multiplicative and
additive error. To streamline the the presentation, we will often avoid explicitly
writing the constants involved and will instead rely on the following notation: For
real-valued expressions A and B, we use the notation

A
.
≺ B



8 DOWDALL, DUCHIN, AND MASUR

to mean that there exists a universal constant c ≥ 1, depending only on the topology
of the surface S, such that A ≤ cB. We will use A

.� B to mean that A
.
≺ B

and A
.
� B both hold. (The dot in the symbols indicates that the error is only

multiplicative.) When allowing for multiplicative and additive error we will instead
use symbols ≺, �, and �. Thus A � B means that there exists a universal constant
c ≥ 1 so that A ≤ cB + c and B ≤ cA+ c.

When the implied constant depends on additional parameters we will list these
as subscripts of the binary relation. For example, A

.
≺ε,θ B means that there exists

a constant c depending only on ε, θ, and the topology of S such that A ≤ cB.

2.5. Distance formula. The following distance formula due to Rafi relates the
Teichmüller distance between two points x and y to the combinatorics of the cor-
responding Bers markings µx and µy. Recall the global constant ε0 > 0 introduced
in §2.4 above.

Theorem 2.3 (Distance formula, Rafi [21]). Given any sufficiently large threshold
M0, for all x, y ∈ T (S) we have

dT (x, y) �M0
dS(x, y) +

∑
V

[dV (x, y)]M0
+ max
α∈Γxy

dHα(x, y)

+
∑

A : ∂A 6∈Γxy

log+

[
dC(A)(x, y)

]
M0

+ max
α∈Γx

log+

(
1

lx(α)

)
+ max
α∈Γy

log+

(
1

ly(α)

)
,

where the first sum is over all non-annular proper subsurfaces V ( S, where Γxy
is the set of ε0–short curves in both x and y, Γx is the set of curves that are ε0–
short in x but not in y, and Γy is defined similarly. Here and throughout, log+ is a
modified logarithm so that log+a = 0 for a ∈ [0, 1]; and [·]M0

is a threshold function

for which [N ]M0
:= N when N ≥M0 and [N ]M0

:= 0 otherwise.

By instead making all annular measurements with the hyperbolic distance on
Hα we will obtain a particularly simple restatement of this formula.

Proposition 2.4 (Repackaged distance formula). Given any sufficiently large thresh-
old M0, for all x, y ∈ T (S) we have:

(2.5) dT (x, y) �M0
dS(x, y) +

∑
Y

[dY (x, y)]M0

Here, the sum is over all (annular and non-annular) proper subsurfaces.

Remark 2.6. Our definition of dHα = dA is technically different than that used by
Rafi in [21]; however, the two definitions agree up to bounded additive error.

In calling it “repackaged” we mean to say that the content of (2.5) is essentially
contained in Rafi [21]. We include a detailed proof here in Appendix A.

2.6. Thin intervals. We will use some results from Rafi’s work combinatorializing
the Teichmüller metric. Specifically, Corollary 3.4 and Proposition 3.7 of [21] show
that for every Teichmüller geodesic and every proper subsurface V , there is a (pos-
sibly empty) interval along the geodesic where ∂V is short. Outside of this interval,
the projections dV move by at most a bounded amount. In the form that we will
use below: for each positive ε ≤ ε0 there are positive constants Mε and ε′ ≤ ε such
that for any pair of points x, y ∈ T (S) there is a possibly empty (and not uniquely
defined) connected interval IεV along the geodesic segment [x, y] such that
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• for a ∈ IεV , the length each component of ∂V on a is at most ε;
• for a ∈ [x, y] \ IεV , some component β of ∂V has la(β) ≥ ε′;
• for a, b in the same component of [x, y] \ IεV , we have dV (a, b) < Mε; and
• if V tW then IεV ∩ IεW = ∅.

This IεV is called the ε–thin interval for V , or just the thin interval when ε is
understood. While [x, y] is suppressed in the notation, the geodesic with respect to
which the interval IεV is defined should be clear from context.

Remark 2.7. Note that for us IεV is a segment in Teichmüller space, whereas Rafi
works with the corresponding time interval I ⊂ R. We also caution that IV is not
necessarily the same as the “active interval” for V considered by Rafi in [22], where
it is additionally required that the restriction of [x, y] to V behaves like a unit-speed
Teichmüller geodesic in T (V ).

If IεV 6= ∅ we will say that V becomes thin along [x, y]. In particular if dV (x, y) ≥
Mε, then IεV 6= ∅ and so V becomes thin along [x, y]. Note that the second condi-
tion above says that the complement of the union of thin intervals (for all proper
subsurfaces) lies in the ε′–thick part of T (S).

We always assume that Mε is chosen large enough to be a valid threshold in
in the distance formula (2.5). In the case ε = ε0 we will omit the parameter and
simply write M and IV for Mε0 and Iε0V . Thus M is a global constant that depends
only on the topology of S.

2.7. Reverse triangle inequality. We will repeatedly use the fact that the pro-
jection of a Teichmüller geodesic to the curve complex of any subsurface other than
an annulus forms an unparameterized quasi-geodesic that, in particular, does not
backtrack. This phenomenon is captured by the following “reverse triangle inequal-
ity,” which was proved first in the case of the curve complex of the whole surface
by Masur–Minsky [17] and then for general subsurfaces by Rafi [22, Thm B].

Lemma 2.8 (Reverse triangle inequality). There exists a global constant B > 0
such that for any non-annular subsurface V (including S itself) and for any geodesic
interval [x, y] ⊂ T (S) and any point a ∈ [x, y] we have

dV (x, a) + dV (a, y) ≤ dV (x, y) + B.(2.9)

In the exceptional annulus case, Rafi [22] shows that the reverse triangle inequal-
ity for dC(A) does hold when the twisting distance is measured with respect to the
quadratic differential defining the geodesic. However, it is unknown whether the
reverse triangle inequality holds with twisting defined in terms of the hyperbolic
metric, as it is in this paper. So, to deal with this exceptional case we instead
appeal to the following result, still following Rafi [20], (c.f., Theorem 5.5 of [22]):
though projection to the annulus may not be large between the points we consider,
we find a subsurface that does register a large projection distance.

Lemma 2.10 (R.T.I. exception). For any sufficiently large M ′, there exists ε′ > 0
with the following property. Suppose that a simple curve α on S satisfies la(α) ≤ ε′
for some point a ∈ [x, y] with dS(a, x), dS(a, y) ≥ 6 + B. Then there exists a
subsurface Z ( S disjoint from α (possibly the annulus with core curve α) for
which dZ(x, y) > M ′.

Proof. Let ν± denote horizontal and vertical foliations for the Teichmüller geodesic
[x, y]. By choosing ε′ small, thus forcing 1/la(α) to be large, Theorem 5.6 of [20]
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ensures that we can find a component Y of S \ α (possibly the annulus with core
curve α) for which the intersection number

iY (ν+
Y , ν

−
Y )

is as large as we like (see §2 of [20] for the definitions of iY and of the projections ν±Y
to the “arc and curve complex” of Y ). As is well known, the two arc systems ν±Y can

only have large intersection number if the projection dZ(ν+
Y , ν

−
Y ) to some subsurface

Z ⊂ Y is large. Thus, by choosing ε′ sufficiently small, we may assume that there
is a subsurface Z ⊂ S disjoint from α (possibly the annulus with core curve α)
for which dZ(ν+, ν−) > M ′ + 2M. It follows that Z determines a nonempty thin
interval IZ along the bi-infinite geodesic [ν−, ν+]. Moreover, since dS(α, ∂Z) ≤ 1,
the reverse triangle inequality implies that for any t ∈ IZ and any b ∈ [t, a] we have

dS(a, b) ≤ dS(a, b) + dS(b, t) ≤ dS(a, t) + B ≤ 5 + B.

Thus it must be the case that IZ ⊂ [x, y], for otherwise either dS(x, a) or dS(y, a)
would be smaller than 5 + B, which is not the case. Therefore the projection to Z
changes by at most M outside of [x, y], and so we conclude that dZ(x, y) > M ′ as
desired. �

Going forward, for each ε ≤ ε0 we additionally assume that Mε is chosen large
enough to satisfy Mε ≥ B and so that Theorem 2.10 above applies with M ′ = Mε.

3. The geometry of statistically thick geodesics

In the study of Teichmüller geometry, one finds that the thick part Tε behaves
very much like a negatively-curved space. For example in Theorems 4.4 and 7.6
of [11] Kent and Leininger show that geodesic triangles contained entirely within
Tε are δ–thin for some δ depending on ε, and that the projection of any geodesic
γ ⊂ Tε to the curve complex C(S) is an honest parametrized quasi-geodesic which,
in particular, must progress at a linear rate. These facts can also be deduced from
the distance formula (2.5) together with properties of thin intervals IεV (§2.6 above).

All of these negative-curvature properties are lost when geodesics are allowed
to enter the thin part. For example, Minsky’s product region theorem [19] shows
that geodesic triangles in T (S) \ Tε need not be δ–thin for any δ, and it is easy to
construct arbitrarily long geodesics in T (S) \ Tε that project to uniformly bounded
diameter sets in C(S).

However, each of these extremes—living entirely in Tε or entirely in T (S)\Tε—is
quite rare, as a typical Teichmüller geodesic will spend part of its time in Tε and
part of its time in T (S) \ Tε. In this section we develop tools to study geodesics
with exactly this behavior (later on, in §5 we will show that this behavior is in fact
generic in a certain quantifiable sense).

Our techniques rely on controlling the fraction of time a Teichmüller geodesic
spends in a given thick part Tε. We call this quantity the thick-stat ; for a nonde-
generate geodesic segment [x, y] ⊂ T (S) it is denoted by

Thk%
ε [x, y] =

∣∣{0 ≤ s ≤ dT (x, y) : ys ∈ Tε}
∣∣

dT (x, y)
,

where ys is the time–s point on the geodesic ray from x through y. Thus [x, y] ⊂ Tε
is equivalent to Thk%

ε [x, y] = 1. In the following subsections, we will show that
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negative-curvature properties similar to those mentioned above for thick geodesics

also hold when Thk%
ε is merely bounded away from zero.

3.1. Progress in the curve complex. The goal of this subsection is to prove
Theorem 3.10, which says that geodesics that spend a definite fraction of their time
in the thick part Tε must move at a definite linear rate in the curve complex.

The idea is that long subintervals contained in Tε contribute to progress in C(S);
alternately, one could consider intervals in the complement of all the ε–thin intervals
IεV for proper subsurfaces V ( S. For this analysis, we would like to bound the
number of connected components of

⋃
V IεV in terms of dS(x, y). One bound is given

by the number of nonempty thin intervals. While there may be arbitrarily many
such IεV , some of these will be redundant in the sense that IεV ⊂ IεW for some other
subsurface W .

Definition 3.1 (Thin-significance). Fix 0 < ε ≤ ε0. A proper subsurface V ( S
is said to be ε–thin-significant (or simply thin-significant) for the geodesic segment
[x, y] if dC(V )(x, y) ≥ 3Mε and for every other proper subsurface Z ( S with
dC(Z)(x, y) ≥ 3Mε we have IεV 6⊂ IεZ .

Remark. In this subsection we will focus on the curve complex distance dC(V ) for a
subsurface V . Recall that this agrees with the usual projection distance dV in the
case that V is non-annular, but that dC(A) and dA differ for annuli. We will take
care to handle exceptional annuli carefully.

Our first goal is to bound the number of thin-significant subsurfaces along an
arbitrary geodesic. For this, we will use the work of Rafi–Schleimer [23] bounding
the size of an antichain in the poset of subsurfaces of S.

Definition 3.2 (Antichain). Given a subsurface Σ ⊂ S a pair of points x, y ∈ T (S)
and constants T1 ≥ T0 > 0, a collection Ω of proper subsurfaces of Σ is an antichain
for (Σ, x, y, T0, T1) if the following hold:

• if Y, Y ′ ∈ Ω, then Y is not a proper subsurface of Y ′;
• if Y ∈ Ω, then dC(Y )(x, y) ≥ T0; and
• if Z ( Σ and dC(Z)(x, y) ≥ T1, then Z ⊂ Y for some Y ∈ Ω.

Lemma 3.3 (Antichain bound [23, Lem 7.1]). For every Σ ⊂ S and sufficiently
large T1 ≥ T0 > 0, there is a constant A = A(Σ, T0, T1) so that if Ω is an antichain
for (Σ, x, y, T0, T1) then

|Ω| ≤ A·dC(Σ)(x, y).

We now prove a proposition showing that if there are a large enough number of
thin-significant subsurfaces along a geodesic, then the image of the geodesic makes
definite progress in the curve complex. The following notation will be used in the
proof.

Definition 3.4. Consider a geodesic segment [x, y] ⊂ T (S) and a collection Ω of
proper subsurfaces of S. We will consider three partial orders on the set Ω:

(1) V ≤1 W ⇐⇒ V ⊂W ,
(2) V ≤2 W ⇐⇒ IεV ⊂ IεW , and
(3) V ≤3 W ⇐⇒ V ⊂W and IV ⊂ IW .

The subcollection of Ω consisting of maximal elements with respect to ≤∗ will be
denoted (Ω)∗; notice that these sets are related by (Ω)1 ⊂ (Ω)3 ⊃ (Ω)2. Elements
of (Ω)1 are said to be topologically maximal with respect to Ω.
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Proposition 3.5 (Progress from thin-significant subsurfaces). For any positive
ε ≤ ε0 and any t0, there is a constant N such that if dC(S)(x, y) ≤ t0, then the
number of ε–thin-significant subsurfaces along [x, y] is at most N .

Proof. Let Ω = {V ( S : dC(V )(x, y) ≥ 3Mε} be the collection of proper sub-
surfaces which have a large projection. By definition, the set of ε–thin-significant
subsurfaces is exactly given by (Ω)2. On the other hand, the subcollection (Ω)1 of
topologically maximal subsurfaces clearly forms an antichain for (S, x, y, 3Mε, 3Mε).
By Lemma 3.3, we therefore have |(Ω)1| ≤ At0 for some constant A. We will ex-
tend this to a bound on the cardinality of the larger set (Ω)3; this will imply the
proposition because (Ω)2 ⊂ (Ω)3.

Fix a proper subsurface W ∈ Ω and consider the set UW = {V ∈ (Ω)3 : V (W}.
We claim that |UW | is bounded by a constant depending only on the complexity
of W . By the above, this will suffice because each V ∈ (Ω)3 is either equal to or
properly contained in some topologically maximal proper subsurface W ∈ (Ω)1.

First consider those V ∈ UW for which IεV ∩ IεW 6= ∅. The definition of ≤3 implies
that IεV 6⊂ IεW ; therefore IεV must overlap with at least one endpoint of IεW . If IεV1

and IεV2
both contain the initial endpoint of IεW , then IεV1

∩ IεV2
6= ∅ and so we cannot

have V1 t V2. Since there is a universal bound on the number of subsurfaces such
that no two intersect transversely, this bounds the number of V ∈ UW for which
IεV ∩ IεW 6= ∅.

It remains to bound the number of V ∈ UW for which IεV ∩ IεW = ∅; we will only
focus on the case that IεV occurs before IεW when traveling from x to y. Suppose
that IεW = [a, b] ⊂ [x, y] and consider the set

Ω′ = {V ∈ Ω : V (W and dC(V )(x, a) ≥ 2Mε}
∪ {A an annulus : A (W, and dC(A)(x, a) ≥ 4Mε}.

We claim that the subcollection (Ω′)1 forms an antichain for (W,x, a, 2Mε, 4Mε):
The only issue is to check that every Y (W with dC(Y )(x, a) ≥ 4Mε is contained in
an element of (Ω′)1. If Y satisfies the reverse triangle inequality then dC(Y )(x, y) ≥
dC(Y )(x, a)−B ≥ 3Mε and therefore Y ∈ Ω′. If Y does not satisfy the reverse triangle
inequality it is an annulus and automatically Y ∈ Ω′. Since dC(W )(x, a) ≤ Mε,
Lemma 3.3 now gives a bound on |(Ω′)1|.

Finally, notice that for each V ∈ UW with IεV occurring before IεW along [x, y],
the triangle inequality gives dC(V )(x, a) ≥ dC(V )(x, y) −Mε ≥ 2Mε and so ensures
that V ∈ Ω′. Therefore each such V is contained in some topologically maximal
Z ∈ Ω′; that is to say, each V ∈ UW with IεV occurring before IεW along [x, y] is
contained in UZ for some Z ∈ (Ω′)1. The bound on |UW | now follows by the bound
on |(Ω′)1| and induction on the complexity of the subsurface W . �

Proposition 3.5 gives control on the union of the ε–thin intervals IεV for all subsur-
faces V with dC(V )(x, y) large. However, the potential failure of the reverse triangle
inequality enables [x, y] to contain many thin intervals that are not accounted for
by Proposition 3.5. The following lemma allows us to control these as well by ex-
tending the thin intervals so as to have certain large projections that will help with
our bookkeeping.

Lemma 3.6 (Extended thin interval). For any ε ≤ ε0 and t0 > 0, there exists
M ′ > 0 with the following property. If a subsurface W ( S satisfies dW (x′, y′) > M ′
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for some pair of points x′, y′ ∈ [x, y], then there is a connected interval [a, b] ⊂ [x, y]
containing IεW and contained entirely in the ε–thin part of T (S) such that either

• dS(a, b) ≥ t0 + 3B (and thus also dS(x, y) > t0 by Lemma 2.8), or
• [a, b] nontrivially intersects the ε–thin interval IεV ⊂ [x, y] of some subsur-

face V ( S satisfying dV (x, y) ≥ 3Mε.

We call such an interval J = [a, b] an extended ε–thin interval for W .

Proof. Let K be the implied constant in the distance formula (2.5) corresponding
to the threshold 5Mε. For this K and the given t0, set

M ′ = K2(t0 + 3B) +K2 +K + 2Mε.

Now suppose that W determines a thin interval IεW ⊂ [x, y] of length L ≥ 0 (where
we allow the possibility that IεW = ∅ and L = 0). Since the projection to W can
change by at most Mε outside of IεW , the distance formula implies that

dW (x′, y′) ≤ 2Mε +KL+K

for any x′, y′ ∈ [x, y]. Therefore, the hypothesis dW (x′, y′) ≥M ′ on W ensures that

L ≥ (M ′ − 2Mε −K)/K ≥ K(t0 + 3B) +K.

In particular IεW 6= ∅. Thus we have shown that there exists a nonempty interval
J = [a, b] ⊂ [x, y] (for example, IεW itself) that

(1) contains IεW , and
(2) is the union of finitely many nonempty thin intervals IεV ⊂ [x, y] for proper

subsurfaces V ( S (and so is entirely contained in the ε–thin part of T (S)).

We claim that for any such interval J that fails to satisfy the conclusion of the
lemma, there exists a strictly larger subinterval J ′ ) J that again satisfies (1)–(2).
As there are only finitely many subintervals satisfying (2) (since at most finitely
many curves become shorter than ε along the compact segment [x, y]), repeated
applications of the claim will eventually produce the desired subinterval.

To prove the claim, we may suppose that J = [a, b] satisfies (1)–(2) above and
fails to meet the conclusion of the lemma. In that case, there necessarily exists a
nonempty collection Ω of subsurfaces V ( S for which dV (a, b) ≥ 5Mε, for otherwise
the distance formula (applied with threshold 5Mε) would give

dT (a, b) ≤ KdS(a, b) +K < K(t0 + 3B) +K ≤ L,

contradicting the assumption [a, b] ⊃ IεW (recall that L is the length of IεW ).
Note that the property dV (a, b) ≥ 5Mε implies that the thin interval IεV ⊂ [x, y]

of each V ∈ Ω nontrivially intersects [a, b]. If any such interval IεV were completely
contained within [a, b] then, since the projection to V can move at most Mε outside
of IεV , the triangle inequality would give dV (x, y) ≥ 3Mε. As this is evidently not
the case (since J fails to satisfy the conclusion of the lemma), it must be that the
thin interval IεV of each V ∈ Ω nontrivially intersects the complement of [a, b] as
well. Therefore,

J ′ := [a, b] ∪
⋃
V ∈Ω

IεV

is a connected subinterval of [x, y] that properly contains J and again satisfies
(1)–(2). Thus the claim holds and so the lemma is verified. �
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By the distance formula (2.5), any long interval disjoint from all thin intervals
along [x, y] must travel a large distance in the curve complex C(S) of the whole
surface. The following lemma says that each such subinterval contributes to the
curve complex distance along the total geodesic.

Lemma 3.7 (Cumulative contribution of subintervals). There exist constants 0 <
ρ1 < 1 and D1 > 0 such that for all d > D1, if [x, y] is a Teichmüller geodesic
that contains n subintervals [xi, yi] with disjoint interiors whose endpoints satisfy
dS(xi, yi) ≥ d, then

dS(x, y) ≥ ρ1nd.

Proof. Applying the reverse triangle inequality (2.9) to the points xi and yi we
have dS(x, xi) + dS(xi, yi) + dS(yi, y) ≤ dS(x, y) + 2B. By recursively applying this
observation to [x, xi] and [yi, y] and then throwing out the complementary intervals,
we find that

dS(x, y) ≥
∑

dS(xi, yi)− 2nB ≥ nd− 2nB.

Choose D1 > 4B and ρ1 = 1/2. Then for d ≥ D1 the quantity on the right side is
at least ρ1nd. �

We now fix once and for all a “definite progress” constant D > 0, sufficiently large
so that ρ1D > D1 (and thus D > D1 as well), and make the following definition.

Definition 3.8. For any ε ≤ ε0, set t0 = ρ1D and let M ′ = M ′(ε) be the corre-
sponding constant provided by Lemma 3.6. Then define the primary ε–thin portion
Wε of a geodesic segment [x, y] to be the union of ε–thin intervals IεV ⊂ [x, y] for
all proper subsurfaces with dC(V )(x, y) ≥ 3Mε together with an extended ε–thin
interval JεW ⊂ [x, y] for any proper subsurface W satisfying dW (x′, y′) ≥ M ′ for
some pair of points x′, y′ ∈ [x, y].

Lemma 3.9 (Primary thin portion). The primary ε–thin portion Wε is completely
contained in the ε–thin part of T . Furthermore, if dS(x, y) ≤ ρ1D, then the number
of connected components of Wε is bounded by a constant N ′ depending only on ε.

Proof. The first assertion is immediate since Wε is a union of ε–thin intervals. For
the second assertion, note that the union W ′ of ε–thin intervals IεV for all proper
subsurfaces with dC(V )(x, y) ≥ 3Mε has a bounded number of connected components
by Proposition 3.5 (since passing to thin-significant subsurfaces does not change the
union). Consider now an extended ε–thin interval JεW contributing to Wε. Since
dS(x, y) ≤ ρ1D = t0, Lemma 3.6 implies that JεW intersects IεV for some subsurface
V with dV (x, y) ≥ 3Mε. We claim that either dC(V )(x, y) ≥ 3Mε, so that IεV ⊂ W ′
and thus JεW ∩ W ′ 6= ∅, or else V is an annulus with min(lx(∂V ), ly(∂V )) < ε0.
Since there can be at most 6g − 6 such annuli and W ′ has a bounded number of
components, this will suffice.

If V is non-annular, then dC(V ) = dV and the claim is immediate. Otherwise
V is an annulus with dV (x, y) ≥ 3Mε. Since Mε may be assumed large enough to
satisfy the universal condition Mε ≥ 36 log+(1/ε0) + 6, Lemma A.3 implies that

either min(lx(∂V ), ly(∂V )) < ε0 or else dC(V )(x, y) ≥ eMε/2 ≥ 3Mε, as claimed. �

For any interval [a, b] ⊂ [x, y] \Wε in the complement of the primary ε–thin por-
tion, the construction of Wε ensures that dW (a, b) ≤M ′ for all proper subsurfaces
W of S. Applying the distance formula (2.5) with M ′ = M ′(ε) as the threshold,
we now see that dT (a, b) ≺ε dS(a, b) for any connected interval [a, b] ⊂ [x, y] \ Wε.
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This gives rise to a fixed value Lε such that any interval [a, b] of length at least Lε
that lies entirely in [x, y]\Wε satisfies dS(a, b) ≥ D. Thus according to Lemma 3.7,
if I is any interval along a geodesic that contains a subinterval of length Lε that is
disjoint from Wε, then the distance in the curve complex between the endpoints of
I is at least ρ1D. We now come to the main result of this subsection.

Theorem 3.10 (Definite progress). For every ε > 0 and 0 < θ < 1, there exists a
constant R1 > 0 such that

dS(x, y)
.
�ε,θ dT (x, y)

for every Teichmüller geodesics [x, y] satisfying dT (x, y) ≥ R1 and Thk%
ε [x, y] ≥ θ.

Proof. Since shrinking ε preserves the hypothesis Thk%
ε [x, y] ≥ θ, we may assume

ε ≤ ε0. Let N ′ = N ′(ε) denote the constant obtained from Lemma 3.9. Choose n
so that nθ > 1 and make the following definitions:

θ′ =
nθ − 1

n− 1
, T0 ≥

Lε(N
′ + 1)

θ′
, R1 = 2T0, ρ =

ρ2
1D

2nT0
.

Let [x, y] be a Teichmüller geodesic of length r ≥ R1 satisfying Thk%
ε [x, y] ≥ θ.

Set m = br/T0c and divide [x, y] into m subsegments of length r/m ≥ T0. Let
us say that a subsegment [a, b] ⊂ [x, y] is stalled if dS(a, b) < ρ1D and progressing
if dS(a, b) ≥ ρ1D. Suppose that m1 of the subsegments are stalled, and thus
m2 = m−m1 are progressing.

Given a stalled segment [a, b], we decompose it into its primary ε–thin portionWε

and note that, since it is stalled, Lemma 3.9 ensures Wε has at most N ′ connected
components. Therefore we conclude that Wε has at most N ′ + 1 complementary
subintervals in [a, b]. Furthermore, each complementary subinterval has length at
most Lε, for otherwise we would have dS(a, b) ≥ ρ1D by the paragraph preceeding
Theorem 3.10. Since Wε is contained in the ε–thin part, we see that the total
amount of time that this interval [a, b] spends in the thick part is at most

(N ′ + 1)Lε ≤ θ′T0 ≤ θ′r/m.

Therefore the total amount of time that the full interval [x, y] spends in the thick
part is at most (

θ′
r

m

)
m1 +

( r
m

)
m2 =

r

m
(θ′m1 +m2).

We claim that m2 ≥ m/n. If this were not the case, then we necessarily have
m1 > (n− 1)m/n. Since θ′ < 1, it follows that

θ′ ·m1 + 1·m2 < θ′ ·mn− 1

n
+ 1·m 1

n
,

where the inequality is valid by the elementary fact that for any constants a, b, c, d, α, β
such that a+ b = c+ d and 0 < α < β we have

(3.11) α·a+ β ·b < α·c+ β ·d ⇐⇒ a > c.

But then the amount of time that [x, y] is thick is less than

r

m

(
θ′m

n− 1

n
+m

1

n

)
= r

(
nθ − 1

n− 1
· n− 1

n
+

1

n

)
= rθ,

which contradicts the assumption on [x, y]. Therefore m2 ≥ m/n, as claimed.
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On each of the m2 progressing intervals, the curve complex distance between end-
points is at least ρ1D. Therefore, cumulative contribution of subintervals (Lemma 3.7)
implies that

dS(x, y) ≥ ρ1m2(ρ1D) ≥ ρ2
1D
m

n
≥ ρ2

1D

n

(
r

T0
− 1

)
≥ ρ2

1D

2nT0
r = ρr. �

Remark 3.12. After developing our proof of Theorem 3.10 we learned of an inde-
pendent yet closely related result of Hamenstädt’s, namely Proposition 2.1 of [9],
which under the same hypotheses provides a lower bound on dS(x, y) that is con-
stant rather than linear in dT (x, y). In fact, the linear bound in Theorem 3.10 may
be deduced from Hamenstädt’s result by breaking [x, y] into subintervals, applying
[9, Proposition 2.1] to those with large thick-stat, and adding the resulting contri-
butions using Lemma 3.7, much as we have done above. With this approach [9,
Proposition 2.1] would effectively replace the use of Proposition 3.5 and Lemma 3.6
in our argument. However, we have decided to retain our original argument using
Proposition 3.5 and Lemma 3.6 as we believe these to be of independent interest.

3.2. A statistical thin triangles statement. In this subsection we prove Theo-
rem A and obtain thinness results for geodesic triangles whose sides satisfy various
thick-stat conditions. Recall that given ε > 0 there is a δ > 0 such that every
geodesic triangle whose sides live entirely in Tε is δ–thin. This fact can be deduced
from the following theorem of Rafi, which gives specific information under much
more general conditions.

Theorem 3.13 (Rafi [22, Theorem 8.1]). For every ε > 0 there exist constants
C1, L1 such that if I ⊂ [x, y] ⊂ T (S) is a geodesic subinterval of length at least L1

lying entirely in the ε–thick part, then for all z ∈ T (S), we have

I ∩NbhdC1
([x, z] ∪ [y, z]) 6= ∅.

We weaken the hypothesis to only require a definite thick-stat.

Theorem A. For any ε > 0 and 0 < θ ≤ 1, there exist constants C,L such that
if I ⊂ [x, y] ⊂ T (S) is a geodesic subinterval of length at least L and at least
proportion θ of I is ε–thick, then for all z ∈ T (S), we have

I ∩NbhdC([x, z] ∪ [y, z]) 6= ∅.

Before proving this result, we discuss two consequences. Firstly we observe that
there is not merely one point in the subinterval I which is close to [x, z]∪ [y, z], but
in fact this conclusion holds for a large fraction of the interval I.

Proposition 3.14. For any ε > 0 and 0 < θ′ < θ ≤ 1, there are constants L′, C ′ so
that if a side [x, y] of a geodesic triangle 4(x, y, z) ⊂ T (S) contains a subinterval

I ⊂ [x, y] of length at least L′ with Thk%
ε (I) ≥ θ, then at least proportion θ′ of I

is within distance C ′ of [x, z] ∪ [y, z]. That is, if length denotes Lebesgue measure
along a geodesic segment,

length ({I ∩NbhdC′([x, z] ∪ [y, z])}) ≥ θ′ · length(I).

Proof. Let ρ = θ−θ′
1−θ′ . Apply Theorem A to Tε with the fraction ρ and let L′ = L

and C be the corresponding constants. Given a subinterval I ⊂ [x, y] satisfying
the hypotheses of the theorem, divide I into n = blength(I)/Lc subintervals of
equal length (the length will be between L and 2L). Let a denote the fraction of
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these subintervals that have Thk%
ε ≥ ρ (so a = k

n for some k ∈ {0, . . . , n}). Each
of these na subintervals can spend at most all of their time in Tε and the other
n(1 − a) subintervals spend less than proportion ρ of their time in Tε. Therefore
the maximum amount of time the whole interval I can spend in Tε is less than

1 · na · length(I)

n
+ ρ · n(1− a) · length(I)

n
= length(I)(a+ ρ− ρa).

Since we have Thk%
ε (I) ≥ θ by hypotheses, this implies θ < a+ ρ− aρ. That is,

a >
θ − ρ
1− ρ

= θ′.

Now, Theorem A implies that each subinterval with Thk%
ε ≥ ρ contains a point

within distance C of [x, z]∪ [y, z]. Therefore, each of the na subintervals satisfying

Thk%
ε ≥ ρ is contained entirely within the C ′ = C+2L neighborhood of [x, z]∪[y, z].

As the union of these na subintervals comprise proportion a > θ′ of the interval I,
the statement follows. �

From this we obtain the following immediate corollary.

Corollary 3.15 (Statistically thin triangles). For all ε > 0 and 0 < θ′ < θ ≤ 1
there exists a constant δ with the following property. For any geodesic triangle in

T (S) whose three sides have Thk%
ε ≥ θ, at least proportion θ′ of each side of the

triangle is contained within δ of the union of the other two sides.

We now give the proof of Theorem A.

Proof of Theorem A. We will find L so that the conclusion of the theorem applies

to any subinterval I with L ≤ length(I) ≤ 2L and Thk%
ε (I) ≥ θ. This will suffice

because any long interval with Thk%
ε ≥ θ can be partitioned into subintervals

satisfying this length condition, one of which must have Thk%
ε ≥ θ.

Recall that the (coarsely defined) projection πS : T (S) → C(S) sends a point
w ∈ T (S) to the set of simple closed curve in the Bers marking µw (which is a
set of diameter 2 in the curve complex). The work of Masur–Minsky [17] shows
that there are universal constants K,C so that Teichmüller geodesics project to
(unparametrized) (K,C)–quasi-geodesics under πS . By the hyperbolicity of C(S)
(see §2.2), each quasi-geodesic fellow travels any geodesic with the same endpoints,
and so there is a constant τ > 0 so that every (K,C)–quasi-triangle in C(S) is
τ–thin. We may furthermore assume that τ ≥ B.

By Theorem 3.10 the interval I moves a definite amount in C(S); that is, by
making L large, we can arrange for I to project to an arbitrarily long subsegment
of the (unparametrized) quasi-geodesic πS([x, y]). In particular, by choosing L
sufficiently large, we can ensure that there is a point w ∈ I so that either

dS(µw, πS([y, z])) ≥ 2τ + 6 or dS(µw, πS([x, z])) ≥ 2τ + 6.

By choosing such w with µw near the center of πS(I), we can moreover ensure that

dS(w, t) ≥ 2τ + 6

for all points t ∈ [x, y] outside of I, and in particular that dS(w, x), dS(w, y) ≥ 2τ+6.
Assuming without loss of generality that

dS(µw, πS([y, z])) ≥ 2τ + 6 > τ,
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hyperbolicity implies that there is a point u ∈ [x, z] so that dS(w, u) ≤ τ . We will
show that dV (w, u) ≺ε,θ 1 for all proper subsurfaces V ⊂ S. The result will then
follow from the distance formula (2.5). We first establish the following

Claim 3.16. There is a constant M0 (depending only on ε and θ) so that for any
proper subsurface V ⊂ S satisfying dS(∂V, µw) ≤ 2τ + 3 we have

dV (x, y), dV (y, z), dV (x, z) ≤M0.

To see this, first observe that for any such V the triangle inequality implies
dS(∂V, πS([y, z])) ≥ 3. Therefore V does not become thin along [y, z] and so we
may conclude dV (y, z) ≤ M. If V does not become thin along [x, y], then we have
the same bound on dV (x, y). However, V may become thin along [x, y] in which case
there is a point t ∈ [x, y] at which the length of ∂V is smaller than ε0. Therefore
µt contains ∂V , which implies

dS(w, t) ≤ 2τ + 5 < 2τ + 6

and consequently that t ∈ I ⊂ [x, y]. Thus the entire thin interval IV for V is
contained within I and in particular has length at most length(I) ≤ 2L. Since the
projection πV to C(V ) is a Lipschitz map and, up to an additive error, the projection
of [x, y] to C(V ) can only change in the thin interval IV (see §2.6), we conclude that
dV (x, y) is bounded in terms of L (and L depends only on ε and θ). Finally, the
triangle inequality and the above bounds on dV (y, z) and dV (x, y) together provide
a uniform bound on dV (x, z). This completes the proof of Claim 3.16.

We now show that dV (w, u) is uniformly bounded for all proper subsurfaces.
Consider any V with dV (w, u) ≥ M. Then V becomes thin along [w, u] and so ∂V
lies within distance τ + 2 of the C(S)–geodesic from µw to µu. In particular

dV (∂V, µw) ≤ τ + 2 + dS(w, u) ≤ 2τ + 2

and so Claim 3.16 implies that dV (x, y) and dV (x, z) are at most M0.
If V is a non-annular surface, then the reverse triangle inequality, applied to [x, y]

and [x, z], yields bounds on dV (x,w) and dV (x, u) so that we may bound dV (w, u)
by the triangle inequality.

If V is an annulus whose core curve α = ∂V satisfies lw(α) > ε0, then w cannot
be contained in the (possibly empty) thin interval IV ⊂ [x, y]. Thus at least one of
the intervals [x,w] or [w, y] is disjoint from IV and consequently has dV –projection
at most M. Thus we may conclude dV (x,w) ≤ M+M0 by the triangle inequality. If
lw(α) ≤ ε0, then µw necessarily contains α and we instead appeal to Lemma 2.10.
According to that theorem applied to 2M0, there is a constant ε′ such that if lw(α) ≤
ε′, then there exists a subsurface Z with dS(∂Z, α) ≤ 1 so that dZ(x, y) ≥ 2M0.
Since this contradicts Claim 3.16, we must in fact have lw(α) > ε′. As above, it

follows that w cannot be contained in the ε′–thin interval Iε
′

V ⊂ [x, y] and thus that
dV (x,w) ≤M0 + Mε′ by the triangle inequality and the theory of thin intervals.

Since dS(x,w), dS(w, z) ≥ 2τ + 6 and dS(w, u) ≤ τ by assumption, we also have
dS(x, u), dS(u, z) ≥ τ+6 ≥ B+6 by the triangle inequality. Therefore we may apply
the same argument, using Lemma 2.10 as needed, to obtain a bound on dV (x, u)
as well. The triangle inequality then gives the desired bound on dV (w, u). �
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4. Comparing measures

To address genericity and averaging questions, one of course needs to consider a
measure. In the present context of metric geometry, it is perhaps most natural to
consider Hausdorff measure of the appropriate dimension.

Definition 4.1 (Hausdorff measure). The n–dimensional Hausdorff measure on a
metric space will be denoted by η. It is defined by

η(E) := lim
δ→0

[
inf
∑

diam(Ui)
n
]
,

where the infimum is over countable covers {Ui} of E with diamUi < δ ∀i.
For the Teichmüller metric, there is a nontrivial h–dimensional Hausdorff mea-

sure (recalling that h = 6g − 6). As we shall see, in order to understand average
distances with respect to this measure, it will be necessary to compare with other
measures, defined below, which are also natural to consider in their own right.

4.1. Measures on Finsler manifolds. The Teichmüller space carries several nat-
ural volume forms coming from its structure as a Finsler manifold. Let us discuss
these general constructions first before returning to the case of M = T (S). The

treatment closely follows the survey by Álvarez and Thompson [1].
Recall that a Finsler metric on an n–dimensional Finsler manifold M is a con-

tinuous function F : T (M) → R that restricts to a norm on each tangent space
Tx(M). There is a dual norm on each cotangent space T ∗x (M). For a point x ∈M ,
let Bx ⊂ Tx(M) and B∗x ⊂ T ∗x (M) denote the unit balls for these two norms. A
local coordinate system (x1, . . . , xn) on M induces a pair of isomorphisms

(4.2) φ : Tx(M)→ Rn and ψ : T ∗x (M)→ Rn

defined by writing vectors and covectors with respect to the dual bases {∂x1 , . . . , ∂xn}
and {dx1, . . . , dxn}. By definition of the dual norm, the pairing Tx(M)×T ∗x (M)→
R is sent to the standard inner product on Rn under these isomorphisms. In the
local coordinate chart we may now define two functions

f(x) =
εn

λ (φ(Bx))
and g(x) =

λ (ψ(B∗x))

εn
,

where λ is Lebesgue measure and εn := λ(Balln) is the Lebesgue measure of the
standard unit ball in Rn. While these functions clearly depend on the choice of
coordinates (x1, . . . , xn), one may easily check that the n–forms

f(x) dx1 ∧ · · · ∧ dxn and g(x) dx1 ∧ · · · ∧ dxn
are independent of the coordinate system and therefore define global volume forms
on M . The former is called the Busemann volume on the Finsler manifold and the
latter is the Holmes–Thompson volume; see [1] for more details. These both define
measures on M .

A third measure to consider is the one induced by the canonical symplectic
form ω on the cotangent bundle, defined as follows. Consider local coordinates
(x1, . . . , xn) defined in a neighborhood U ⊂ M . The 1–forms dx1, . . . , dxn then
give a trivialization of T ∗(M) over U , and we have a local coordinate system on
T ∗(M) given by

(4.3) (x1, y1, . . . , xn, yn) 7→

(
(x1, . . . , xn),

n∑
i=1

yi dxi

)
.
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In these coordinates the canonical symplectic form may be written simply as ω =∑
dxi ∧ dyi. Taking exterior powers then yields a volume form µsp = ωn/n! on

T ∗(M). By restricting to the unit disk bundle T ∗,≤1(M) and pushing forward by
the projection π : T ∗(M)→M , we obtain a symplectic measure n on M .

Finally, a Finsler metric on a smooth manifold Mn induces a path metric d in
the usual way, and this in turn gives rise to a Hausdorff measure in any dimension.

Recall that a centrally symmetric convex body Ω ⊂ Rn determines a polar body
Ω◦ ⊂ (Rn)∗ = Rn via

Ω◦ := {ξ ∈ Rn | ξ · v ≤ 1 ∀v ∈ Ω}.
The Mahler volume of Ω is then defined to be the product M(Ω) := λ(Ω)·λ(Ω◦) of
the Lebesgue volumes of Ω and Ω◦. For any centrally symmetric convex body Ω,
it is known that

(4.4)
ε2
n

nn/2
≤M(Ω) ≤ ε2

n = M(Balln).

The first inequality was established by John [10], and the latter, which gives an
equality if and only if the norm is Euclidean, is known as the Blaschke–Santaló
inequality [4].

Theorem 4.5 (Assembling facts on Finsler measures). Suppose that Mn is a con-
tinuous Finsler manifold. Then

• the Busemann measure µB and the n–dimensional Hausdorff measure η are
equal;
• the Holmes–Thompson measure µHT and the symplectic measure n are scalar

multiples: µHT = 1
εn

n;

• µHT ≤ µB ≤ (nn/2)µHT, with equality of measures if and only if the metric
is Riemannian.

Note that it is still possible for µHT and µB to be scalar multiples of each other
in the non-Riemannian case, for instance on a vector space with a Finsler norm.

Proof. The first statement was originally shown by Busemann in the 1940s in [5]
and is stated in modern language in [1, Thm 3.23].

The second statement is straightforward and we include a proof for completeness.
Working in the local coordinates and applying the Fubini theorem, we see that the
Holmes–Thompson volume of a subset E ⊂M is given by:∫

E

g(x) dx1 ∧ · · · ∧ dxn =

∫
E

(∫
ψ(B∗x)

1

εn
dλ

)
dx1 ∧ · · · ∧ dxn

=
1

εn

∫
π−1(E)∩T∗,≤1(M)

dy1 ∧ · · · ∧ dyn ∧ dx1 ∧ · · · ∧ dxn

=
1

εn
n(E).

For the third statement, recall that the measures are defined by

µB(E) =

∫
E

f(x) dx1 ∧ · · · ∧ dxn and µHT(E) =

∫
E

g(x) dx1 ∧ · · · ∧ dxn.

For each x ∈ M , the unit ball Bx ⊂ Tx(M) is sent to a centrally symmetric
convex body φ(Bx) ⊂ Rn under the isomorphism φ defined in (4.2). The polar
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body is exactly given by φ(Bx)◦ = ψ(B∗x). Therefore, the Mahler volume of φ(Bx)
is

M(φ(Bx)) = λ(φ(Bx))·λ(ψ(B∗x)) = ε2
n

g(x)

f(x)
.

Combining with (4.4) now implies that n−n/2f(x) ≤ g(x) ≤ f(x) for all x ∈ M .
We conclude that µHT(E) ≤ µB(E) ≤ nn/2µHT(E) for all E ⊂ M . Finally, since
Blaschke–Santaló can only give equality for a Euclidean norm, it follows that µB

and µHT can only be equal for a Riemannian metric. �

4.2. Measures coming from quadratic differentials. Recall that quadratic
differential space Q(S) is naturally identified with the cotangent bundle T ∗(T (S))
of Teichmüller space, and that each quadratic differential q ∈ Q(S) has a norm ‖q‖
given by the area of the flat structure on S induced by q. The unit disk bundle for
this norm will be denoted by

Q≤1(S) = {q ∈ Q(S) : ‖q‖ ≤ 1}.
Using this disk bundle, the natural symplectic measure µsp on Q(S) descends to a
measure n on T (S) exactly as above. We note that ω and therefore µsp and n are
invariant under the action of the mapping class group.

The space Q(S) also carries a natural Mod(S)–invariant measure µhol that is
defined in terms of holonomy coordinates and which we will refer to as holonomy
measure; it is also sometimes called Masur–Veech measure in the literature (see [14]
for details). This measure has been studied extensively, for instance to establish
ergodicity results for the geodesic flow. The measure µhol is also related to the
“Thurston measure” µTH on the space of measured foliations MF induced by the
piecewise-linear structure of MF [8]. Indeed, as seen in [14], µhol is equal to the
pullback of µTH × µTH under the Mod(S)–invariant map Q(S)→MF ×MF that
sends a quadratic differential to its vertical and horizontal foliations.

Just as µsp induces n, the holonomy measure µhol descends to a measure m on
T (S). Explicitly, the m–measure of a set E ⊂ T (S) is given by

m(E) := µhol

(
π−1(E) ∩Q≤1(S)

)
.

This measure m has been studied previously in [3] and [7].

Proposition 4.6. [16, p.3746] There is a scalar k > 0 such that µsp = k ·µhol.

We recall the outline of the argument here. In [16], it was shown that the
Teichmüller geodesic flow on Q(S) is a Hamiltonian flow for the function

H(q) =
‖q‖2

2
.

As such, the Teichmüller flow preserves the symplectic form ω and the corre-
sponding measure µsp. The measures µsp and µhol both descend to the quotient
space Q(S)/Mod(S); furthermore, the latter defines an ergodic measure for the
Teichmüller flow on Q(S)/Mod(S) [14]. Since µsp is absolutely continuous with
respect to µhol, the proposition follows.

We therefore also have n = km, and combining Proposition 4.6 with Theorem 4.5
we get:

Corollary 4.7. There are scalars k2 > k1 > 0 such that

k1m ≤ η ≤ k2m.



22 DOWDALL, DUCHIN, AND MASUR

4.3. Visual measures. The unit sphere subbundle of Q(S) will be denoted by

Q1(S) = {q ∈ Q(S) : ‖q‖ = 1}.
For each x ∈ T (S), the fiber Q1(x) is identified with the “space of directions” at x,
and the Teichmüller geodesic flow ϕt : Q(S)→ Q(S) gives rise to a homeomorphism

Ψx : Q1(x)× (0,∞) → T (S) \ {x}
(q, r) 7→ π(ϕr(q)) ,

which serves as “polar coordinates” centered at x. Furthermore, this conjugates ϕt
to a radial flow based at x given by

ϕ̂t(π(ϕr(q))) := π(ϕr+t(q)).

We will consider measures on T (S) that are compatible with these polar coordinates
and with the radial flow.

Definition 4.8 (Visual measure). Given any measure κx on the unit sphereQ1(x) ∼=
Sh−1, we define the corresponding visual measures on Sr(x) and T (S) as follows.
Firstly, the visual measure Visr(κx) on the sphere Sr(x) of radius r is just the push-
forward of ehrκx under the homeomorphism Q1(x)×{r} ∼= Sr(x). Integrating these
over (0,∞) then gives a visual measure on T (S) defined by

Vis(κx)(E) :=

∫
(q,r)∈E⊂Q1(S)×(0,∞)

ehrdκx(q)dλ(r).

Said differently, Vis(κx) is equal to the push-forward of κx × λ0 under the home-
omorphism Ψx, where λ0 is the weighted Lebesgue measure on (0,∞) given by

λ0([a, b]) =
∫ b
a
ehrdλ(r) = (ehb−eha)/h. (We have scaled things in this way so that

the visual measure of the ball of radius R grows like ehR.)

The essential feature of visual measures is that they enjoy the following “nor-
malized invariance” under the radial flow: For any t ≥ 0 and measurable E ⊂ Sr(x)
we have

Visr+t(κx)(ϕ̂t(E))

Visr+t(κx)(Sr+t(x))
=

Visr(κx)(E)

Visr(κx)(Sr(x))
.

The same invariance holds for Vis(κx) when we normalize with respect to annular
shells Bb(x) \ Ba(x) instead of spheres.

There are two visual measures that specifically interest us. Firstly, the normed
vector space Q(x) carries a unique translation-invariant measure νx normalized so
that νx(B∗x) = 1; recall that the unit ball B∗x is just the intersection Q≤1(S)∩Q(x).
This induces a measure (also denoted νx) on the unit sphere Q1(x) via the usual
method of coning off: νx(E) := νx ([0, 1]× E) for E ⊂ Q1(x).

Secondly, since Q(S) has the structure of a fiber bundle over T (S), we can define
a conditional measure sx on Q(x) by disintegration from µhol. More precisely, sx is
the unique measure on Q(x) such that the µhol–measure of E ⊂ Q(S) is given by

µhol(E) =

∫
T (S)

sx(E ∩Q(x)) dm(x).

Via the process of coning off, we again think of sx as a measure on Q1(x).
The space Q(S) of quadratic differentials is a complex vector bundle; as such,

there is a natural circle action S1 y Q(S) that preserves each fiber Q(x) and
unit sphere Q1(x). We say that a visual measure Vis(κx) is rotation-invariant if
the corresponding measure κx on Q1(x) is invariant under this action of S1. The
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visual measure Vis(νx) is rotation-invariant because S1 preserves the unit ball Bx.
Similarly, Vis(sx) is rotation-invariant because S1 preserves µhol.

4.4. Summary. The measures on T (S) considered above are n and m (induced
by the symplectic and holonomy measures on Q(S), respectively, via the covering
map), Hausdorff measure η, the visual measures Vis(κx) created by radially flowing
measures on the sphere of directions Q1(x), and the measures µB and µHT coming
from the Finsler structure.

We found that n, m, and µHT are scalar multiples of each other, Hausdorff mea-
sure and Busemann measure coincide, and all five of these are mutually comparable
in the sense of being bounded above and below by scalar multiples of each other. In
the following section we will establish results about the structure of generic geodesic
rays with respect to these measures and the visual measures.

5. Thickness statistics for geodesic rays

In §3 we studied the behavior of Teichmüller geodesics that spend a definite
fraction of their time in some thick part Tε. In this section we will show that most
Teichmüller geodesics in fact satisfy this property. Therefore the tools developed
in §3 apply generically and we may use them in studying averaging questions such
as Theorems B, C, and D.

In all of what follows, if x is a fixed basepoint and y ∈ Br(x) is a point in the
ball centered at x, then we will write yt to denote the time–t point on the geodesic
ray based at x and traveling through y.

5.1. Volume estimates. We begin by recalling some estimates on the volume of
Teichmüller balls and using these to reduce to the case of annular shells.

Athreya, Bufetov, Eskin, and Mirzakhani [3] have found the following asymptotic
estimate for the m–volume of a ball of radius r.

Theorem 5.1 (Volume asymptotics [3, Theorem 1.3]). There is a (bounded) func-
tion f : T (S)→ (0,∞) such that for each x ∈ T (S)

lim
r→∞

m(Br(x)))

ehr
= f(x).

Corollary 5.2 (Definite exponential growth). Let µ denote Hausdorff measure η,
holonomy measure m, or any visual measure µx = Vis(κx). For each x ∈ T (S),
there exist constants C1 ≤ C2 such that for all sufficiently large r (depending on x)
we have

C1e
hr ≤ µ(Br(x)) ≤ C2e

hr.

Proof. This is built into the definition of the visual measure Vis(κx). For the
holonomy measure m, this follows from Theorem 5.1 above. The same estimate
then holds for η by Proposition 4.6 and Corollary 4.7. �

Of course, this holds for the other measures discussed in this paper as well by
the comparisons in the last section.

For any r > k > 0, let Akr (x) = Br(x)\Br−k(x) denote the annular shell between
radii r and r − k. The fact that the volume of a ball grows exponentially in the
radius means that we can focus our attention on annuli rather than on balls.
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Lemma 5.3 (Reduction to annuli). Fix x ∈ T (S) and let µ be any measure with
definite exponential growth (i.e., satisfying the conclusion of Corollary 5.2). Sup-
pose that for all k > 0 we have

lim
r→∞

1

r

1

µ(Akr (x))2

∫
Akr (x)×Akr (x)

dT (y, z) dµ(y)dµ(z) = 2.

Then the same holds when Akr (x) is replaced by Br(x).

Proof. Let C1, C2 be as in Corollary 5.2 above. For each k sufficiently large (satis-
fying C2

C1
e−hk < 1) and all sufficiently large r we have

2 ≥ 1

r

1

µ(Br(x))2

∫
Br(x)×Br(x)

dT (y, z) dµ(y)dµ(z)

≥
(
µ(Br(x))

µ(Br(x))
− µ(Br−k(x))

µ(Br(x))

)2
1

r

1

µ(Akr (x))2

∫
Akr (x)×Akr (x)

dT (y, z) dµ(y)dµ(z)

≥
(

1− C2

C1
e−hk

)2
1

r

1

µ(Akr (x))2

∫
Akr (x)×Akr (x)

dT (y, z) dµ(y)dµ(z).

The claim now follows since, by assumption, the latter becomes arbitrarily close to
2 when r and k are sufficiently large. �

5.2. The thickness property. Recall from §3 that the thick-stat of a nondegen-
erate geodesic [x, y] ⊂ T (S) is defined by

Thk%
ε [x, y] =

∣∣{0 ≤ s ≤ dT (x, y) : ys ∈ Tε}
∣∣

dT (x, y)
,

where ys denotes the time–s point on the geodesic ray from x through y. The goal

of this section is to show that, for all measures of interest, the thick-stat Thk%
ε [x, y]

is uniformly bounded below for most y ∈ Akr (x). More precisely, we will show that
these measures satisfy the following property.

Definition 5.4 (Property P1). We say a measure µ on T (S) has the thickness
property (P1) if for all 0 < θ, σ < 1, there exists ε > 0 such that

lim
r→∞

µ
({
y ∈ Akr (x) : Thk%

ε [x, yt] ≥ θ for all σr ≤ t ≤ r
})

µ(Akr (x))
= 1

holds for all x ∈ T (S) and k > 0.

We first observe that, for visual measures, the thickness property follows from
the ergodicity of the Teichmüller geodesic flow ϕt.

Proposition 5.5 (Thickness statistics for visual measures). Let κx denote either
of the visual measures sx or νx on Q1(x). For all 0 < θ < 1 there exists ε > 0 such
that for all x ∈ T (S) we have

lim
R0→∞

κx

({
q ∈ Q1(x) : Thk%

ε [x, π(ϕr(q))] ≥ θ for all r > R0

})
= 1.

Proof. Choose ε > 0 sufficiently small so that the proportion of the m–volume of
moduli space that is ε–thick is larger than θ; that is, so that

m
(
Tε/Mod(S)

)
> θ ·m

(
T (S)/Mod(S)

)
.
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By the ergodicity of the geodesic flow [14], it follows that the geodesic ray de-
termined by µhol–almost every q ∈ Q1(S) spends more than proportion θ of its
time in Tε, asymptotically. The vertical foliation of each such q is uniquely er-
godic [15]. If two quadratic differentials have the same vertical uniquely ergodic
measured foliation then they are forwards asymptotic [13]. We conclude that al-
most every measured foliation F ∈ MF (with respect to Thurston measure µTH)
has the property that any quadratic differential q with vertical foliation F satisfies

limr→∞ Thk%
ε [π(q), π(ϕr(q))] ≥ θ.

The map Q(x) → MF which assigns to q its vertical foliation is a smooth
map off the multiple zero locus, so it is smooth on a set of full measure. Thus
it is absolutely continuous with respect to the measures κx and µTH. Thus the
property of asymptotically spending at least proportion θ of the time in Tε holds
for κx–almost every q ∈ Q(x). This means that for each x ∈ T (S) the quantity

κx

({
q ∈ Q1(x) : Thk%

ε [x, π(ϕr(q))] ≥ θ for all r > R0

})
increases to 1 as the threshold R0 tends to infinity. �

Since visual measures on T (S) are obtained by integrating the above measures
on spheres, we immediately obtain the thickness property for visual measures.

Corollary 5.6. The thickness property (P1) holds for Vis(sx) and Vis(νx).

5.3. Random walks. We next verify (P1) for m, which is considerably more in-
volved. The proof uses ideas of Eskin and Mirzakhani on discretizing geodesics into
sample paths of a random walk. We begin the setup by combining some results
on the volume of balls from Athreya–Bufetov–Eskin–Mirzakhani [3] and Eskin–
Mirzakhani [7].

Lemma 5.7 (Volume of balls [3, Theorem 1.2], [7, Lemma 3.1]). There exists a
constant c > 0 (depending only on the topology of S) such that m(Bc(y))

.� 1 for

all y ∈ T (S). Additionally, given ε > 0 we have m(Br(y))
.
≺ε ehr for all y ∈ Tε.

Proof. The first claim is exactly Lemma 3.1 of [7]. For the second claim, choose
a point x ∈ Tε. Note that our choice of x depends only on ε. By the volume
asymptotics (Theorem 5.1), there exists constant R0 such that

m(Br(x))
.
≺ε ehr

for all r ≥ R0. Furthermore, by increasing R0 if necessary, we may assume that
the Mod(S)–translates of BR0

(x) cover Tε. It follows that for any y ∈ Tε and any
r ≥ 0 we have

m(Br(y)) ≤m(Br+R0
(x′)) = m(Br+R0

(x))
.
≺ε ehR0ehr

for some Mod(S)–translate x′ of x. This establishes the second claim. �

To define a random walk on T (S) with basepoint x, first choose a net N of points
in T (S), choosing so that x ∈ N and such that the net points are c–separated and
(2c)–dense (i.e., the distances between net points are at least c but the (2c)–balls
about net points cover Teichmüller space). Here c is the constant from Lemma 5.7,
depending only on the topology of S.

Given a parameter τ , a sample path of length s (starting at x) is a map

λ : {0, . . . , bs/τc} → N
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such that λ0 = x and for each index, dT (λk, λk+1) ≤ τ. Let Pxτ (s) be the set of
sample paths λ starting at x of length at most s, and let Pxτ be the set of all sample
paths of any length. By (36) of [7], for any δ > 0 and sufficiently large τ (depending
on δ) we have,

|Pxτ (s)| ≤ es(h+δ)

for all s ≥ 0. (Note that the constant C2 in (36) of [7], coming from [7, Proposition
4.5], can be taken to equal 1.)

Now given τ we define a map Fτ : T (S) → Pxτ which takes a point y and “dis-
cretizes” the geodesic [x, y] to a sample path. For any [x, y] we mark off points
along the geodesic starting at x and spaced by time τ − 2c. For each such point
along the geodesic we choose a nearest point in N . This is the sample path Fτ (y)
associated to y. For any ε1 > 0, we can choose τ sufficiently large so that the
image under Fτ of the ball Br(x) is contained in Pxτ (r(1 + ε1)). Furthermore, after
increasing τ if necessary, the above estimate on the cardinality of Pxτ (s) shows that
we additionally have

|Pxτ (r(1 + ε1))| ≤ ehr(1+2ε1)

for all r. We are now ready to show that the measure of points determining a ray
with a too-large thick-stat decays exponentially in r.

Theorem 5.8 (Thickness estimate for holonomy measure). For all 0 < θ, σ < 1,
x ∈ T (S), and k > 0, there exist ε = ε(θ, σ) > 0 and α > 0 such that

m
({
y ∈ Akr (x) : Thk%

ε [x, yt] < θ for some t ∈ [σr, r]
})

m(Akr (x))
< e−αr

for all sufficiently large r, where yt is the time–t point on the geodesic ray from x
through y.

Proof. We start with a geodesic [x, y] for y ∈ Akr (x). As in the above discussion,
for any ε1 < 1, we can choose τ ≥ 4c

ε1
so that the geodesic determines a sample path

λ in Pxτ (r(1 + ε1)). Let Fτ : Akr (x)→ Pτ be the map carrying y to the sample path
associated to [x, y]. In Appendix B we give a self-contained proof of the following
statement (Theorem B.6) which is indicated in the proof of Theorem 5.1 of [7]:
given θ, there exists δ′ > 0 such that for all large τ there is an ε′ so that for each
τ ≤ t ≤ r, the estimate

1

bt/τc
∣∣{1 ≤ i ≤ bt/τc : λi ∈ Tε′

}∣∣ ≥ θ
holds for all but at most

e−δ
′tehr(1+2ε1)

of the sample paths λ ∈ Pxτ (r(1 + ε1)). This is the crucial ingredient that lets us
control our thickness statistic. For the given σ, we now choose ε1 small enough

(forcing τ to be large) so that κ := δ′σ
h − 2ε1 > 0. In particular, note that τ and

δ′ depend only on θ and σ. If we let Ω ⊂ Pxτ (r(1 + ε1)) denote the union of these
exceptional sample paths corresponding to any σr ≤ t ≤ r, it follows that

|Ω| ≤
∞∑
k=0

e−δ
′(σr+kτ)ehr(1+2ε1) .

≺θ,σ e−δ
′σrehr(1+2ε1) = ehr(1−κ).
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We know that the ball of radius c centered at any point has m–measure O(1) by
Lemma 5.7. Consequently, when r is sufficiently large we have

m(F−1
τ (Ω))

.
≺ |Ω|

.
≺θ,σ ehre−κhr ≤m(Akr (x)) · e−αr,

for a suitable choice of α. We conclude that for all y ∈ Akr (x) except for a set of
at most this measure, the sample path associated to the geodesic from x has to y

has Thk%
ε′ ≥ θ for ending times t ≥ σr. Now every point on the geodesic is within

distance τ of a point on the sample path. Let ε = ε′e−τ . A point at distance at
most τ from a point in Tε′ lies in Tε. This concludes the proof. �

This says that, except for set of endpoints y of exponentially small measure,
geodesics have the property that they eventually have spent a definite fraction of
their time in the thick part. In particular, this implies the following.

Corollary 5.9. The measures m and η satisfy the thickness property (P1).

We will again use random walks to now show that a typical geodesic has a long
interval where it stays in the thick part. Specifically we say that a geodesic segment
[x, y] contains an ε–thick interval I if there is a geodesic subsegment I along [x, y]
such that I ⊂ Tε.

Theorem 5.10 (Thick intervals). For all 0 < σ < 1, M > 0, and sufficiently small
ε, there exists β > 0 such that for all sufficiently large r,

m
({
y ∈ Akr (x) : [yσr, y2σr] contains no ε–thick interval of length M

})
m(Akr (x))

< e−βr,

where yt is the time–t point on the geodesic ray from x through y.

Proof. For small ε1 define τ as in Theorem 5.8. Fix some 0 < θ < 1 by Theorem 5.8,
for sufficiently small ε′, except for an exponentially small set of paths the interval
[yσr, y2σr] contains a proportion θ of ε′–thick points. There exists ρ > 0 such that
for any net point y ∈ Tε′ , the probability that the next step in the random walk
starting at y remains in Tε′ is at least ρ.

Let κ := 1 − ρM/τ < 1. Then given a point y ∈ Tε′ , the probability that in
the next bM/τc steps in the random walk (that is, the sample path of length M)
starting at y at least one of the points is ε′–thin is at most κ.

Consider a sample path of length L = σr (so having bL/τc points) for which
at least θ proportion of its points are in Tε′ . Divide the path into subpaths with
bM/τc points, called pieces, so that the number of pieces is additively close to L/M
if M � τ . Let J1 be the collection of odd-index pieces and J2 the collection of
even-index pieces. Suppose without loss of generality that J1 contains at least as
many pieces with an ε′–thick point as J2 does. The number of J1 pieces containing
a point in Tε′ is then at least N := Lθ

2M . The probability that the sample path of
length M starting at an ε′ thick point enters the ε′–thin part is at most κ, as we
have seen. If two thick starting points are in different J1 pieces, then these events
are independent, because between the two points is a J2 piece of length M . Thus
the probability that the random path does not have any pieces of length M that
lie entirely in Tε′ is at most κN .

Now as in the discussion in the previous theorem, we have the map Fτ : Akr (x)→
Pxτ (r(1+ε1)). Let y ∈ Akr (x). We consider the segment [yσr, y2σr] ⊂ [x, y]. Its image
under Fτ is a path of length L = σr. The probability that this random path fails
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to have the desired segment of length M in the ε′–thick part is at most κ
σrθ/2M , by

the statement at the end of the last paragraph. Since κ is a fixed number smaller
than 1, we can find an upper bound for this proportion of the form e−βr for some
β > 0. As we saw in the proof of the last theorem, since this property holds for an
exponentially small proportion of sample paths, the corresponding property holds
for an exponentially small proportion of endpoints y ∈ Akr (x).

Let ε = e−τ ε′. Note again that if a point on the random path is ε′–thick, then
the corresponding point on the geodesic [x, y] is ε–thick. We conclude, as in the last
theorem, that the measure of the set of points y ∈ Akr (x) such that the geodesic
[x, y] does not have an ε–thick interval of length M in [σr, 2σr] is at most e−βr. �

6. Separation statistics for pairs of rays

We need one final ingredient before proving Theorems B and C. Namely, in order
to apply Theorem A to show that the geodesic [y, z] connecting two generic points
y, z ∈ Br(x) must “dip back” towards x, we must first know that [x, y] and [x, z]
become C–separated, where C is the constant from Theorem A. Thus we need an
estimate for the probability that two geodesic rays based at x fellow-travel past a
given radius. The appropriate sort of control is ensured by the following property.

Definition 6.1 (Property P2). We say a measure µ on T (S) satisfies the separation
property (P2) if for all M0, k > 0, 0 < σ < 1, and x ∈ T (S), we have

lim
r→∞

µ× µ
({

(y, z) ∈ Akr (x)×Akr (x) : dT (yt, zt) ≥M0 for all t ∈ [σr, r]
})

µ× µ
(
Akr (x)×Akr (x)

) = 1.

We will also consider the following time-specific version this separation property:

Definition 6.2 (Property P3). We say that a measure µ on T (S) satisfies the
strong separation property (P3), or has exponential decay of fellow travelers, if for
all x ∈ T (S), M0, k > 0, 0 < σ < 1, there exist α,R0 > 0 such that

µ× µ
({

(y, z) ∈ Akr (x)×Akr (x) : dT (yt, zt) < M0

})
µ× µ

(
Akr (x)×Akr (x)

) ≤ e−αt,

whenever R0 ≤ σr ≤ t ≤ r.

Theorem 6.3 (Strong separation for visual measures). All rotation-invariant visual
measures µx = Vis(κx) on T (S), and in particular Vis(νx) and Vis(sx), have the
strong separation property (P3).

Proof. Choose σr ≤ t ≤ r, fix a point y ∈ Akr (x), and let E = {z ∈ Akr (x) :
dT (yt, zt) < M0}. Looking instead in the sphere St(x), we have the set Et = {z ∈
St(x) : dT (yt, z) < M0}. Notice that, by definition,

E =
⋃

s∈[r−t−k,r−t]

ϕ̂s(Et).
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(Recall that ϕ̂s denotes the radial geodesic flow based at x.) Therefore, by the
normalized invariance, we have

µ(E) =

∫ r

r−k
Viss(κx)(ϕ̂s−t(Et)) dλ(s)

=

∫ r

r−k
Vist(κx)(Et)

Viss(κx)(Ss(x))

Vist(κx)(St(x))
dλ(s)

=
κx(Et)

κx(Q1(x))
µx(Akr (x)),

where, in the last line, we have identified Et with its image in Q1(x) ∼= St(x).

It remains to find R0 (independent of y) such that κx(Et)/κx(Q1(x))
.
≺ e−t

when t ≥ R0. Recall that S1 acts freely on Q1(x) by rotations. Choosing orbit
representatives, we may realize Q1(x) as a setwise product (Q1(x)/S1)× S1. The
measure κx pushes forward to a measure on Q1(x)/S1. By disintegration, we then
obtain a measure on each fiber S1 which, by the rotation-invariance of κx, must
agree with Lebesgue measure up to a scalar. For any two points z, z′ ∈ Et, the
triangle inequality gives dT (z, z′) ≤ 2M0. Now suppose that z and z′ lie in the
same Teichmüller disk, meaning that the unit quadratic differentials associated to
the geodesics [x, z] and [x, z′] lie in the same S1–orbit. Each Teichmüller disk is
an isometrically embedded copy of the hyperbolic plane. Thus, when t is large
compared to M0, hyperbolic geometry implies that the fraction of each S1–orbit
contained in Et is

.
≺ e−t. Using the product structure and integrating over the

Q1(x)/S1 factor, Fubini’s theorem then implies that κx(Et)/κx(Q1(x))
.
≺ e−t as

well. �

Theorem 6.4 (Strong separation for holonomy measure). The measure m satisfies
the strong separation property (P3).

Proof. For a given r, t, let

Dr,t = {(y, z) : dT (yt, zt) < M0} ⊂ Akr (x)×Akr (x)

denote the the set in question. Set θ = 1/2 and choose ε and α > 0 as in Theorem 5.8
so that the m–measure of the set

Er =
{
y : Thk%

ε [x, yt] < θ for some t ∈ [σr, r]
}
⊂ Akr (x)

is at most m(Akr (x))e−αr for all large r. We may now write Dr,t = D′r,t ∪ D′′r,t,
where

D′r,t = {(y, z) ∈ Dr,t : y ∈ Er} and D′′r,t = {(y, z) ∈ Dr,t : y /∈ Er}.

By the above, we have that

(6.5)
m×m(D′r,t)

m(Akr (x))2
≤ m(Er)m(Akr (x))

m(Akr (x))2
≤ e−αt

for all large r and all t ≤ r.
Choose any point y ∈ Akr (x) \ Er and fix some t ∈ [σr, r]. Then any point

z ∈ Akr (x) satisfying dT (yt, zt) < M0 must be contained in the ball of radius

r − t + M0 about yt. Since t ≥ σr and y /∈ Er; we know that Thk%
ε [x, yt] ≥ θ.

Choosing any 0 < δ < θ, there must exist a time t′ ∈ [δt, t] for which yt′ ∈ Tε.
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Furthermore, each such z lies within the ball of radius (1− δ)t+M0 + r − t about
yt′ . Applying Lemma 5.7, we see that

(6.6)
m×m(D′′r,t)

m(Akr (x))2
≤ m(Br−δt+M0

(yt′))

m(Akr (x))

.
≺ε

ehM0ehre−hδt

m(Akr (x))
.

The Theorem now follows from (6.5), (6.6) and the fact that, by Corollary 5.2, we

have m(Akr (x))
.
�x,k ehr for all large r. �

Finally, we see that for any measure enjoying exponential decay of fellow trav-
elers, most pairs of geodesic rays are in fact never near each other beyond some
threshold.

Proposition 6.7. The strong separation property (P3) implies the separation prop-
erty (P2).

Proof. If (y, z) ∈ Akr (x)×Akr (x) does not lie in the set

Er =
{

(y, z) ∈ Akr (x)×Akr (x) : dT (yt, zt) ≥M0 for all t ∈ [σr, r]
}
,

then there is some n ∈ N, n ≤ (1 − σ)r, such that dT (yσr+n, zσr+n) < M0 + 2.
Thus all such points are contained in the union of exceptional sets corresponding
to the radii σr, σr+ 1, . . . , σr+ br − σrc. Using the exponential bound provided by
property (P3), we see that for large r the complement of Er has measure at most

µ(Akr (x))2
(
e−ασr + e−α(σr+1) + · · ·+ e−α(σr+br−σrc

)
≤ µ(Akr (x))2

(
1

1− e−α

)
e−ασr. �

Corollary 6.8. The Hausdorff measure η, holonomy measure m, and the visual
measures Vis(νx) and Vis(sx) all satisfy property (P2).

Thus we can conclude that after throwing out a subset of Akr (x) × Akr (x) of
an arbitrarily small proportional measure, all pairs of geodesics stay separated by
an arbitrarily chosen distance in Teichmüller space after a threshold time σr has
elapsed.

7. Statistical hyperbolicity

We can now assemble our results to prove Theorems B and C.

Theorem 7.1 (Annulus version of statistical hyperbolicity). Let µ be any measure
on T (S) satisfying the thickness property (P1) and the separation property (P2).
Fix a basepoint x ∈ T (S) and an arbitrary k > 0. Then

lim
r→∞

1

r

1

µ(Akr (x))2

∫
Akr (x)×Akr (x)

dT (y, z) dµ(y)dµ(z) = 2.

We have shown that these hypotheses are satisfied by the standard visual mea-
sures Vis(νx) and Vis(sx), the holonomy measure m, and the Hausdorff measure η
(Corollaries 5.6, 5.9, 6.8), and thus also all the other measures considered in this
paper. Therefore, combining Theorem 7.1 with Lemma 5.3 (Reduction to annuli)
we immediately obtain Theorem B:
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Theorem B. Let µ denote the Hausdorff measure η, holonomy measure m, or
either standard visual measure Vis(νx) or Vis(sx). Then for every point x ∈ T (S),

lim
r→∞

1

r

1

µ(Br(x))2

∫
Br(x)×Br(x)

dT (y, z) dµ(y)dµ(z) = 2.

Proof of Theorem 7.1. Set θ = 3/4. For any 0 < δ, σ < 1/3, let ε = ε(θ, σ) > 0 be
the corresponding thickness parameter guaranteed by Property (P1). For this ε
and θ′ = 1/2, let C and L be the corresponding constants provided by Theorem A.
Properties (P1) and (P2) together imply that for all large r, we may restrict to
a subset Er ⊂ Akr (x) × Akr (x) whose complement has proportional µ–measure at
most δ and such that all pairs (y, z) ∈ Er satisfy

Thk%
ε [x, yt],Thk

%
ε [x, zt] ≥ θ and dT (yt, zt) ≥ 3C

for all t ∈ [σr, r], where yt and zt are the time–t points on the geodesic rays from
x through y and z, respectively. Notice that, in this case, the point yt cannot be
within C of any point on [x, z] (by the triangle inequality, any point on [x, z] within
C of yt must lie in [zt−C , zt+C ]).

We now let t = 2σr. Since Thk%
ε [x, y2σr] ≥ θ = 3/4, it follows that the interval

Ir = [yσr, y2σr] satisfies Thk%
ε Ir ≥ 1/2 = θ′ for all large r. We also have length(Ir) =

σr ≥ L when r is large, and σ < 1/3 ensures Ir ⊂ [x, y]. Since Ir∩NbhdC([x, z]) = ∅,
as noted above, Theorem A now implies that Ir∩NbhdC([y, z]) 6= ∅. Therefore [y, z]
contains a point in the ball B2σr+C(x), and so we conclude that

dT (y, z) ≥ 2(r − k − (2σr + C))

for all (y, z) ∈ Er. Putting the above estimates together, we find that

lim inf
r→∞

1

r

1

µ(Akr (x))2

∫
Akr (x)×Akr (x)

dT (y, z) dµ(y)dµ(z)

≥ lim inf
r→∞

1

r
(1− δ)(2r − 2k − 4σr − 2C) = (1− δ)(2− 4σ).

Since δ and σ can be chosen arbitrarily small, the result follows. �

Remark 7.2. One could give an alternate proof of Theorem B that does not rely
on Theorem A, but rather combines Rafi’s Theorem 3.13 with our Theorem 5.10,
which strengthens property (P1) to show that with high probability a sufficiently
long geodesic has a totally thick subinterval of definite length. (This holds despite
the fact that the probability of such a subinterval occurring at any specified time
is small).

We similarly obtain Theorem C:

Theorem C. For every point x ∈ T (S) and either family {µr} of standard visual
measures µr = Visr(νx) or Visr(sx) on the spheres Sr(x), we have

E(T (S), x, dT , {µr}) = 2.

Proof. Visual measures on T (S) are constructed by radially integrating these visual
measures on spheres. In fact, Proposition 5.5 and Theorem 6.3 were proved for an-
nuli by first verifying them for spheres, and so analogous formulations of properties
(P1) and (P2) also hold for the visual measures {µr} on spheres. The result thus
follows by the same argument used to prove Theorem 7.1 above. �
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8. Thin triangles

For y, z ∈ Br(x), we can form the geodesic triangle 4 = 4(x, y, z) whose sides
are [x, y], [x, z] and [y, z]. Since with positive probability the points y and z are
in the thin part of T (S), we can not expect that almost every triangle is thin as
r → ∞. However, it is true that almost every triangle is mostly thin: For a fixed
δ, let 0 ≤ Θδ(4) ≤ 1 denote the proportion of the three sides of 4 consisting of
points that lie in a δ–neighborhood of the union of the other two sides.

Theorem D. Let µ denote either the Hausdorff measure η or the holonomy measure
m. Then for all x ∈ T (S) and σ > 0 there exists δ > 0 such that

lim inf
r→∞

1

µ(Br(x))2

∫
Br(x)×Br(x)

Θδ(4(x, y, z)) dµ(y)dµ(z) ≥ 1− σ.

Before embarking on the proof, we use the results in the appendix to establish
the following analog of Theorem 5.8.

Lemma 8.1 (Thick-stat near the end). For all 0 < θ, σ < 1, x ∈ T (S) there exist
ε′′ = ε′′(θ, σ) > 0 and α > 0 such that for all k > 0 and all sufficiently large r

m
({
y ∈ Akr (x) : Thk%

ε′′ [y(1−σ)r, y] < θ
})

m(Akr (x))
< e−αr,

where yt denotes the time–t point along the geodesic ray from x through y.

Proof. For the given θ, we let ρ = 1−θ and take δ′ = ρ/8. For this δ′ and the given

σ, we choose ε1 � σ and τ ≥ 4c
ε1

accordingly so that κ := δ′σ
h − 2ε1 > 0. Recall

that every geodesic [x, y] with y ∈ Akr (x) then determines a sample path in the set
Pxτ (r(1 + ε1)) of random walks of at most r(1 + ε1)/τ steps starting at x. As in
the Appendix, we let µxτ denote the probability measure on Pxτ (r(1 + ε1)), and by
Lemma B.2 we moreover assume that τ is sufficiently large so that the cardinality
of any subset A ⊂ Pxτ (r(1 + ε1)) is bounded by µxτ (A)ehr(1+2ε1).

Fixing τ and ρ as above and choosing ε so that x ∈ Tε, we now apply Theorem B.5

with a constant γ satisfying cρτ < γ < c
ρ/2
τ . This provides ε′ and a cocompact set

K ⊃ Tε for which the conclusion of that theorem holds. Since τ is assumed to be
large, by Proposition B.3 we may suppose cτ < e−τ/2 so that γ < e−ρτ/4. Roughly,
the idea is to now apply Theorem B.5 to the set of sample paths starting at y(1−2σ)r.

To this end, we first argue that most random walks λ ∈ Pxτ (r(1 + ε1)) land in
K for some step in the interval [2σr/τ, σr/τ ] of steps from the end. The subset
Ω ⊂ Pxτ (r(1 + ε1)) of exceptional sample paths that avoid K between steps 2σr/τ
and σr/τ from the end is the union over j ≥ 0 of sets Ωj consisting of paths that lie
in K at step 2σr/τ + j from the end and stay outside K for the next σr/τ + j steps.
Now (B.7) in the Appendix says that for each j the probability of Ωj satisfies

µxτ (Ωj) ≤M
(
e−τ/4

)σr
τ +j

= Me−σr/4e−τj/4.

for some constant M = M(τ) (note that the constant γ0 appearing in (B.7) satisfies
γ0 < γ1/ρ < e−τ/4). Assuming that r is large, if we sum over j we see that the
probability of a random walk lying in Ω satisfies

µxτ (Ω) ≤ e−σr/8 < e−δ
′σr.
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Now consider the paths that do land in K for some step in the interval [2σr/τ, σr/τ ]
of steps from the end, namely the set

Σ := Pxτ (r(1 + ε1)) \ Ω.

This can be partitioned into sets Σj for j = 0, 1, . . . , σr/τ , where a path is in Σj
if its first K–point in the interval of [2σr/τ, σr/τ ] steps from the end appears at
nj = σr/τ + j steps from the end.

We claim that most paths in Σj will spend at least θ proportion of their final
nj steps in Tε′ . Indeed, by Theorem B.5, the probability that a random walk in Σj
fails to have at least θ proportion of its final nj steps Tε′ is bounded by

γnj < e−njτρ/4 = e−2δ′njτ = e−2(δ′σr+δ′τj) < e−δ
′σr.

Except for these paths, every path in Σj spends at least θ proportion of its last
nj = σr/τ + j steps in Tε′ , and therefore (since j ≤ σr/τ) at least θ/2 proportion
of its final 2σr/τ steps in Tε′ .

Since the above bound of e−δ
′σr holds for each set Σj , it follows that the prob-

ability that a random walk in Σ fails to spend at least θ/2 proportion of its last

2σr/τ steps in Tε′ is at most e−δ
′σr. Letting Σ′ ⊂ Σ denote these exceptional paths,

we conclude that

µxτ (Σ′) ≤ e−δ
′σrµxτ (Σ) ≤ e−δ

′σr.

Adding this to our previous estimate on µxτ (Ω), we find that except for the subset

Ω ∪ Σ′ ⊂ Pxτ (r(1 + ε1)) of µxτ–measure at most 2e−δ
′σr, every sample path in

Pxτ (r(1 + ε1)) spends at least θ/2 proportion of its final 2σr/τ steps in Tε′ . In
particular, by Lemma B.2 the number of these exceptional sample paths is at most

µxτ (Ω ∪ Σ′)ehr(1+2ε1) ≤ 2e−δσrehr(1+2ε1) = 2ehr(1−κ).

(Recall that ε1 � σ was chosen so that κ = δ′σ
h − 2ε1 > 0). Since the ball of radius

c centered at any point has m–measure
.
≺ 1 by Lemma 5.7, it follows that for all

large r, the set of points y ∈ Akr (x) for which the sample path associated to the
geodesic [x, y] lies in Ω ∪ Σ′ has m–measure at most on the order of

2ehr(1−κ) .
≺m(Akr (x))e−κr ≤m(Akr (x))e−κr/2.

We conclude that for all y ∈ Akr (x) except for a set of at most this measure, the
sample path associated to the geodesic [x, y] spends at least θ/2 proportion of its
final 2σr/τ steps in Tε′ . Since every point of such a geodesic is within distance τ of a

point on the sample path, by setting ε′′ = ε′e−τ it follows that Thk%
ε′′ [y(1−2σ)r, y] ≥

θ/2 for every such y ∈ Akr (x). Therefore we have proved the claim for θ/2 and 2σ.
As this can be done for any 0 < θ, σ < 1, the theorem follows. �

Proof of Theorem D. By Corollary 4.7, it suffices to assume µ = m, and by Lemma 5.3
it suffices to estimate the expected value over Akr (x)2 rather than Br(x)2. As in
the proof of 7.1, we set θ = 3/4 and let ε = ε(θ, σ) be the smaller of the constants
provided by Property (P1) and Lemma 8.1. For this ε and θ′ = 1/2, we then let C
and L be the corresponding constants provided by Theorem A.

Properties (P1)–(P2) and Lemma 8.1 show that for all large r we may restrict
to a subset Er ⊂ Akr (x)2 – with complement having arbitrarily small proportional
m–measure – such that for all (y, z) ∈ Er the four intervals

[yσr, y2σr], [zσr, z2σr], [y(1−2σ)r,y(1−σ)r], and [z(1−2σ)r, z(1−σ)r]
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all have Thk%
ε ≥ θ′ = 1/2 and such that dT (yt, zt) ≥ 3C for all t ≥ σr. By

Theorem A, it follows that these intervals respectively contain points y′, z′, y′′, z′′

that each lie within distance C of the geodesic [y, z]. Thus by Rafi’s fellow traveling
result [22, Theorem C], there is a constant C ′ > C such that the intervals [y′, y′′]
and [z′, z′′] are entirely contained within C ′ of [y, z].

Now, [y′, y′′] and [z′, z′′] both have length at least (1−4σ)r, and so the subinter-
vals of [y, z] that they fellow travel must each have length at least (1− 4σ)r− 2C ′.
Thus we have identified subintervals of 4(x, y, z) whose lengths total at least
4(1 − 4σ)r − 4C ′ and which lie within C ′ of the union of the other two sides of
4(x, y, z). Since the total perimeter of 4(x, y, z) is at most 4r, it follows that

ΘC′(4(x, y, z)) ≥ 1− 4σ − C′

r

for all (y, z) ∈ Er. Since the complement of Er has arbitrarily small proportional
m–measure, the result follows. �

Remark 8.2. The above proof may be easily adapted to show that the conclusion
of Theorem D also holds for the expected value of Θδ(y1, y2, y3) over all triples of
points y1, y2, y3 ∈ Br(x).

Appendix A. Repackaged distance formula

The purpose of this appendix is to repackage Rafi’s distance formula (Theo-
rem 2.3) in a way that treats annular and non-annular subsurfaces on equal footing:

Proposition A.1 (Repackaged distance formula). Given any sufficiently large
threshold M0, for all x, y ∈ T (S) we have:

dT (x, y) �M0
dS(x, y) +

∑
Y

[dY (x, y)]M0

Here, the sum is over all (annular and non-annular) proper subsurfaces.

For simplicity and without loss of generality, below we suppose that ε0 has been
chosen small enough that log+(1/ε0) ≥ 100, say. We begin with a straightforward
reformulation.

Lemma A.2. For any sufficiently large threshold M0, for all x, y ∈ T (S) we have:

dT (x, y) �M0
dS(x, y) +

∑
V

[dV (x, y)]M0
+

∑
A : ∂A∈Γxy

[dA(x, y)]M0
+

∑
A : ∂A/∈Γxy

[
max

{
log+

(
dC(A)(x, y)

)
, log+

(
1

lx(∂A)

)
, log+

(
1

ly(∂A)

)}]
logM0

Proof. Since Γxy, Γx and Γy each contain at most 3g − 3 curves, each max over
these sets is within bounded multiplicative error of the corresponding sum, and
applying a threshold only creates bounded additive error, so the first three terms
of the lemma are established. By the definition of Γx we have∑

α∈Γx

log+

(
1

lx(α)

)
=
∑
α/∈Γxy

log+

[
1

lx(α)

]
1/ε0

.

Since this is a sum with at most 3g−3 nonzero terms, we can increase the threshold
to any number M0 ≥ 1/ε0 with bounded additive error. Finally, for functions f, g, h,
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we have (in fact with the implied multiplicative constant equal to 3)

log+[f ]M0
+ log+[g]M0

+ log+[h]M0

.�
[
max{log+f, log+g, log+h}

]
logM0

. �

We now show that each term in the last summand is bilipschitz equivalent to
the corresponding hyperbolic distance dA(x, y).

Lemma A.3. Consider an annular subsurface A ⊂ S with core curve ∂A = α. For
each pair of points x, y ∈ T (S), set

HA(x, y) := max

{
log+

(
dC(A)(x, y)

)
, log+

(
1

lx(α)

)
, log+

(
1

ly(α)

)}
.

If x, y ∈ T (S) are such that α /∈ Γxy and either dA(x, y) or HA(x, y) is greater than
36 log+(1/ε0), then 6−1dA(x, y) ≤ HA(x, y) ≤ 6dA(x, y).

Proof. Choose points x, y ∈ T (S) that satisfy the hypotheses. To fix notation, set
π′α(x) = (0, 1) and π′α(y) = (dC(A)(x, y), 1). These are the closest-point projections
of πα(x) and πα(y) to the horocycle bounding Hα, and their distances from these
points are exactly given by log+(1/lx(α)) and log+(1/ly(α)). Let

B = dH2(π′α(x), π′α(y)) = arccosh

(
1 +

dC(A)(x, y)2

2

)
denote the hyperbolic distance between these projections. Using this formula, one
may easily check that the inequalities

(A.4) log+dC(A)(x, y) ≤ B ≤ 4 log+dC(A)(x, y)

hold provided that either B ≥ 3 or dC(A)(x, y) ≥ 3.
Applying the triangle inequality with the points π′α(x) and π′α(y) implies that

(A.5) dA(x, y) ≤ log+

(
1

lx(α)

)
+B + log+

(
1

ly(α)

)
.

Then (A.4), (A.5), and the definition of HA imply that dA(x, y) ≤ 6HA(x, y) in
the case that B ≥ 3. If B < 3, we claim that the hypotheses of the Lemma
ensure that B cannot be the largest term on the right-hand side and therefore that
dA(x, y) ≤ 3L ≤ 3HA(x, y), where L denotes the larger of the other two terms.
Indeed, if B were the largest term and B < 3, then (A.5) would imply dA(x, y) < 9,
and (A.4) would necessitate log+dC(A)(x, y) < 3 so that HA(x, y) < 3. But then
both dA and HA are less than 9, contradicting the hypothesis.

By the above, the assumption dA(x, y) ≥ 36 log+(1/ε0) implies that HA(x, y) ≥
6 log+(1/ε0); therefore all cases will be covered by proving that this in turn im-
plies HA(x, y) ≤ 6dA(x, y). Without loss of generality, we may assume that
lx(α) ≤ ly(α); since α /∈ Γxy this guarantees ly(α) ≥ ε0. First suppose that
log+dC(A)(x, y) ≥ 3 log+(1/lx(α)), in which case we have log+dC(A)(x, y) = HA(x, y) ≥
6 log+(1/ε0). In particular we certainly have dC(A)(x, y) ≥ 3; thus (A.4) and the
triangle inequality give

log+dC(A)(x, y) ≤ B ≤ log+

(
1

lx(α)

)
+ dA(x, y) + log+

(
1

ly(α)

)
.

Therefore HA(x, y) = log+dC(A)(x, y) ≤ 3dA(x, y) in this case. The remaining pos-
sibility log+dC(A)(x, y) ≤ 3 log+(1/lx(α)) necessitates 3 log+(1/lx(α)) ≥ HA(x, y).
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Recall that π′α(x) is the closest point projection of πα(x) to the horocycle bounding
Hα; since π′α(y) is also on this horocycle we have

log+

(
1

lx(α)

)
≤ dH2(πα(x), π′α(y)) ≤ dA(x, y) + log+

(
1

ly(α)

)
.

The assumptions 3 log+(1/lx(α)) ≥ HA(x, y) ≥ 6 log+(1/ε0) and ly(α) ≥ ε0 now
ensure that HA(x, y) ≤ 6dA(x, y). �

Corollary A.6. Let HA(x, y) be defined as in Lemma A.3. Then for any threshold
M0 ≥ 36 log+(1/ε0) and any x, y ∈ T (S) we have∑

∂A/∈Γxy

6−1 [dA(x, y)]6M0
≤

∑
∂A/∈Γxy

[HA(x, y)]M0
≤

∑
∂A/∈Γxy

6 [dA(x, y)]M0/6

With these estimates, we can derive the simplified distance formula.

Proof of Repackaged Distance Formula. Choose any sufficiently large threshold M0

such that Lemma A.2 holds for both e6M0 and M0/6 and such that M0/6 ≥
36 log+(1/ε0). Notice that, in any sum of the form

∑
[f ]M , raising the thresh-

old can only decrease the value of the sum, and lowering the threshold can only
increase its value. Therefore, combining Lemma A.2 and Corollary A.6 we find that
for any x, y ∈ T (S) the various distances satisfy

dT ≺M0
dS +

∑
V

[dV ]e6M0 +
∑

∂A∈Γxy

[dA]e6M0 +
∑

∂A/∈Γxy

[HA]6M0

≤ 6

dS +
∑
V

[dV ]M0
+

∑
∂A∈Γxy

[dA]M0
+

∑
∂A/∈Γxy

[dA]M0

 ,

where we have suppressed the x and y in the notation. The lower bound on dT (x, y)
is similar. �

Appendix B. Thickness statistics for random walks

The purpose of this Appendix is to give a detailed proof of Theorem B.5 and its
consequence Theorem B.6. A version of the later statement, as well as a sketch of
the proof, was indicated in [7]. However, as our application requires more control of
the constants than the statement in [7] provides, we include a precise formulation.
Eskin–Mirzakhani in [7, §4.1] define for each τ > 0 a Mod(S)–invariant function
uτ which descends to a proper function on the quotient moduli space. The actual
definition of uτ is somewhat complicated, but uτ (x) is (up to multiplicative con-
stants depending on τ) comparable to 1/(length of the shortest curve on x). Sets
of the form {x : uτ (x) ≤ C} are cocompact subsets of T . There is a constant Mτ

such that if dT (x, y) ≤ τ then

(B.1)
uτ (x)

uτ (y)
≤Mτ .

Recall from §5.3 that N denotes a fixed net in T and that, given a parameter τ ,
Pxτ denotes the set of all sample paths λ : [0, 1, . . . ]→ N (of any length) starting at
the basepoint x and satisfying dT (λi, λi+1) ≤ τ for all i. If random sample paths
λ = (λ0, λ1, . . .) are constructed via the Markov process in which the net point λi+1

is selected uniformly at random among all net points in the ball Bτ (λi), then this
Markov process determines a probability measure µxτ on the set Pxτ of all sample
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paths (i.e., random walks) starting at x. Recall that Pxτ (r) denotes the set of sample
paths of at most br/τc steps, so that the distance from start to end is at most r. For
our applications, we will be concerned about the number of sample paths satisfying
a certain property, rather than the µxτ–measure of such paths. These quantities are
related in the following manner, which was implicit in [7].

Lemma B.2. For any δ > 0, there exists τ0 such that for all τ > τ0 and all r, the
cardinality of any subset A ⊂ Pxτ (r) satisfies

|A| ≤ µxτ (A) · e(h+δ)r.

Proof. Since A is a finite set, µxτ (A) is simply the sum of the measures of the
individual elements of A. By definition of the Markov process, the µxτ measure of
an element λ ∈ A is the reciprocal of the product of the number of choices for the
first step of λ times the number of choices for the second step, and so on. Thus

µxτ (λ) =
(
|Bτ (λ0) ∩N| · |Bτ (λ1) ∩N| · · · |Bτ (λbr/τc−1) ∩N|

)−1

Combining Proposition 4.5 and equation (17) of [7], it follows that for the given δ
there exists τ0 such that for all all τ ≥ τ0 one has |Bτ (y) ∩ N| ≤ e(h+δ)τ for all
y ∈ T (S). Therefore, for each λ ∈ A we find that

µxτ (λ) ≥
(
e(h+δ)τ

)−br/τc
≥ e−(h+δ)r.

Adding these estimates for all λ ∈ A yields the claimed inequality. �

We now define an averaging operator Aτ which, given a function f : N → R+,
produces the new function Aτf : N → R+ defined as

Aτf(x) :=

∫
λ∈Pxτ

f(λ1) dµxτ (λ).

Thus Aτf(x) is the expected value of f(λ1) among all random walks starting at x.
In [7], Eskin and Mirzakhani defined the averaging operator slightly differently.

For a function f : T → R+ they defined

Aτf(x) :=
1

m(BT (x, τ))

∫
BT (x,τ)

f(y)dm(y)

and then established the following estimates regarding their function uτ .

Proposition B.3 (Theorem 4.1 of [7]). For all sufficiently large τ ≥ 0, there are
constants cτ and bτ such that

• (Aτuτ )(y) ≤ cτuτ (y) + bτ for all y ∈ T , and
• cτ ≤ C ′e−τ for a universal constant C ′ depending only on genus.

The same estimates hold for our averaging operator over the discrete random
walks on the net. This follows from (17) of [7] which says that the number of net
points in a ball of radius τ is comparable to the volume of the ball, and the fact that
on a ball of radius 2c the value of uτ is (up to multiplicative constants depending
on c) the value at the center.

We now state a general proposition about Markov chains proved by Athreya in
[2]. Denote a state space by S and let Ps be the probability measure on all random
walks in S starting at s. For a subset C ⊂ S and a random walk X = (X0, X1, . . . )
starting at s = X0, denote by τC(X) := inf{n ≥ 0 | Xn ∈ C} the first step at which
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X enters C. Proposition 3.1 of [2] then gives the following in terms of an averaging
operator A defined over steps of the random walk, as above.

Proposition B.4. Suppose there exist constants 0 < c < 1 and b ≥ 0 and a
function V : S → R+ defined on the state space of a random walk that satisfies
(AV )(s) ≤ cV (s) + b for all s ∈ S. Then for all l ≥ 0, all s /∈ Cl := {y ∈ S | V (y) ≤
l}, and all n ≥ 0 we have

Ps(τCl(X) > n) ≤ V (s)

l

(
c+

b

l

)n
.

Following Athreya’s proof of Theorem 2.3 in [2, §6], we now use Proposition B.3
and Proposition B.4 to get an exponential bound on the probability that a random
walk λ in T spends a large fraction of its time outside of large compact sets.

Theorem B.5 (Fraction in the thick part; c.f. [2, Theorem 2.3]). For all 0 < ρ < 1,
ε, τ > 0, and γ such that cρτ < γ < 1, there exists ε′ > 0 and a cocompact set K

containing Tε such that for all x ∈ N ∩K and all n ≥ 1 we have

µxτ

({
λ ∈ Pxτ :

|{1 ≤ k ≤ n : λk /∈ Tε′}|
n

> ρ

})
< γn.

As an almost immediate consequence we will have the following (c.f. [7]).

Theorem B.6. Given 0 < θ < 1, there exist δ′ > 0 such that for all ε, ε1 > 0 and
all large τ there exists ε′ so that for all x ∈ Tε∩N and each τ ≤ t ≤ r, the estimate

1

bt/τc
∣∣{1 ≤ i ≤ bt/τc : λi ∈ Tε′

}∣∣ ≥ θ
holds for all but at most

e−δ
′tehr(1+2ε1)

of the sample paths in Pxτ (r(1 + ε1)).

Proof. We assume τ is large enough so that, by Lemma B.2, the cardinality of
any subset A ⊂ Pxτ (r(1 + ε1)) satisfies |A| ≤ µxτ (A)ehr(1+2ε1). Let ρ = 1 − θ
and set δ′ = ρ/4. For large τ , we have cτ < e−τ/2, and we choose γ so that

cρτ < γ < c
ρ/2
τ < 1. By Theorem B.5 there is a corresponding ε′ for these ε, τ, ρ, γ

such that if x ∈ Tε, then the µxτ–measure of the set of paths in Pxτ that in their
first n = bt/τc steps spend more than ρ proportion of time outside Tε′ is at most

γn < c
nρ/2
τ < e−nρτ/4. By Lemma B.2 the number of paths that spend more than

ρ proportion of time outside the Tε′ (equivalently spending at most θ proportion
inside Tε′) is thus bounded by

γnehr(1+2ε1) < e−ρt/4ehr(1+2ε1) = e−δ
′tehr(1+2ε1). �

We end with the proof of Theorem B.5.

Proof. For the given γ, we have cτ < γ1/ρ < 1. Therefore we may choose l > 0
sufficiently large so that γ0 = (cτ + b

l ) < γ1/ρ. We also take l large enough to satisfy
Tε ⊂ Cl = {y ∈ T : uτ (y) ≤ l} for the given ε. Define K := Cl, which is cocompact,
and fix any point x ∈ N ∩K. Note that uτ (x) ≤ l.

For integers i ≥ 0 define functions ti : P
x
τ → N as follows:

• t0 = inf{k ≥ 0 | λk ∈ Cl} = 0,
• t2i−1 = inf{k > t2i−2 | λk /∈ Cl} for i ≥ 1, and
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• t2i = inf{k > t2i−1 | λk ∈ Cl} for i ≥ 1.

That is, evaluated on sample path λ ∈ Pxτ , t0 is the first time that λ is in Cl (which
is always the first step since we assume λ0 = x ∈ Cl), t1 is the first time that λ
steps outside of Cl, t2 is the next time that λ steps into Cl, t3 is the next time that
λ steps outside of Cl, and so on. Now define si = ti − ti−1 for i ≥ 1. So:

• s2i is the number of steps that λ ∈ Pxτ takes outside of Cl on its ith sojourn
outside, and
• s2i−1 is the number of steps that λ ∈ Pxτ takes inside of Cl on its ith sojourn

inside.

Now, for each λ ∈ Pxτ , we define a function Fλ : N → {0, 1} as an indicator for
Cl, as follows:

Fλ(k) =

{
1, t2i−1 ≤ k < t2i for some i;

0, t2i ≤ k < t2i+1 for some i.

Then

1

n

∣∣{1 ≤ k ≤ n : uτ (λk) > l}
∣∣ =

1

n

n∑
k=1

Fλ(k).

By definition, we have |t2k − t2k−2| ≥ 2 for all k, which in turn implies that
k ≤ t2k for all k ≥ 1. It now follows that

n∑
k=1

Fλ(k) ≤
t2n∑
k=1

Fλ(k) =

n∑
k=1

s2k,

We therefore conclude that

µxτ

(
1

n

∣∣{1 ≤ k ≤ n : uτ (λk) > l}
∣∣ > ρ

)
= µxτ

(
n∑
k=1

Fλ(k) > nρ

)
≤ µxτ

(
n∑
i=1

s2i > nρ

)
.

Now, for each k, Proposition B.4 applied to the function uτ implies that

(B.7) µxτ (s2i > k) ≤Mτγ
k
0 .

We now employ a trick to exclude short sojourns: Let C ′ ≥ 1 denote some large
threshold that will be determined later. For each i ≥ 1 we now define

s′2i =

{
0, s2i ≤ C ′

s2i, else

By (B.7) above, we have µxτ (s2i = k) ≤ µxτ (s2i > k − 1) ≤ Mτγ
k−1
0 for each i ≥ 1

and k ≥ 1. This implies that for all i ≥ 1 we have

µxτ (s′2i = k) ≤

{
0, 1 ≤ k ≤ C ′

Mτγ
k−1
0 , k > C ′.

The point here is that if s2i ≤ C ′ then λ takes at most C ′ steps outside of Cl
between t2i−1 and t2i. By (B.1), this implies that uτ (λk) ≤ lMC′

τ for each of these

steps (i.e., for t2i−1 ≤ k < t2i). Therefore, by increasing l to l′ := lMC′

τ , the
number of steps that λ takes outside of Cl′ (in its first n steps) is bounded above
by
∑n
i=1 s

′
2i. Therefore, it suffices to find an exponentially small upper bound on

µxτ (
∑n
i=1 s

′
2i > ρn).
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Our choice of γ0 < γ1/ρ ensures that we may choose θ > 0 satisfying the inequal-
ities ln(γ0) < −θ < ln(γ)/ρ. In particular, we have eθγ0 < 1. Let g : Pxτ → R be

given by g = gθ = exp(θ ·
n∑
i=1

s′2i). Observe that

E(g) =

∫
Pxτ

g(λ)dµxτ (λ) ≥
∫
{g>eθρn}

g(λ)dµxτ (λ) ≥ µxτ (g > eθρn) · eθρn.

Therefore

µxτ

(
n∑
i=1

s′2i > ρn

)
= µxτ (g > eθρn) ≤ e−θρnE(g)

= e−θρn
∫
Pxτ

(
n∏
i=1

eθs
′
2i(λ)

)
dµxτ (λ) = e−θρn

n∏
i=1

∫
Pxτ

eθs
′
2i(λ)dµxτ (λ),

where in the last line we have used the fact that the random variables s′1, . . . , s
′
2n

are independent of each other (so that the expected value of the product is equal
to the product of the expected values). We now estimate each expected value in
the product. For each i ≥ 1 we have∫

Pxτ

eθs
′
2i(λ)dµxτ (λ) =

∞∑
k=0

eθkµxτ (s′2i = k) = eθ·0µxτ (s′2i = 0) +

∞∑
k=dC′e

eθkµxτ (s′2i = k)

≤ 1 +

∞∑
k=dC′e

eθkMτγ
k−1
0 ≤ 1 + Mτ

γ0(1−eθγ0)
(eθγ0)C

′
.

Note that the assumptions on θ, γ, ρ imply eθργ > 1. Therefore, since eθγ0 < 1,
we may now choose C ′ sufficiently large so that

Γ :=
(

1 + Mτ

γ0(1−eθγ0)
(eθγ0)C

′
)
< eθργ.

By the above calculations, we may now conclude that

µxτ

(
n∑
i=1

s2i > ρn

)
≤ e−θρn

n∏
i=1

∫
Pxτ

eθs
′
2i(λ)dµxτ (λ)

≤ e−θρn
(

1 + M
γ0(1−eθγ0)

(eθγ0)C
′
)n

=
(
e−θρΓ

)n
< γn.

This shows that for any x satisfying uτ (x) ≤ l, the probability that a random walk
λ ∈ Pxτ spends more than proportion ρ of its time outside of the cocompact set

Cl′ = {y ∈ T : uτ (y) ≤ lMC′

τ } during its first n steps is at most γn. Taking ε′ > 0

sufficiently small so that uτ (y) ≤ lMC′

τ =⇒ y ∈ Tε′ completes the proof. �
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[1] J.C. Álvarez Paiva, A. Thompson, Volumes on normed spaces and Finsler spaces, MSRI
Publications 50 (2004).

[2] J.S. Athreya, Quantitative recurrence and large deviations for Teichmüller geodesic flow.
Geom. Dedicata 119 (2006), 121–140.

[3] J. Athreya, A. Bufetov, A. Eskin, and M. Mirzakhani, Lattice point asymptotics and volume
growth on Teichmüller space, Duke Math. J. 161 (2012), no. 6, 1055–1111.
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