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1. Introduction

The curve graph (or curve complex) C(S) associated to a surface S of finite type
is a locally infinite combinatorial object that encodes topological information about
the surface through intersection patterns of simple closed curves. It is known to
be δ-hyperbolic [5], a property that is often described by saying that a space is
“coarsely a tree.” To be precise, there exists δ such that for any geodesic triangle,
each side is in the δ-neighborhood of the union of the other two sides. In this note,
we will investigate the finer metric properties of the curve graph by considering the
geometry of spheres; specifically, we will study the average distance between pairs
of points on Sr(α), the sphere of radius r centered at α. To make sense of the
idea of averaging, we will develop a definition of null and generic sets in §3 that is
compatible with the topological structure of the curve graph.

Given a family of probability measures µr on the spheres Sr(x) in a metric space
(X, d), let E(X) = E(X,x, d, {µr}) be the normalized average distance between
points on large spheres:

E(X) := lim
r→∞

1

r

∫
Sr(x)×Sr(x)

d(y, z) dµr(y)dµr(z),

if the limit exists. For finitely generated groups with their Cayley graphs, or more
generally for locally finite graphs, we can study averages with respect to counting
measure because the spheres are finite sets. It is shown in [2] that non-elementary
hyperbolic groups all have E(G,S) = 2 for any finite generating set S; this is also
the case in the hyperbolic space Hn of any dimension endowed with the natural
measure on spheres. By contrast, E(Rn) < 2 and E(Zn, S) < 2 for all n and S,
with nontrivial dependence on S. In particular this shows that E(X) varies under
quasi-isometry, so it is a fine and not a coarse asymptotic statistic. Note that δ-
hyperbolicity itself (without an assumption of homogeneity) does not imply E = 2:
even for locally finite trees, one can get any value 0 ≤ E ≤ 2.

In [1], we show that for Teichmüller space with the Teichmüller metric and var-
ious visual measures on spheres, E(T (S)) = 2. Here, we show something stronger
for the curve graph.

Theorem. With respect to our notion of genericity for spheres in the curve graph,
almost every pair of points on Sr(α) is at distance exactly 2r apart.

This holds for every r and is certainly stronger than saying that the average
distance is asymptotic to 2r, so we can write E(C(S)) = 2. That is, suppose we
start with α and a pair of curves β and γ such that the shortest path in the curve
graph from α to either β or γ has length r. Then, almost surely, there is no more
efficient way to connect them with each other than to travel through α. This
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result tells us that, even though the space C(S) is far from uniquely geodesic, the
concatenation of two geodesic segments of length r that share a common endpoint is
almost always itself geodesic. In this sense the curve graph is “even more hyperbolic
than a tree.”

Of course, the meaningfulness of this result depends on the notion of genericity.
Lustig and Moriah [4] have introduced a very natural definition for genericity in
C(S) which uses the topology and measure class of PML(S). We identify the sphere
of radius 1 in C(S) with a lower-complexity curve complex, so that genericity can be
defined in the same way. We then extend to spheres of larger radius in a “visual”
manner; see Definition 6. While the Lustig–Moriah definition gives content to
statements about typical curves on S, our notion of genericity on spheres enables
us to talk about typical properties of high-distance curves on S.

2. Background

We fix a topological surface S = Sg,n with genus g and n punctures, and let
h = 6g − 6 + 2n. Let S be the set of homotopy classes of essential nonperipheral
simple closed curves on S. From now on, a curve will mean an element of S. Next
we define the curve graph C(S): The vertex set of C(S) is S. In the case that h > 2,
two curves are joined by an edge if they are disjointly realizable. In the case of S1,1

we join two vertices if the curves intersect once, and in the case of S0,4 two vertices
are joined by an edge if the curves intersect twice. In each of these cases, C(S) is
endowed with the standard path metric, denoted dS(α, β).

For α ∈ S, we write Sα to denote the lower-complexity punctured (possibly
disconnected) surface obtained by cutting open S along α. Note that C(Sα) can be
realized as the subgraph of C(S) consisting of neighbors of α—that is, it is identified
with the sphere S1(α) ⊂ C(S).

Recall that a measured lamination on S, given a hyperbolic structure, is a fo-
liation of a closed subset of S by geodesics, together with a measure on transver-
sals that is invariant under holonomy along the leaves of the lamination. We will
use ML(S) to denote the space of measured laminations on S. Let Mod(S) :=
π0(Diff+(S)) denote the mapping class group of S; it acts on C(S) and on ML(S).
The latter has a natural Mod(S)-invariant measure µ. (This is the Lebesgue mea-
sure associated to the piecewise linear structure induced on ML(S) by train track
neighborhoods.) The space of projective measured laminations PML(S) is obtained
by identifying laminations whose transverse measures differ only by a scalar multi-
ple; it is endowed with the topology of a sphere of dimension h− 1 and it inherits
a natural Mod(S)-invariant measure class, which we will again denote by µ.

A train track on S is a finite collection of disjointly embedded arcs, called
branches, meeting at vertices, called switches, such that the branches are C1 away
from switches and have well-defined tangents at the switches. (There are also non-
degeneracy conditions for switches and topological conditions on the complement;
see [7] for details.) Train tracks exist on every surface with h > 0, and we say that
a lamination F is carried by a train track τ if there is a map φ : S → S isotopic to
the identity with φ(F ) ⊂ τ . Via this carrying relation, measured laminations that
are carried by τ correspond to choices of weights on the branches of τ that satisfy
switch conditions.

A connected proper subsurface V of S is essential if all components of ∂V are
essential; i.e., they are homotopically nontrivial and not isotopic to a puncture.
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Definition 1. Consider a non-annular essential subsurface V . The subsurface
projection πV is a coarsely well-defined map C(S) → C(V ) defined as follows. Re-
alize β ∈ S and ∂V as geodesics (in any hyperbolic metric on S). If β ⊂ V , let
πV (β) = β. If β is disjoint from V , then πV (β) is undefined. Otherwise, β ∩ V is
a disjoint union of finitely many homotopy classes of arcs with endpoints on ∂V ,
and we obtain πV (β) by choosing any arc and performing a surgery along ∂V to
create a simple closed curve contained in V . All possible ways to do this form a
non-empty subset of the curve complex C(V ) with uniformly bounded diameter.
We can denote by dV (α, β) the diameter in C(V ) of πV (α)∪ πV (β). If α and β are
disjoint and both intersect V then dV (α, β) ≤ 4.

There is a well-defined inclusion S ↪→ PML(S) whose image is dense and we will
identify S with its image under that map. The supporting subsurface of a lamination
is the subsurface filled by F . We will denote the geometric intersection number on
S by i(α, β), and we recall that it has a well-defined extension to ML(S). On
PML(S), we can thus talk about whether or not i(F,G) = 0. Then PML(Sα)
can be identified with the subset of PML(S) consisting of those laminations F for
which i(F, α) = 0. If α is nonseparating, then Sα has complexity h − 2; if α is
separating, then Sα consists of two surfaces with complexity h1 + h2 = h − 2. In
that case we consider PML(Sα) as a product of the corresponding spaces for the
two components. In either case we see that PML(Sα) has positive codimension in
PML(S).

Definition 2. Given a group G that acts on a space X with Borel algebra B(X),
a G-invariant mean on X is a function σ : B(X)→ [0, 1] such that

• σ(∅) = 0 and σ(X) = 1 ;
• if B1, . . . BN ∈ B(X) are pairwise disjoint then σ(

⊔
Bi) =

∑
σ(Bi) ; and

• σ(B) = σ(gB) for all B ∈ B(X) and all g ∈ G.

Note that invariant means are only required to be finitely additive, while mea-
sures must be countably additive.

Proposition 3. There is no Mod(S)-invariant mean on S or on PML.

Proof. One can choose a finite number T = T (S) of train tracks τ1, . . . , τT such
that (1) every curve is carried by τi for some i and (2) the set of curves that are
carried by τi and have positive weights on all branches of τi is disjoint from the
corresponding set of curves carried by τj . Pairs of attracting and repelling fixed
points of pseudo-Anosov diffeomorphisms are dense in PML×PML.

If there is an invariant mean σ on S, for some i the set Bi of curves carried by τi
satisfies ai = σ(Bi) > 0. Choose N such that N > 1/ai for such an index i. Find N
pseudo-Anosovs ψk with distinct attracting fixed points at laminations carried by
τi and repelling fixed points carried by some τj with j 6= i. Disjoint neighborhoods
around these attracting fixed points may be chosen such that all curves in each
neighborhood are carried by τi and have positive weights on all branches of τi;
likewise for the repelling fixed points. Raising each ψk to a high enough power mk

we can conclude that the curves carried by ψmkk (τi) are disjoint from the set of
curves carried by ψmll (τi) for l 6= k. By invariance, each of those sets has σ-mean
ai. Adding N of these we find that σ(S) > 1, a contradiction. �

Corollary 4. There is no Mod(S)-invariant Borel probability measure µ on PML.
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3. Genericity in the curve complex

In the paper [4], Lustig–Moriah give the following notion of genericity.

Definition 5. Let X be a topological space, provided with a Borel measure or
measure class µ. Let Y ⊂ X be a (possibly countable) subset with µ(Y ) 6= 0. Then

the set A ⊂ Y is called generic in Y (or simply generic, if Y = X) if µ(Y \A) = 0.
(Here closures are taken in X.) On the other hand A is called null in Y if µ(A) = 0.

We can extend the definitions to products as follows. Given E ⊂ Y × Y and
a ∈ Y let E(a) := {b ∈ Y : (a, b) ∈ E or (b, a) ∈ E}.

Definition 6. E is null in Y × Y if {a ∈ Y : E(a) not null in Y } is null.

This definition for products corresponds to Fubini’s theorem: the set of points
with non-null fibers must be null.

We will focus on the case that X = PML(S) for any surface S and Y = S(S)
is the set of simple closed curves. Several examples and observations can be made
immediately to illustrate that this notion is topologically interesting.

• Nullness in S is preserved by: acting by Mod(S), passing to subsets, and
finite unions. A set is null if and only if its complement is generic.
• The entire set S is generic in S, and being generic in S implies denseness in
PML. (Because if A misses an open set in PML, then the closure of its
complement has positive measure.)
• There are natural subsets of S that are neither null nor generic. For in-

stance, suppose that g ≥ 2, so that S has a nontrivial partition into sepa-
rating and nonseparating curves. Each of these subsets is dense in PML,
so neither can be null or generic.
• Our basic example of a null set in S is the set of all curves disjoint from

some α, which is a copy of S(Sα) sitting inside S(S). Its closure in PML(S)
consists of those laminations giving zero weight to α, which can be identified
with a copy of PML(Sα); since this has lower dimension, it has measure
zero.

Because nullness is not preserved by countable unions, the following proposition
is less obvious. It is proved by Lustig–Moriah [4, Cor 5.3] using techniques from
handlebodies, but we include a proof for completeness. Our proof is similar to
well-known arguments, due to Luo and to Kobayashi [3], showing that the complex
of curves has infinite diameter (see the remarks following Proposition 4.6 of [5]).

Proposition 7. Any bounded-diameter subset of the curve graph C(S) is a null
subset of S.

We first prove that chains of disjoint laminations between two curves can be
realized with curves.

Definition 8. Given a pair of laminations F,G ∈ PML, define their intersection
distance di(F,G) to be the smallest n such that there exist F = G0, G1, . . . , Gn = G
with i(Gj , Gj+1) = 0.

(We note that di(F,G) can be infinite; this occurs if at least one of them is filling
and they are topologically distinct.)

Lemma 9. di(α, β) = dS(α, β) for all α, β ∈ S.
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Proof. Since simple closed curves are laminations, it is immediate that di(α, β) ≤
dS(α, β).

For the other direction, we can assume that the laminations are not filling. Then
given a lamination G ∈ PML, let us write YG for its supporting subsurface. Now
i(F,G) = 0 =⇒ i(F, ∂YG) = 0 =⇒ i(∂YF , ∂YG) = 0. But then given a minimal-
length disjointness path

α−G1 −G2 − · · · −Gn−1 − β,

we can realize it by simple closed curves by replacing each Gi with ∂YGi . �

Proof of Proposition 7. First given α ∈ S, let Sr(α) ⊂ C denote the sphere of radius
r centered at α. It is enough to prove the Proposition for each Sr(α). For the ball
of radius 1, the statement follows since each β satisfies i(α, β) = 0 and, as we saw
above, the set of such β has measure 0 closure in PML(S). Notice that this closure

S1(α), which we identify with a copy of PML(Sα), is exactly the set of laminations
F ∈ PML(S) for which i(α, F ) = 0.

Now we consider the closure of the sphere of radius r and suppose G ∈ Sr(α).
Then G = limm→∞ βrm where βrm ∈ Sr(α). Then for each m there is a path
α, β1

m, . . . , β
r
m in C,where βjm ∈ Sj(α). Passing to subsequences we can assume

that for each j the sequence βjm converges to some Gj ∈ Sj(α) with Gr = G.
Furthermore since i(βjm, β

j+1
m ) = 0 it follows that

i(Gj , Gj+1) = 0.

Replacing each Gj with ∂YGj , as in the proof of Lemma 9, we see that i(G, γ) = 0

for some γ ∈ Sr−1(α). But then G ∈ S1(γ). Thus

Sr(α) ⊂
⋃

γ∈Sr−1(α)

S1(γ).

Thus Sr(α) is a countable union of measure-zero subsets of PML(S), hence has
zero measure itself. Therefore Sr(α) is a null set by definition. �

We wish to define what it means for a property to be generic for pairs of points in
Sr(α). Although Sr(α) is contained in S, the Lustig–Moriah definition of genericity

in S does not apply because the set Sr(α) is itself null in S. Nonetheless, S1(α) =
PML(Sα) is a topological sphere in its own right, and thus has its own natural
measure class. Therefore, we may define a subset E of S1(α) to be null if E has
measure zero in PML(Sα); this respects the topology of PML(Sα) sitting inside of
PML(S). We extend this notion of nullness to subsets E ⊂ Sr(α) of larger spheres
in a “visual” manner by considering the set of points on the sphere of radius 1 that
are metrically between the center and E—these are the points of S1(α) that “see”
the set E.

Definition 10. E is null in Sr(α) if if E1 := {γ ∈ S1(α) : E ∩Sr−1(γ) 6= ∅} is null
in S1(α) ↪→ PML(Sα).

Remark 11. The definition given above is the most restrictive notion of nullness
that makes use of S1(α) as a visual sphere (i.e., that treats the 1–sphere as the
sphere of directions). Another possible definition, also natural from the point of
view of Fubini’s theorem, would be inductive: suppose nullness has been defined
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for spheres of radius 1, . . . , r − 1. Instead of E1, the full set of points that see
E ⊂ Sr(α), we form the smaller set

E′1 = {γ ∈ S1(α) : E ∩ Sr−1(γ) is not null in Sr−1(γ)}.
Then we could declare E ⊂ Sr(α) to be null in Sr(α) if E′1 is null in S1(α), com-
pleting the inductive definition.

Example 12. To get a feeling for these definitions, consider the examples of R2

with the Euclidean metric or `1 metric, with the Lebesgue measure class on the
sphere of radius 1 in each case. To accord with geometric intuition, we expect arcs
to be non-null and points to be null.

Figure 1. In each metric, an arc E and a point E are shown on
the sphere of radius two together with the associated E1 for each.

In the Euclidean metric, if E is an arc on the sphere of radius r, then E1 is also
an arc but E′1 is empty. If E is a point, then E1 is a point while E′1 is again empty.
In the `1 metric, if E is a nontrivial arc on the sphere of radius r, then E1 is a
nontrivial arc, and so is E′1. In this setting, however, points in nonaxial directions
have a large E1 but an empty E′1.

This means that our visual definition of nullness works intuitively in the `2 case
(points are null but arcs are not), but less so in the `1 case (where even points
are typically non-null). The weaker, inductively defined, notion of nullness makes
even arcs null in Euclidean space, but on the other hand behaves intuitively on `1.
This suggests that the visual definition of nullness is better adapted to capturing
the geometry of spheres in certain spaces, while the inductive definition would be
better adapted to others. However, being null in our sense implies nullness in the
weaker sense.

Returning to the curve graph: consider distinct curves β, γ ∈ S1(α). Clearly
dS(β, γ) is either 1 or 2. We can easily see that such pairs generically have distance
2 because since α and β are disjoint, the set of γ ∈ S1(α) for which dS(β, γ) = 1 is
contained in PML(Sα,β), which has codimension at least two in PML(Sα).

β

γ

α

Our main result is that given any limit on their length, paths connecting points
on the sphere “almost surely” pass through the center.
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Theorem 13 (Avoiding the center). For a surface S with h ≥ 4, consider a point
α ∈ C(S). For K > 0, let PKr (α) ⊆ Sr(α)×Sr(α) consist of those pairs (β, γ) that
are connected by some path of length ≤ K that does not go through α. Then for
any K and r, the set PKr (α) is null.

Proof. For any pair (β, γ) ∈ PKr (α), there is a path β = δ0, δ1, . . . , δk = γ in C(S)
with k ≤ K, and δi 6= α for each i. Two successive curves δi and δi+1, since they
are disjoint and intersect Sα, project to nonempty sets in C(Sα) whose distance
from each other is at most 4; thus dSα(β, γ) ≤ 4K.

α

β1 · · ·
βr−1 β

γ1
· · ·

γr−1 γ

Let β1, γ1 be any closest points on S1(α) to β, γ, respectively. Since we can
join γ, γ1 by a geodesic in C(S) that misses α, there is a constant M = M(S)
coming from Masur-Minsky [6, Thm 3.1] such that dSα(γ, γ1) ≤M . By the triangle
inequality,

dSα(β, γ1) ≤M + 4K.

For each β ∈ Sr(α), let E(β) = {γ : (β, γ) ∈ PKr (α)} and then consider the
corresponding E1(β) = {γ1 ∈ S1(α) : E(β) ∩ Sr−1(γ1) 6= ∅}.

We have shown that E1(β) has diameter at most 2M + 8K by the triangle
inequality and is therefore null in S1(α) by Proposition 7. Thus E(β) is null for all
β, so PKr (α) is null. �

Corollary 14 (Statistical hyperbolicity). Consider pairs of points β, γ ∈ Sr(α)
such that dS(β, γ) < 2r. The set of all such pairs is null. So for a generic pair of
points on Sr(α), the distance is exactly 2r.

In closing, we note that there is a coarsely well-defined, coarsely Lipschitz map
from Teichmüller space to the curve complex given by taking a short marking at
every point. With respect to natural measures on T (S), generic geodesics make
definite progress in the curve graph, as we show in [1]. Thus we can see a very
loose heuristic for calculating average distances in T (S) by projecting to C(S) and
appealing to the phenomena that we have just demonstrated in the curve graph.
Obtaining the precise aymptotics needed for statistical hyperbolicity, as we do in
[1], takes much more work.
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[2] M. Duchin, S. Lelièvre, and C. Mooney, Statistical hyperbolicity in groups, Alg. Geom. Top.

12 (2012), 1–18.
[3] T. Kobayashi, Heights of simple loops and pseudo-Anosov homeomorphisms. Braids (Santa

Cruz, CA, 1986) 327–338. Amer. Math. Soc., Providence, RI, 1988.

[4] M. Lustig and Y. Moriah, Horizontal Dehn surgery and genericity in the curve complex.
Journal of Topology 3 (2010), 691–712.



8 DOWDALL DUCHIN MASUR

[5] H. Masur and Y. Minsky, Geometry of the complex of curves. I. Hyperbolicity. Invent. Math.

138 (1999), no. 1, 103–149.

[6] H. Masur and Y. Minsky, Geometry of the complex of curves. II. Hierarchical structure.
GAFA 10 (2000), no. 4, 902–974.

[7] R.C. Penner with J.L. Harer, Combinatorics of train tracks. Annals of Mathematics Studies,

125. Princeton University Press, Princeton, NJ, 1992.


