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Abstract

A filling curve γ on a based surface S determines a pseudo-Anosov homeomorphism
P(γ) of S via the process of “point-pushing along γ.” We consider the relationship
between the self-intersection number i(γ) of γ and the dilatation λγ of P(γ); our

main result is that (i(γ) + 1)
1/5 ≤ λγ ≤ 9i(γ). We also bound the least dilatation of

any pseudo-Anosov in the point-pushing subgroup of a closed surface and prove that
this number tends to infinity with genus. Lastly, we investigate the minimal entropy
of any pseudo-Anosov homeomorphism obtained by pushing along a curve with self-
intersection number k and show that, for a closed surface, this number grows like
log(k).

1 Introduction

In this paper we consider the entropy generated by “stirring” a surface S in the following
manner. Place a finger on a point p ∈ S and smoothly deform the surface by pushing p
along a closed path γ : [0, 1]→ S; the resulting homeomorphism of S mixes the surface just
as one stirs a pot of soup. Certainly the amount of entropy introduced in this way depends
entirely upon the stirring pattern: pushing along a simple path will have little effect, whereas
following a complicated path that winds all over the surface will mix things up in short order.
The goal of this paper is to understand how the entropy depends on the pushing path.

Point-pushing homeomorphisms

Throughout, S = Sg,n will denote the surface obtained from a closed, connected, orientable
surface of genus g by removing n ≥ 0 points or punctures. The mapping class group of
S is the group Mod(S) of isotopy classes of orientation-preserving homeomorphisms of S.
By a marked or based surface (S, p), we simply mean a surface S with basepoint p ∈ S;
the corresponding based mapping class group Mod(S, p) is defined analogously by restricting
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to homeomorphisms and isotopies of the pair (S, p). These two groups are related by the
Birman exact sequence [Bir2, §4.1]:

1 // π1(S, p)
P // Mod(S, p)

forget // Mod(S) // 1

The first map P constitutes the stirring procedure mentioned above. It is called the point-
pushing homomorphism and is constructed by pushing the basepoint p around a closed curve
γ ∈ π1(S, p); see §2.1 for details. Representatives of the resulting class P(γ) are called point-
pushing homeomorphisms.

The second map is obtained by simply forgetting the basepoint. Thus the image of
P consists precisely of those mapping classes in Mod(S, p) that become trivial when one
allows isotopies to move the basepoint. This subgroup is called the point-pushing subgroup
of Mod(S, p) and will be denoted by

PP(S) := P(π1(S, p)) ≤ Mod(S, p).

Pseudo-Anosov dilatation

A mapping class f ∈ Mod(S, p) exhibits the mixing behavior that interests us precisely if it
is pseudo-Anosov, meaning that it has a representative homeomorphism which respectively
stretches and contracts a transverse pair of measured foliations on (S, p) by some stretching
factor λf > 1; see [FLP] or [FM]. This stretching factor λf is called the dilatation of f ; it
is an algebraic integer that is an important measure of the dynamical properties of f . For
instance,

• log(λf ) is the minimal topological entropy of any representative homeomorphism in
the mapping class of f ,

• log(λf ) is the translation length of the isometric action of f on the Teichmüller space
of S\{p} equipped with the Teichmüller metric; thus log(λf ) also represents the length
of the geodesic loop corresponding to [f ] in the moduli space of hyperbolic structures
on S \ {p},

• for any simple closed curve α ⊂ S \ {p} and any Riemannian metric g on S \ {p}, the
length of fk(α) grows like λkf ; more precisely, k

√
lg(fk(α))→ λf for all α and g.

According to the Nielsen–Thurston classification [Thu, Ber], f ∈ Mod(S, p) is pseudo-
Anosov if and only if no iterate of f fixes the isotopy class of any essential simple closed
curve on (S, p). Here, a simple closed curve α ⊂ S is essential if it is neither homotopically
trivial nor homotopic into every neighborhood of a puncture; the (essential) simple closed
curves on (S, p) are the same as for S \{p}. We refer the reader to [FLP] or [FM] for a more
thorough discussion of the basic properties of pseudo-Anosov mapping classes.
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Dilatations in PP(S)

In the context of the point-pushing subgroup, there is a simple criterion, due to Kra, that
determines whether a pushing loop defines a pseudo-Anosov mapping class. Recall that a
closed curve γ ⊂ S fills S if every loop that is freely homotopic to γ intersects every essential
simple closed curve in S. The following is taken from [Kra, Theorem 2’].

Theorem 1.1 (Kra). Let S = Sg,n be an orientable surface satisfying 3g + n > 3, and let
γ ∈ π1(S, p) be a closed curve on S. Then the mapping class P(γ) ∈ Mod(S, p) is pseudo-
Anosov if and only if γ fills S.

It is clear from the definition that γ must fill S in order for P(γ) to be pseudo-Anosov;
the point of Theorem 1.1 is that every sufficiently complicated curve does produce a pseudo-
Anosov mapping class under point-pushing. For a quick proof of this result, see the elegant
argument given by Farb and Margalit in [FM, Theorem 14.6].

Each free homotopy class of oriented closed curves on S corresponds to a conjugacy class
in π1(S, p). As dilatation is a conjugacy invariant, it follows that to the free homotopy class
of each oriented filling curve γ ⊂ S we may assign a number

λγ := the dilatation of P(γ)

whose logarithm measures the entropy introduced by stirring the surface along the path γ.
Our primary goal is now to answer the following general question.

Motivating Question 1.2. How does λγ depend on the the complexity of the filling curve
γ?

In order to address Question 1.2, we need a quantitative measure of the complexity of a
closed curve. The most natural choice seems to be self-intersection number.

Definition 1.3 (Self-intersection number). If γ : S1 → S is a closed curve on the surface S,
then the (geometric) self-intersection number of γ is defined to be the quantity

i(γ) := min
µ∈[γ]

1

2

∣∣{(x, y) | x, y ∈ S1, x 6= y, and µ(x) = µ(y)
}∣∣ ,

where the minimum is taken over all closed curves µ in the free homotopy class of γ.

We point out that i(γ) is an integer and that it is the “obvious” geometric quantity—for
representative curves whose intersections are all 4–valent, the quantity being minimized is
just the number of intersection points.

Our goal is to relate λγ and i(γ). A simple argument shows that, on a fixed surface S,
λγ tends to infinity as i(γ) increases in the sense that

for every K there exists some N so that i(γ) ≥ N =⇒ λγ > K. (1.4)

Indeed, since fP(γ)f−1 = P(f(γ)) for any f ∈ Mod(S, p), we see that i(γ) is a conjugacy
invariant of P(γ) and that (1.4) is a consequence of Ivanov’s [Iva] well-known compactness
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property: For each K > 1 there are only finitely many conjugacy classes of pseudo-Anosov
elements f ∈ Mod(S, p) with λf ≤ K. However, this does not explain how λγ depends
on i(γ) nor at what rate λγ tends to infinity. Our main result addresses these issues by
describing an explicit relationship between dilatation and self-intersection number.

Theorem 1.5. Let S = Sg,n be a surface satisfying 3g + n > 3. If γ : [0, 1]→ S is a closed
filling curve on S that represents a primitive element of π1(S), then the dilatation λγ of the
mapping class P(γ) satisfies

5
√

i(γ) + 1 ≤ λγ ≤ 9i(γ).

Furthermore, the upper bound holds without the assumption that γ is primitive.

Surprisingly, these bounds are independent of the surface—they only depend on the
geometric complexity of the pushing curve γ. Recalling the context of stirring on a surface,
this shows that any stirring path with many self-crossings is guaranteed to generate a lot
of entropy and that, in a sense, the entropy is an actual consequence of the complexity of
the stirring path. Since dilatation grows faster than self-intersection number upon taking
powers of γ ∈ π1(S), the lower bound in Theorem 1.5 may be extended to non-primitive
filling curves as follows.

Corollary 1.6. Let S = Sg,n be a surface satisfying 3g + n > 3, and let γ : [0, 1] → S be a
closed filling curve on S.

i) If S = S0,4 or S1,2 and γ is the square of a primitive element in π1(S), then λγ ≥ 5
√

i(γ).

ii) If S = S1,1 and γ is the second, third, or fourth power of a primitive element, then

λγ ≥ 5
√

(i(γ) + 1)/2.

iii) In all other cases, λγ ≥ 5
√

i(γ) + 1.

Remark. We have chosen to work in the context of (possibly) punctured surfaces in order to
ease the exposition. However, Theorem 1.5 and Corollary 1.6 also hold for compact surfaces
with boundary. The conversion between these two contexts is straightforward and left to the
reader.

It is also interesting to consider Question 1.2 in the context of other measures of com-
plexity. For example, the lower central series {Gi} and the derived series {G(i)} of a group
G = G1 = G(1) are the recursively defined sequences

Gk+1 = [Gk, G] and G(k+1) = [G(k), G(k)],

respectively. For non-abelian surface groups G = π1(Sg,n), Malestein and Putman [MP]
have related the self-intersection number of a nontrivial element γ ∈ G to its depth in
both the lower central series and the derived series of G. More precisely, they showed
that i(γ) ≥ log8(k) − 1 for all γ ∈ Gk, that i(γ) ≥ 2dk/2e − 2 for all γ ∈ G(k), and that
i(γ) ≥ k

4g+n−1 − 1 when γ ∈ Gk and n ≥ 1 [MP]. Combining their results with Corollary 1.6
immediately implies the following corollary.
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Corollary 1.7. Let S = Sg,n be a surface satisfying 3g + n > 5, and let γ ∈ G = π1(S, p)
be a loop that fills S. For k ≥ 1, let Gk and G(k) denote the kth terms in the lower central
series and the derived series of G, respectively.

i) If γ ∈ Gk, then λγ ≥ (log8(k))
1/5.

ii) If γ ∈ G(k), then λγ ≥
(
2dk/2e−2 + 1

)1/5 ≥ 2
k−4
10 .

iii) Furthermore, if γ ∈ Gk and n ≥ 1, then λγ ≥
(

k
4g+n−1

)1/5

.

(As per Corollary 1.6, slightly weaker bounds hold for surfaces satisfying 4 ≤ 3g + n ≤ 5.)

The spectrum of pseudo-Anosov dilatations

In addition to studying the dilatation of individual elements, one may also consider the
spectrum

spec(A) := {log(λf ) | f ∈ A is pseudo-Anosov}

of all entropies attained in a particular subset A ⊆ Mod(S) (or A ⊂ Mod(S, p)) of mapping
classes. The aforementioned compactness property [Iva] implies that spec(A) is a discrete
closed subset of R, a fact which was previously observed by Arnoux and Yoccoz [AY]. Con-
sequently, this spectrum has a least element

L(A) := inf {spec(A)} . (1.8)

For example, spec(Mod(S)) may be thought of as the length spectrum of closed Teichmüller
geodesics in the moduli space of S, and L(Mod(S)) is the length of the shortest such geodesic.

While explicit calculations of L(Mod(S)) have only been made in a few low-genus exam-
ples (see, e.g., [LT] or [Hir]), its asymptotic behavior has been understood for some time.
For real-valued functions f and h, we write f � h if the quotient f(x)/h(x) is bounded
between two positive numbers. For the closed surface Sg of genus g, Penner [Pen1] has
shown that L(Mod(Sg)) � 1/g. In particular, by increasing the genus, it is possible to find
pseudo-Anosov elements of Mod(Sg) with dilatation arbitrarily close to 1.

Farb, Leininger, and Margalit [FLM] have studied the spectrum of dilatations in the
Torelli group Ig, which is the subgroup of Mod(Sg) consisting of mapping classes that act
trivially on H1(Sg;Z). Contrasting Penner’s result, they proved that L(Ig) is universally
bounded between 0.197 and 4.127. Since these bounds are independent of genus, this shows
that L(Ig) � 1.

Least point-pushing dilatations

In light of these results, it is natural to consider the asymptotics of L(PP(Sg)) and, more
generally, of L(PP(Sg,n)). Since point-pushing homeomorphisms act trivially on homology,

5



it is apparent from [FLM] that L(PP(Sg)) is universally bounded below away from zero.
Furthermore, since the self-intersection number of any filling curve γ ⊂ Sg,n satisfies

i(γ) ≥ −χ(Sg,n) = 2g + n− 2 (1.9)

one might be tempted to invoke the observation (1.4) and conclude that L(PP(Sg,n)) tends
to infinity with both g and n. While this reasoning is invalid, because Ivanov’s compactness
property only applies to one surface at a time, the conclusion that L(PP(Sg,n)) → ∞ does
follow from Theorem 1.5 together with (1.9):

Corollary 1.10. For any surface Sg,n satisfying 3g + 3 > n, we have

L(PP(Sg,n)) ≥ 1
5

log(2g + n− 1).

In particular L(PP(Sg,n)) tends to infinity with both g and n.

Proof. We simply note that L(PP(Sg,n)) is realized by a primitive filling curve γ ⊂ Sg,n.

Corollary 1.10 proves that the least dilatation in PP(Sg) exhibits drastically different
behavior than that for the larger Torelli group—any point-pushing pseudo-Anosov on a
high-genus surface must have large dilatation. Interestingly, Corollary 1.10 also has the fol-
lowing implication regarding the spectrum of all pseudo-Anosov dilatations of point-pushing
homeomorphisms on all surfaces.

Corollary 1.11. The infinite union
⋃

3g+n>3 spec(PP(Sg,n)) is a discrete closed subset of R.

This is a marked contrast to the situation for the full mapping class group: although
each spectrum spec(Mod(Sg,n)) is discrete, by looking at powers of pseudo-Anosovs f ∈
Mod(Sg) with arbitrarily small dilatation, we see that the subspectrum

⋃
g spec(Mod(Sg))

of all pseudo-Anosov dilatations on all closed surfaces is in fact dense in [0,∞).
In the case of closed surfaces, we also establish an upper bound on L(PP(Sg)).

Theorem 1.12. For the closed surface Sg of genus g ≥ 2, we have

1
5

log(2g) ≤ L(PP(Sg)) < g log(11).

Least dilatations and self-intersection number

We now consider the dependence of least dilatation on self-intersection number. For a
nonnegative integer k, we define the subset

PPk(S) := {P(γ) | γ ∈ π1(S) with i(γ) = k}
of point-pushing homeomorphisms coming from pushing curves with self-intersection number
k. Refining our investigation to this stratification of PP(S) leads to the following result,
which completely describes the asymptotic dependence of least dilatation on self-intersection
number.

Theorem 1.13. Let Sg be a closed surface of genus g ≥ 3. For any integer k ≥ 3g − 1, we
have that

1
5

log(k + 1) ≤ L(PPk(Sg)) < log(k) + g log(11).

In particular, for a closed surface S of genus at least 3, this shows that L(PPk(S)) � log(k).

6



Outline

The theory of train tracks provides a natural means of calculating pseudo-Anosov dilata-
tions. This perspective is investigated in §3, where we describe a completely straightforward
procedure to construct an invariant “pretrack” for any point-pushing homeomorphism; see
Proposition 3.3. However, this approach is only partially successful because our methods do
not produce a train track in general. Nevertheless, the pretrack τγ is significant because it
comes with an explicit incidence matrix Mγ that depends only on the combinatorial structure
of γ. In §4, we use this matrix to establish the general upper bound in Theorem 1.5. In the
case that τγ is an actual train track, it provides a direct method for calculating the dilatation
λγ. This framework is used in §5 to analyze concrete examples and prove the upper bounds
on least dilatations in Theorems 1.12 and 1.13.

The pretrack τγ is not able to provide a general lower bound on dilatation; see Remarks 3.5
and 4.7. Thus, in contrast to the our other calculation-based results, the lower bound in
Theorem 1.5 presents the primary theoretical difficulty. We prove this inequality in §2 by
analyzing the action of P(γ) on simple closed curves and counting the exponential growth
rate of intersection numbers. The technique is to lift to the universal cover and control the
images of paths by studying the motion of the marked points.
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2 A lower bound on dilatation

Our first objective is to establish a general lower bound on the dilatation of a point-pushing
pseudo-Anosov map. The train track approach developed in §3 is inadequate for this purpose
because it does not produce a train track in general, but only a pretrack. We instead
estimate dilatations by examining the action on simple closed curves. Our primary tool in
this endeavor is geometric intersection number.

Definition 2.1 (Intersection number). Let a and b be essential simple closed curves on a
marked surface (S, p), and let α and β denote their respective isotopy classes in (S, p). The
geometric intersection number of a and b is then defined as

i(a, b) = inf {|a′ ∩ b′| : a′ ∈ α, b′ ∈ β} .

We emphasize that isotopies of the marked surface (S, p) are required to fix the basepoint
p, and that essential simple closed curves in (S, p) are the same as in S\{p}. In these regards,
the basepoint plays a similar role as a puncture. The connection between intersection number
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and pseudo-Anosov dilatation is made precise by the following theorem of Thurston; for a
proof, see [FLP, Theorem 12.2].

Theorem 2.2 (Thurston). Let f ∈ Mod(S, p) be pseudo-Anosov with dilatation λf > 1. For
any two essential simple closed curves a, b ⊂ (S, p), there is a constant c ∈ (0,∞) for which

lim
k→∞

i(fk(a), b)

λkf
= c.

Assumptions 2.3. For the remainder of this section, we fix a genus g surface S = Sg,n with
n ≥ 0 punctures that satisfies 3g + n > 3. We fix a complete, finite-area hyperbolic metric
on S and a filling curve γ ⊂ S that represents a primitive conjugacy class of π1(S); primitive
here means that γ cannot be written as a power γ = µm in π1(S) for any |m| > 1. Upon
adjusting γ by a homotopy, we may assume that γ is geodesic; this geodesic representative
realizes the minimum self-intersection number i(γ) > 0 in Definition 1.3. Lastly, we fix an
essential, geodesic, simple closed curve α ⊂ S. Since γ is filling, the curve α necessarily
intersects γ nontrivially.

For any two basepoints q, q′ ∈ S, the mapping class groups Mod(S, q) and Mod(S, q′) are
naturally isomorphic via an isomorphism that preserves pseudo-Anosov dilatation. There-
fore, we are free to choose a basepoint p ∈ γ which is not a self-intersection point of γ and
such that p /∈ α. With this basepoint, α becomes an essential simple closed curve in (S, p).
After parameterizing γ : [0, 1] → S so that γ(0) = p = γ(1), we obtain the point-pushing
pseudo-Anosov P(γ) ∈ Mod(S, p); our goal is to relate its dilatation λγ to the self-intersection
number i(γ). The hyperbolic metric gives a locally-isometric universal covering π : H2 → S,
and we fix a preimage p0 ∈ π−1(p) to serve as the basepoint of H2. This defines an isometric
action by deck transformations of the fundamental group G = π1(S, p) on H2.

Strategy. Our proof of the lower bound now proceeds in several steps. We first review the
definition of P and build a representative point-pushing homeomorphism ϕγ in the mapping
class P(γ). The ultimate goal is then to study the images of α under iteration by ϕγ and to
count their intersection numbers with other curves on the marked surface (S, p). Although
it is relatively easy to describe these iterates using, for instance, the train track theory
developed in §3 and §4.1, such representative curves do not aid in calculating intersection
numbers because they need not realize the infimum in Definition 2.1; see Remark 4.6.

To get around this difficulty, we lift everything to the universal cover H2 where it will be
easier to understand the structure of ϕkγ(α). As discussed in §2.1, the simple closed curves
ϕkγ(α) lift to infinite paths αk in H2, and the process of point-pushing on S lifts to a procedure
that we call “weaving” in hyperbolic space. In this setting, our goal is to study the paths
αk obtained by weaving and to relate their complexity to the self-intersection number i(γ).

Making these ideas precise involves many technical tools that we develop over the next
several subsections. In §2.2 we introduce a tree T that will serve as a sort of coordinate
system for H2, and in §2.3 we develop the technical devices that will help us navigate through
T . As we will see in Observation 2.12, bounding the intersection numbers i(ϕkγ(α), β) on
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(S, p) roughly translates into showing that all paths in the isotopy class of αk must cross
many edges of T .

To prove that this is the case, we develop the notion of a constraint on αk; this is
essentially a marked point in H2 that forces every path in the isotopy class of αk to visit a
particular vertex of T . The relevant machinery for working with constraints is developed
in §2.4; we then give a recursive construction in §2.5 that identifies exponentially many
constraints. Finally, in §2.6, we count intersection numbers and establish a lower bound on
the dilatation λγ.

2.1 Setting the stage: weaving in hyperbolic space

The first step in our proof is to translate the idea of point-pushing on the surface S to
its analogue in the universal cover H2; it is in this setting that that we will ultimately be
able to understand the iterates of α and count their intersection numbers with other curves.
In this subsection we quickly review the construction of the point-pushing homomorphism
P and choose a particular representative ϕγ of the mapping class P(γ). We then lift this
point-pushing homeomorphism to a “weaving homeomorphism” ϕ̃γ in H2 and introduce the
relevant intuition and notation for understanding its structure.

A closed loop β : [0, 1] → S based at p = β(0) = β(1) defines an “isotopy of maps”
ft : {p} → S given by ft(p) = β(t); this may be extended to an isotopy Ft : S → S of the
whole surface that effectively “pushes” the basepoint p along the path β and drags the rest
of the surface along. At the end of this isotopy one obtains a point-pushing homeomorphism
ϕβ := F1 that is well-defined up to isotopy in (S, p). Furthermore, as shown by Birman
[Bir1, Bir2], the corresponding isotopy class [ϕβ] depends only on the homotopy class of β,
and the assignment β 7→ [ϕβ] descends to an injective group homomorphism P : π1(S, p)→
Mod(S, p) called the point-pushing homomorphism. We remark that, with our definition, P
is technically an anti-homomorphism.

For those unfamiliar with point-pushing, it is instructive to consider a simple closed curve
β ⊂ S, in which case P(β) is just the composition of two Dehn twists (in opposite directions)
about the boundary curves of a tubular neighborhood of β; see [FM, §4.2].

Returning now to the filling curve γ ⊂ S chosen in Assumptions 2.3, we fix, once and
for all, an isotopy Ft : S → S satisfying Ft(p) = γ(t) and a point-pushing homeomorphism
ϕγ := F1 that represents the mapping class P(γ) ∈ Mod(S, p). Since we are interested in
iterating ϕγ, we extend the isotopy Ft, via the relation Ft+1 = Ft ◦ F1, so as to be defined
for all times t ∈ R; with this convention we have that ϕkγ = Fk for all k ∈ Z. The isotopy Ft
and homeomorphism ϕγ will remain fixed for the duration of §2.

Lifting Ft to the universal cover yields an isotopy F̃t : H2 → H2 between the identity and
a homeomorphism ϕ̃γ := F̃1; this map ϕ̃γ is the unique lift of the point-pushing map ϕγ that
sends the basepoint p0 to its image under the deck transformation γ ∈ G. We think of ϕ̃γ
as a “weaving homeomorphism” for reasons which will soon become evident.

In attempts to avoid the confusing situation of “moving” the basepoint p throughout the
point-pushing procedure, we introduce the notion of a dynamic marked point. The basepoint
p ∈ S remains stationary while the isotopy Ft instead pushes the marked point around γ.
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Thus the marked point’s location at time t is given by Ft(p), and this location agrees with
the basepoint if and only if t is an integer. This concept of a dynamic marked point will be
made precise in Definition 2.6 below.

Throughout we will suppress the distinction between a path β : [0, 1]→ S and its image
β = β([0, 1]) ⊂ S; paths that differ by a reparameterization will not be considered distinct.
A lift of a closed loop β : R/Z → S is any path β̃ : R → H2 that cyclically covers β; if β is
a simple loop, then its lifts are exactly the connected components of π−1(β). We denote the
set of lifts of our chosen filling curve γ by

Γ = {γ̃ ⊂ H2 | γ̃ : R→ H2 covers γ : R/Z→ S}. (2.4)

Since γ is a geodesic loop, the elements of Γ are infinite geodesic lines. We will use the
following notation to discuss lifts of paths to H2.

Notation 2.5. If η : [0, 1] → S is a path in S starting at a point x0 = η(0), then for any
preimage x ∈ π−1(x0) we let xη : [0, 1] → H2 denote the unique path lift of η starting at x.
The terminal endpoint of this path will be denoted by x · η := xη(1). A deck transformation
h ∈ G acts on the set of such paths by changing the starting point: h(xη) = hxη.

If we consider loops η ⊂ S based at x0, then the pairing (x, η) 7→ x · η defines a right
action of π1(S, x0) on the set π−1(x0), that is, (x · η) · µ = x · (ηµ) for η, µ ∈ π1(S, x0). This
right action commutes with the left action of h ∈ G in the sense that h(x · η) = (hx) · η. If
η ⊂ S is a loop without a natural basepoint and x ∈ π−1(η) is any point in its preimage,
then xη is understood to mean xη̂, where η̂ : [0, 1]→ S is any parameterization of η based at
π(x).

On the surface, the isotopy Ft pushes the marked point p along the curve γ. Therefore,
in the universal cover, we consider each preimage x ∈ π−1(p) to be a marked point of H2

and find that F̃t has the effect of pushing x along the path xγ to the point x · γ. Since γ has
self-intersections, each of its lifts l ∈ Γ intersects infinitely many other lifts. Thus the full
preimage π−1(γ) is an infinite grid of intersecting geodesics, and the isotopy F̃t simultaneously
pushes all of the marked points along their corresponding lifts in an intertwining pattern that
resembles weaving on an infinite loom.

We are concerned with the images of our simple closed curve α ⊂ (S, p) under iteration
by ϕγ. Since i(α, γ) > 0, each lift of α is a geodesic line that intersects infinitely many lifts
of γ. We may therefore choose a particular lift α̃ that intersects the segment p0γ, where p0
is the chosen basepoint of H2. We denote this particular lift by α0, and denote its image
under F̃t by

αt = F̃t(α0).

Recall that the closed curves ϕkγ(α) naturally live in the marked surface (S, p), meaning
that their isotopy classes are determined up to isotopies that fix the basepoint p ∈ S (in the
unmarked surface S, the curves ϕkγ(α) are all isotopic to α). Analogously, the infinite paths
αk = ϕ̃kγ(α0) naturally live in the marked space (H2, π−1(p))—here all homeomorphisms
and isotopies are required to preserve the set π−1(p). Equivalently, one may think of the
punctured space H2 \ π−1(p). Notice that F̃t is not an isotopy of (H2, π−1(p)), but its
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p

γ

α

q1q2

(a) A pushing curve γ with i(γ) = 2, and a simple
closed curve α ⊂ S3.

ϕγ(α)

(b) Push p once around γ to obtain ϕγ(α).

p0

γ̃

p̃

q̃1

q̃2

α0
ϕ̃γ(α0)

(c) Lift to H2: The marked points p̃ simultaneously slide along the lines γ̃ and
push the initial lift α0 = α̃. The resulting path is ϕ̃γ(α0).

Figure 1: An example of point-pushing on S3 and weaving in H2.

terminal homeomorphism ϕ̃γ = F̃1 is a homeomorphism of (H2, π−1(p)). Since ϕ̃kγ and α0

cover ϕkγ and α, respectively, it follows that π(αk) = ϕkγ(α); therefore we may use the paths
αk ⊂ (H2, π−1(p)) to study the iterates ϕkγ(α) ⊂ (S, p) of α.

Given explicit choices of α and γ, it is relatively straightforward to determine ϕγ(α) and
ϕ̃γ(α0): simply move the marked points along their respective paths and push α or α0 along.
An illustrative example is depicted in Figure 1. Here we consider a (non-filling) pushing
curve γ ⊂ S3 with two self-intersection points qi and a simple closed curve α that intersects
γ exactly once. As one can check, pushing the marked point once around γ transforms α into
the the curve ϕγ(α) shown in Figure 1(b). In the universal cover, all of the marked points
p̃ ∈ π−1(p) flow simultaneously along the lines γ̃ comprising the grid π−1(γ). As they travel,
some of these points interact with the lift α0 and drag it along with them. The resulting
path ϕ̃γ(α0), as shown in Figure 1(c), is forced to bend around these marked points.

This example exhibits the following key features. The curve ϕγ(α) ⊂ (S, p) is already
quite complicated—the marked point is pushing nine strands of ϕγ(α), and it is difficult to
keep track of which strand is which and how it got there. The structure is more transparent
when one unwinds this picture in the universal cover; here we see that these nine strands
come from different parts of H2 and are being pushed in diverging directions by multiple
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marked points.
This essential observation is the foundation of our entire argument: On the surface there

is only one marked point, but in the universal cover there are many marked points pushing
the path αt in various directions. By identifying these marked points and keeping track of
their locations, we will be able to quantify the complexity of ϕkγ(α), estimate intersection
numbers, and establish a lower bound on dilatation. To formalize these ideas, we need a
more careful definition of the dynamic marked points.

Intuitively, a dynamic marked point should be a point that moves. For instance, a marked
point located at x ∈ H2 at time t might move to a new location y ∈ H2 at some later time
t′ > t. We need a consistent naming scheme so that a given dynamic marked point has the
same name no matter where it is. Clearly the necessary data is captured by a continuous
function R→ H2, i.e., a path, which records the marked point’s position at any given time.
In our situation, the relevant marked points are those coming from lifts of the basepoint
p ∈ S, and we have a fixed isotopy F̃t : H2 → H2 describing exactly how these points move.

Definition 2.6 (Dynamic marked point). A dynamic marked point in H2 is a function
ρ : R → H2 of the form ρ(t) = F̃t(p̃), where p̃ ∈ π−1(p) is any lift of the basepoint. The set
of marked points is denoted byM. The location of a marked point ρ ∈M at a time t ∈ R is
simply its value ρ(t), and the set of all these locations is denoted by Mt = {ρ(t) | ρ ∈M}.

While dynamic marked points are ostensibly geodesic paths in H2, we prefer to think of
them as points that physically move with respect to time. To recall the path-like nature of
ρ ∈M, we may simply consider its image ρ(R), which is a geodesic in the set Γ. At each time
k ∈ Z the set Mk of locations is exactly equal to π−1(p); thus the map ρ 7→ ρ(k) provides a
natural bijection M∼= π−1(p). However, we stress that all of the bijections obtained in this
way are distinct.

In §§2.4–2.5 we will give precise meaning to the concept of a dynamic marked point that
“pushes αt” and find many points that have this pushing property. In order to do so, it will
be important to keep track of the locations of the dynamic marked points and their relative
positions to each other. To this end, we construct a tree that will serve as a sort of coordinate
system for H2. This tree and its properties are the business of the next subsection.

2.2 Uniform divergence in the coordinate tree T
Choose a pants decomposition C of S, that is, a maximal collection C = {ci} of homotopically
distinct, disjoint, essential, simple closed curves ci ⊂ S. Any such collection contains exactly
3g−3 +n > 0 curves; in particular, our assumption on S = Sg,n ensures that C is nonempty.
By a slight abuse of notation, the subset ∪ici ⊂ S will also be denoted by C. The curves ci
may be chosen to be closed geodesics for the hyperbolic metric on S and, after adjusting the
choice of basepoint p ∈ γ if necessary, we may furthermore assume that p /∈ C so that each
ci defines an essential simple closed curve in the marked surface (S, p).

The connected components of C̃ := π−1(C) are geodesic lines that cut H2 into infinitely
many components. Dual to this decomposition of H2 there is a tree T = TC whose vertices
v ∈ V (T ) are the connected components of H2 \ C̃ and whose oriented edges e ∈ E(T )
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are ordered pairs e = (v0, v1) of vertices corresponding to regions that share a boundary
component.1 This same edge with the reverse orientation will be denoted by ē = (v1, v0). The
unoriented edges of T are in bijective correspondence with the components of C̃; accordingly,
we will often suppress the distinction between edges in T and these geodesics in H2.

An oriented edge path in T is a (possibly bi-infinite) ordered list (e1, . . . , en) of oriented
edges ei ∈ E(T ) satisfying the condition that the terminal vertex of ei is the initial vertex
of ei+1. An edge path is geodesic if it is without backtracking, that is, if ei+1 6= ēi for each
i. Applying the Jordan curve theorem to a geodesic in C̃, we see that each edge e ∈ E(T )
separates T into two connected components. Thus T is in fact a tree, meaning that there is
a unique geodesic between any two vertices. The length of a finite edge path e = (e1, . . . , en)
is denoted by lC(e) = n; this defines a path metric on T . The action of G on H2 descends
to an isometric action on T , and there is a natural, G-equivariant projection σ : H2 → T
that collapses the components of H2 \ C̃ and C̃ to vertices and edges, respectively. Since a
non-elliptic isometry of H2 can preserve at most one geodesic line, we see that the fixed set
in T of a nontrivial deck transformation h ∈ G contains at most a single edge.

Any oriented path µ ⊂ H2 that is transverse to C̃ with endpoints in H2 \ C̃ projects to
an edge path in T . If µ is a geodesic path, then so is σ(µ), and we use lC(µ) to denote
lC(σ(µ)). The T -length of a loop β ⊂ S is similarly defined by lC(β) = lC(σ(xβ)), where x is
any point in π−1(β) \ C̃. With this notation, lC(γ) =

∑
i i(γ, ci) is the number of times the

loop γ crosses the curves in C. Since γ fills S, we have that lC(γ) ≥ |C| ≥ 1.
Geodesic lines l, l′ ⊂ H2 with distinct endpoints in ∂H2 necessarily diverge when projected

to T in the sense that they determine distinct edge paths. Nevertheless, these projections
may agree along an arbitrarily long edge path. The following crucial lemma shows that, for
geodesics in an equivariant family, the divergence in T happens uniformly quickly. In §2.3,
we will apply this to lifts of the geodesic γ.

Lemma 2.7 (Uniform divergence). Let l, l′ ⊂ H2 be two distinct lifts of a closed geodesic
β ⊂ S, and let X = σ(l) ∩ σ(l′) be the intersection of their projections to T . Then X is a
(possibly empty or degenerate) geodesic edge path of length lC(X) ≤ lC(β) + 1. In the case
that lC(β) ≤ 2, this bound may be improved to lC(X) ≤ lC(β).

Proof. If β ∈ C, then l and l′ correspond to distinct edges of T and we have X = ∅.
Therefore, we may assume that β /∈ C, in which case lC(β) =

∑
i(β, ci) ≥ 1 because C is a

pants decomposition of S. It follows that σ(l) and σ(l′) are both bi-infinite geodesic edge
paths in T . Their intersection X is clearly a geodesic edge path as well.

Suppose, on the contrary, that lC(X) ≥ n + 2, where n = lC(β). Then X contains a
subpath of the form (e0, e1, . . . , en, en+1). Writing ej = (vj, vj+1), we choose a generic point
x0 ∈ l that is contained in v1 and does not project to a self-intersection point of β on S.
Since points in the G-orbit of x0 occur with spacing lC(β) = n along both l and l′, we may
find orbit points x1 ∈ l and x′ ∈ l′ with x1 ∈ vn+1 and x′ ∈ vi for some 1 ≤ i ≤ n. The
situation is depicted in Figure 2. Letting f0, f1 ∈ G be the deck transformations defined by

1Note that T is just the Bass–Serre tree for the graph of groups description of π1(S) corresponding to
the pants decomposition C of S; see, for example, [SW].
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Figure 2: The two edge paths σ(l) and σ(l′) cannot overlap too much, for otherwise the deck
transformation sending f0(x1) to f1(x0) would fix two edges of T .

fj(x
′) = xj, we see that h = f1f

−1
0 and the hyperbolic translation along l sending x0 to x1

both agree at the point x0—therefore they are equal. Since f−1j (l) = l′ 6= l, the isometry fj
does not preserve the axis l of h and therefore cannot commute with h: fjh 6= hfj.

An orientation on β : [0, 1] → S lifts to natural orientations on l and l′ which in turn
induce orientations on X. We may assume that l induces the orientation (e0, . . . , en+1) on
X, so that the path x0β crosses the edges e1, e2, . . . , en in order.

Case 1: The geodesic l′ induces the opposite orientation on X. In this case, x′β projects
to a (finite) edge path of the form (ei−1, ei−2, . . . , e0, . . . ). Consequently, since f0 maps x′β
equivariantly onto x0β, we see that f0((ei−1, . . . , e0)) = (e1, . . . , ei). In particular, we have
f0(e0) = ei. Reversing direction and considering the first edges crossed by the paths x0 β̄ and

x′ β̄, where β̄ denotes β with the opposite orientation, we similarly find that f0(ei) = e0. As
G = π1(S) is torsion-free, this implies that f 2

0 is a nontrivial deck transformation preserving
the distinct edges e0 and ei—a contradiction.

Case 2: The geodesics l and l′ induce the same orientation on X. We now have that x′β
and x′ β̄ project to edge paths of the form (ei, ei+1, . . . ) and (ei−1, ei−2, . . . ), respectively. As f0
maps x′β equivariantly onto x0β, we see that f0((ei, . . . , en+1)) = (e1, . . . , en+2−i). In particu-
lar, f0((en, en+1)) = (en+1−i, en+2−i). Similarly, we have f1((ei−1, . . . , e0)) = (en, . . . , en+1−i),
so that f1((e1, e0)) = (en+2−i, en+1−i). Therefore

f0h((e0, e1)) = f0((en, en+1)) = (en+1−i, en+2−i) = f1((e0, e1)).

Since f1 = hf0, this shows that the distinct deck transformations f0h and hf0 both send
e0 7→ en+1−i and e1 7→ en+2−i, which is impossible.

It remains to prove the stronger inequality in the case that n = lC(β) ≤ 2. We proceed
as above assuming only that X contains a subpath of the form (e0, . . . , en); the setup and
notation are otherwise unchanged. The arguments in Case 1 are still valid because they do
not involve the edge en+1. Thus it suffices to assume that l and l′ induce the same orientation
on X. The case x′ ∈ v1 then yields an immediate contradiction because f0 cannot preserve
both e0 and e1. The remaining possibility x′ /∈ v1 necessitates n = 2 and x′ ∈ v2, in
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which case we find that f1 sends (e1, e0) to (e2, e1) and that f−10 sends (e0, e1) to (e1, e2).
It now follows that f1f0((e1, e2)) = f1((e0, e1)) = (e1, e2), contradicting the fact that f1f0 is
nontrivial.

2.3 Γ-chains and grid paths

As we flow the isotopy F̃t, the dynamic marked points travel along lifts of our fixed geodesic
γ and pass each other at the intersections of these lines. Recall from (2.4) that the set
of all lifts of γ is denoted by Γ. In order to describe the locations and interactions of the
dynamic marked points that “push αt,” we will need to consider paths in H2 that travel
along geodesics in Γ and potentially turn at their intersections. These turning paths will
lead us to the desired dynamic marked points and show that many such points exist.

Definition 2.8 (Grid path). A grid path is a concatenation µ = µ1 · · ·µn of oriented geodesic
segments µi ⊂ li ∈ Γ whose endpoints “match up,” that is, the terminal endpoint of µi is the
initial endpoint of µi+1. The µi are called the straight segments of µ, and we require that
adjacent segments segments µi lie on distinct geodesics li.

While the projection of a grid path may backtrack in T when it turns at the junction of
two straight segments, the extent of this backtracking is universally bounded by Lemma 2.7.
Therefore, by making the straight segments µi sufficiently long, we may effectively disre-
gard any backtracking because it will be contained within a bounded neighborhood of the
endpoints of the σ(µi). This will ensure that the projection of each straight segment µi
contributes definite progress in T . The following definitions and lemma make this precise.

Definition 2.9 (Γ-chain). A Γ-chain is an ordered tuple (l1, . . . , ln) of distinct geodesics
li ∈ Γ which satisfy the property that li and lj intersect if and only if |i− j| = 1. (This is
analogous to the familiar notion of a “chain” of simple closed curves on a surface.)

Definition 2.10 (Internal edge). For a finite geodesic segment µ ⊂ H2, an internal edge of
σ(µ) is simply an edge e ∈ E(T ) whose removal separates σ(µ) into two edge paths of length
at least lC(γ) + 1. In the case that lC(γ) ≤ 2, we only require these pieces to have length at
least lC(γ). In either case, σ(µ) contains internal edges provided that lC(µ) ≥ 3lC(γ).

Lemma 2.11 (Long grid paths). Let µ = µ1 · · ·µn be a grid path with endpoints x, y ∈ H2,
and let li ∈ Γ be the geodesic containing µi. Suppose that lC(µi) ≥ 3lC(γ) for each 1 < i < n.
Then the T -geodesic from σ(x) to σ(y) contains every internal edge of each projection σ(µi).
Furthermore, (l1, . . . , ln) is a Γ-chain.

Proof. The condition lC(µi) ≥ 3lC(γ) implies that σ(µi) contains an internal edge when
1 < i < n. The first and last segments σ(µ1) and σ(µn) need not have internal edges, but
the claim applies if such edges do exist. Let M denote the optimal bound guaranteed by
Lemma 2.7, so M is either lC(γ) + 1 or lC(γ) depending on whether or not lC(γ) > 2. The
edge path σ(µ) connects σ(x) to σ(y) and would be a T -geodesic except for the fact that
backtracking may occur when the geodesic segments σ(µi) are concatenated. Upon removing
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all such backtracking by successively cancelling edge pairs (. . . , e, ē, . . . ), we will obtain the
desired T -geodesic. Every edge that is removed because of backtracking at the junction of
µi with µi+1 must be contained in both σ(µi) and σ(µi+1). In light of Lemma 2.7, it follows
that each junction σ(µi)σ(µi+1) can result in at most M cancellations. Since internal edges
are, by definition, separated from these junctions by at least M edges on either side, this
shows that internal edges cannot cancel with edges from neighboring segments.

If σ(µi) contains an edge that does not cancel with an edge from either neighboring
segment, then it is impossible for edges from σ(µi−1) and σ(µi+1) to cancel with each other.
Thus it is essential that all of the segments σ(µi), 1 < i < n, are long enough to contain
internal edges, as this prevents cascading effects and ensures that cancellations only occur
between neighboring segments. The first claim now follows from the above observation that
such cancellations do not involve internal edges.

As for the second claim, it suffices to show that σ(li) and σ(lj) are disjoint whenever
|i− j| ≥ 2. If this is not the case, there is a vertex v ∈ σ(li) ∩ σ(lj) for some i + 1 ≤ j − 1.
Consider the shortened grid path µi+1 · · ·µj−1 from x′ to y′. Let a and b be internal edges of
σ(µi+1) and σ(µj−1), respectively; such internal edges exist because 1 < i + 1 ≤ j − 1 < n.
Since a is separated from σ(x′) by at least M edges, the fact that lC(σ(li) ∩ σ(µi+1)) ≤ M
implies a /∈ σ(li). We similarly have b /∈ σ(lj). By inducting on |i− j|, we may furthermore
assume that a /∈ σ(lj) and b /∈ σ(li); this is possible because the base case |i− j| = 2
allows one to choose a = b. We now see that σ(li) ∪ σ(lj) contains an edge path from σ(x′)
through v to σ(y′) that avoids both a and b. Applying the second assertion to the grid path
µi+1 · · ·µj−1 yields a contradiction.

2.4 The tools for weaving

We return to the task of finding dynamic marked points that “push” αt, where αt = F̃t(α0)
is the image of our initial lift α0 at time t. In this subsection we formalize this notion in
terms of “constraining points” (Definition 2.13) and provide the necessary tools for working
with these points. The sought-after points will be described explicitly in the next subsection.

These considerations involve infinite paths in H2 and their images under isotopies of
H2. We are primarily concerned with lifts of isotopies of the surface S; any such isotopy
moves points a uniformly bounded distance and, in particular, fixes the boundary at infinity
∂H2 pointwise. Therefore, we will only consider isotopies of H2 that fix ∂H2 pointwise:
if µ : R → H2 is path with two endpoints at infinity, then these endpoints remain fixed
throughout all isotopies.

We henceforth assume that the pants decomposition C is chosen to contain our simple
closed curve α ⊂ S. In this case, α0 is a component of C̃ and corresponds to an edge of T ;
this edge σ(α0), together with its adjacent vertices, will be denoted by ε0 ⊂ T .

Let Gε0 ≤ G be the stabilizer of ε0 in G. This is a cyclic subgroup consisting of hyperbolic
isometries that act by translation along the geodesic axis α0 ⊂ H2. If µ ⊂ S is any simple
closed curve isotopic to ϕkγ(α) = π(αk) in the marked surface (S, p), then µ has a particular
lift µ̃ ⊂ H2 which is isotopic to αk in (H2, π−1(p)). This lift µ̃ is characterized by having
the same endpoints in ∂H2 as αk. Since the endpoints of αk are the same as those of α0, we
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see that Gε0 fixes the endpoints of µ̃. Thus each g ∈ Gε0 in fact preserves µ̃ and acts as a
translation along µ̃ of the form y 7→ y ·µn for some n ∈ Z. Indeed, since µ and α are isotopic
in S, they determine the same conjugacy class in π1(S, p). Elements of this conjugacy class
are in bijective correspondence with the lifts of α and also with the lifts of µ. The two lifts
α0 and µ̃ have the same endpoints at infinity and therefore correspond to the same element
of π1(S, p); this element is a generator of Gε0 .

The cyclic group Gε0 acts on H2 on the left with quotient space Gε0\H2. In this quotient,
the lift µ̃ projects to a simple closed curve Gε0\µ̃ that bijectively covers µ; that is, the
natural covering Gε0\H2 → S restricts to a degree one cover Gε0\µ̃ → µ. Therefore, each
intersection point y ∈ µ ∩ C with a pants curve ci lifts to a unique intersection point of the
loop Gε0\µ̃ with a lift of ci to Gε0\H2. Furthermore each such lift exactly corresponds to a
Gε0–orbit Gε0 c̃i ⊂ H2 of geodesics in C̃. This has the following implication:

Observation 2.12. Let µ ⊂ (S, p) be a simple closed curve that is isotopic to ϕkγ(α) in
(S, p), and let µ̃ ⊂ (H2, π−1(p)) be the unique lift whose endpoints agree with those of αk.
Assuming µ is transverse to C, the cardinality of µ ∩ C is equal to the number of edges that
the loop Gε0\σ(µ̃) crosses in the quotient graph Gε0\T . That is, |µ ∩ C| is equal to the
number of Gε0–orbits of edges that σ(µ̃) crosses in T . Therefore, in order to estimate the
intersection number

i(ϕkγ(α), C) :=
∑
i

i(ϕkγ(α), ci) = inf
µ
|µ ∩ C| ,

it suffices to vary µ in the isotopy class of ϕkγ(α) ⊂ (S, p) and bound the number of Gε0–orbits
of edges e ∈ E(T ) that σ(µ̃) crosses in T .

It is now apparent that we should consider paths that are isotopic to αk and study their
projections to T . Recall the setM of dynamic marked points defined in Definition 2.6. For a
given t ∈ R and a subset V ⊆M, let [αt]V denote the isotopy class of the path αt in (H2, Vt),
where Vt = {ρ(t) | ρ ∈ V } is the set of locations of those dynamic marked points in V at time
t. Equivalently, [αt]V is the isotopy class of αt in H2 \Vt. This isotopy class is obtained from
αt ⊂ (H2,Mt) by simply “forgetting,” at time t, all of the dynamic marked that are not in
V . One may alternately think of forgetting these points at time 0 and pushing the initial
path α0 by a modified isotopy that only moves those dynamic marked points contained in
V . The resulting path is a representative of [αt]V .

Recall that the vertices and edges of T are defined to be subsets of H2; in particular, it
makes sense to say that a path µ ⊂ H2 intersects a vertex v ∈ V (T ). More generally, any
subset A ⊂ T may be thought of as a subset of H2 by looking at the preimage σ−1(A) ⊂ H2.
This identification will be used implicitly in the sequel.

For a subset X ⊆ H2 (or X ⊆ T ), we say that [αt]V intersects X if every path in the
isotopy class intersects X. Otherwise, there is a representative path that avoids X and we
say that [αt]V is disjoint from X. Since every path that is isotopic to αt in (H2,Mt) lies in
the isotopy class [αt]V , we see that if [αt]V intersects X, then so does [αt]M. In particular, we
may gain information about [αt]M by considering the drastically simplified isotopy classes
[αt]V corresponding to certain finite subsets V ⊂M.
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Figure 3: The marked point x0 constrains
[αt]{x0,...,x6} because αs is isotopically forced to
intersect the vertex σ(x0(s)) ∈ T for all s ≥ t.
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Figure 4: Proving Proposition 2.14: The
marked point ρ necessarily constrains [αs]{ρ}.

As the endpoints of α0 in ∂H2 remain fixed throughout all isotopies, we find that [αt]V
intersects the base edge ε0 ⊂ T for all times t and all subsets V ⊆M (recall that ε0 contains
the edge σ(α0) and its adjacent vertices). Our goal is to show that, as time progresses, [αt]V
intersects larger and larger subsets of T .

Definition 2.13 (Constraining points). Let V ⊆ M be a set of marked points containing
a marked point ρ, and let t ≥ 0 be a real number. We say that ρ constrains [αt]V if [αs]V
intersects σ(ρ(s)) ∈ T for all times s ≥ t. In this case, every path in [αs]V projects onto (a
superset of) the unique T -geodesic connecting σ(ρ(s)) to ε0. See Figure 3 for an illustration.

The first thing to check is that such points exist. Recall that α0 was chosen specifically so
that it intersects the path p0γ starting at the basepoint p0 ∈ H2; it follows that hp0γ = h(p0γ)
intersects α0 = h(α0) for every h ∈ Gε0 .

Proposition 2.14 (Initial constraints). For a fixed h ∈ Gε0, let ρ ∈ M be the dynamic
marked point whose position at time t is given by ρ(t) = F̃t(hp0). Then ρ constrains [α1]{ρ}.

Proof. Fix a time s ≥ 1. After forgetting about all other dynamic marked points and
adjusting the pushing isotopy F̃t accordingly, we may assume that αs represents an arbitrary
path in the isotopy class [αs]{ρ}. By the Jordan Curve Theorem, each path αt = F̃t(α0)
divides H2 into two path connected components, which we denote by Rt and Bt for the
“red” and “blue” sides, respectively. These names are assigned consistently in t so that they
are preserved by the pushing isotopy, that is, F̃t(B0) = Bt. Assuming that ρ initially lies
in the blue side, we have that ρ(t) ∈ Bt for all t. Since the path ρ([0, 1]) = hp0γ intersects
α0, the marked point ρ evidently crosses over α0 during the time interval [0, 1]. Recalling
that σ(ρ(s)) ∈ T is a subset of H2, we have that ρ(s) ∈ R0 and σ(ρ(s)) ⊆ R0 at time s; see
Figure 4.
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The paths α0 and αs have the same endpoints in ∂H2 and are therefore contained within
bounded neighborhoods of each other. Thus the symmetric difference of R0 and Rs is con-
tained in a bounded neighborhood of α0. On the other hand, σ(ρ(s)) ⊂ R0 contains points
that are arbitrarily far from α0. Therefore, by avoiding the symmetric difference, it is pos-
sible to choose a point z ∈ σ(ρ(s)) ∩Rs. The fact that ρ(s) ∈ Bs and z ∈ Rs lie in opposite
components of H2 \ αs implies that every path from ρ(s) ∈ σ(ρ(s)) to z ∈ σ(ρ(s)) must
intersect αs. Since σ(ρ(s)) is path connected, this shows that αs intersects σ(ρ(s)).

Once there are some constraints on αt, the weaving pattern of the dynamic marked points
creates more in a recursive manner. The relevant interaction occurs when a marked point x1
passes in front of another marked point x2, meaning that the intersection x1(R)∩x2(R) = {y}
is a single point and that x1 reaches y before x2 does. The basic intuition is this: if x1
constrains αt while it passes in front of x2, then it drags αt across the path in front of x2.
Since αt is now blocking its way, x2 is forced to push αt ahead as it progresses through H2.

To make this recursive step precise, we formulate it in the context of T . Suppose that x1
passes in front of x2, and let X = σ(x1(R))∩σ(x2(R)) be the intersection of their T -geodesics;
according to Lemma 2.7, X contains at most lC(γ) + 1 edges. For a time s, consider the two
rays xj(R≤s); we think of these rays as tails connecting the marked points xj to ∂H2. We
say that x1 and x2 have diverged in T at time s if X separates each ray σ(xj(R≤s)) into two
connected components, neither of which is a single vertex. Since a dynamic marked point
crosses lC(γ) edges of T per unit time, we see that each time s ≥ t2+2 satisfies this criterion,
where t2 ∈ R is the time at which x2 reaches {y} = x1(R) ∩ x2(R).

Assuming that x1 and x2 have diverged in T at time s, choose any two edges e, e′ ∈ E(T )
in different components of σ(x1(R))\X and consider their relationship to the tail η = x2(R≤s)
of x2. Thinking of η as a wall or a barrier, it is apparent that the only way to get from e
to e′ is to “go around” the marked point x2(s) at the end of η. More precisely, any path
µ ⊂ H2 \ η that intersects both e and e′ must also intersect σ(x2(s)); see Figure 5. The
purpose of the next lemma is to prove that η enjoys this same separation property on the
level of isotopy classes of paths.

Lemma 2.15 (Tails separate). Suppose that the marked point ρ ∈ M passes in front of
another marked point x ∈M and that they have diverged in T by time s. Let η = x(R≤s) be
the tail of x and let e ∈ E(T ) be any edge in the infinite component of σ(ρ(R≤s)) \ σ(x(R)).
Then η separates σ(ρ(s)) from e in the following sense: If V ⊂ M is a finite subset of
marked points that contains {x, ρ} and the isotopy class [αs]V intersects both σ(ρ(s)) and e
but is disjoint from η, then [αs]V also intersects σ(x(s)).

Proof. Assuming that x(s) is contained in a component U of H2 \ C̃, we let c̃ ⊂ C̃ denote the
boundary component of U that intersects η. Thus c̃ defines an edge of T that is adjacent
to the vertex σ(x(s)) ∈ V (T ). If x(s) ∈ C̃ so that σ(x(s)) is an edge of T , then we take
c̃ = σ(x(s)). The fact that x and ρ have diverged in T implies that c̃ is disjoint from
σ(ρ(R)). Let η′ = x(R≥s) be the “future ray” of x. Recalling that c̃ is a geodesic component
of C̃, it follows from the Jordan Curve Theorem that c̃ divides H2 into two components, one
containing η′ and the other containing both σ(ρ(s)) and e.
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e′
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x2(s)

σ(x2(s))

Figure 5: η separates e from e′: any path that
intersects e and e′ must go through σ(x2(s)).

c̃

η

η′

σ(ρ(s))

µ0

e

σ(x(s))

W

Figure 6: The representative arc µ0 ∈ [αt]V is
isotopically disjoint from η ∪ η′ in W .

Suppose now that [αs]V intersects σ(ρ(s)) and e but is disjoint from η. Our goal is to
show that [αs]V also intersects σ(x(s)). Since every path in H2 that intersects both σ(ρ(s))
and η′ must intersect c̃ and, consequently, σ(x(s)), it suffices to show that [αs]V intersects
η′. Supposing this is not the case, there is a representative path µ0 ∈ [αs]V that is disjoint
from η′. The situation is illustrated in Figure 6.

Consider the compactified disk W0 = H2 ∪ ∂H2 and the corresponding punctured surface
W = W0 \ Vs. Topologically, W is a genus zero surface with one boundary component
and 2 ≤ |V | < ∞ punctures. A simple arc in W is a continuous injection β : [0, 1] → W0

with β−1(∂H2 ∪ Vs) = {0, 1}. All isotopies of a simple arc β in W are required to fix its
endpoints in ∂H2 ∪ Vs pointwise. It is a basic fact from surface topology that if a simple
arc is isotopically disjoint from two other arcs, then it can be isotoped to be simultaneously
disjoint from both. For example, this may be achieved by taking geodesic representatives
in any hyperbolic metric on W in which ∂W is geodesic and the punctures are modeled on
finite-volume cusps; see also [FLP, Exposé 3] or [FM, Corollary 1.9 and §1.2.7].

The two rays η and η′ now define disjoint simple arcs in W , and [αs]V becomes an isotopy
class of simple arcs in W . By the Jordan Curve Theorem, the union η ∪ η′ separates W into
two path connected components, and the choice of e ensures that σ(ρ(s)) and e are contained
in opposite components of W \ (η ∪ η′). By hypothesis, arcs in [αs]V are isotopically disjoint
from both η and η′; therefore, we may find a representative µ ∈ [αs]V that is simultaneously
disjoint from both η and η′. Since any such µ is contained in one component of W \ (η ∪ η′),
this contradicts the fact that µ necessarily intersects both σ(ρ(s)) and e.

In order to apply Lemma 2.15 recursively, we need to identify dynamic marked points
x ∈ M and subsets V ⊂ M for which the tail η = x(R≤s) is disjoint from [αs]V . This is
easily accomplished by ensuring that the marked points in V never cross the ray x(R≤t).

20



Lemma 2.16 (Finding disjoint tails). Let V = (y1, . . . , yn, x) ⊂M be a finite set of marked
points, and suppose that (y1(R), . . . , yn(R), x(R)) is a Γ-chain. If yn passes in front of x and
[α0]V is disjoint from x(R), then, at each time t ≥ 0, [αt]V is disjoint from the ray x(R≤t).

Proof. The result will follow easily from the following basic principle.

Claim. Let [s, s′] be a time interval, and let U ⊂ H2 be a connected open set with the property
that for each ρ ∈ V , the image ρ([s, s′]) is either contained in U or is disjoint from the closure
of U . If [αs]V is disjoint from U , then [αt]V is disjoint from U for all t ∈ [s, s′].

Proof of Claim. The isotopy of H2 that pushes the marked points in V may be taken to be the
identity away from the marked points, that is, off of an open neighborhood of ∪ρ∈V ρ([s, s′]).
In particular, we may assume that this isotopy is the identity on ∂U throughout the time
interval [s, s′]. Applying this isotopy to a representative path µ ∈ [αs]V that is disjoint from
U , we see that each isotopy class [αt]V has a representative that is disjoint from ∂U and
therefore from U .

We now complete the proof of Lemma 2.16. Let t1, t2 ∈ R be the times defined by
yn(t1) = z = x(t2), where {z} = yn(R) ∩ x(R). The hypothesis on passing is that t1 < t2,
and we choose a point t0 ∈ (t1, t2). Assuming that t0 > 0, let U be a small open neighborhood
of x(R≤t0) whose closure is disjoint from yn(R) and [α0]V . The chain condition implies we
may choose U so that, for i < n, the marked point yi avoids the closure of U throughout
all of time. Since x remains inside U during the interval [0, t0], the above claim implies that
[αt]V is disjoint from U , and thus from x(R≤t), for each time t ∈ [0, t0]. In the case that
t0 ≤ 0, we simply note that the hypotheses ensure that [α0]V is disjoint from x(R≤0).

It remains to consider a time t ≥ s0 = max{t0, 0}. At time s0, yn has already crossed
x(R); thus there is no obstruction to sliding any intersections of [αs0 ]V with x(R≥s0) forward
along x(R) to obtain a representative path µ ∈ [αs0 ]V that is disjoint from x(R≤t). Enlarging
U to a neighborhood U ′ of x(R≤t), we find that [αs0 ]V is disjoint from U ′ and that all of the
marked points yi avoid U ′ throughout the interval [s0, t]. A second application of the claim
now shows that [αt]V is disjoint from x(R≤t).

2.5 The points that push

The stage is set: we have developed the navigational tools and built up the machinery for
pushing in the universal cover H2. Everything is in place to exhibit exponentially many
dynamic marked points that constrain [αt]M.

Recall our pushing curve γ : [0, 1] → S, which is a geodesic loop based at γ(0) = p. We
need a way to refer to the self-intersection points of γ. If each point of intersection on S
corresponded to a double intersection of γ, then we could simply label the self-intersections by
their corresponding points in S (this is the approach we will take in §§3–5 below). However,
it may be that that some points in S correspond to, say, triple intersections of γ or, in the
the extreme case, that all self-intersections occur at a single point of S. To accommodate
such possibilities, a self-intersection point q of γ will mean an ordered pair q = (tq1, tq2) of
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times 0 ≤ tq1 < tq2 ≤ 1 for which γ(tq1) = γ(tq2). By the Definition 1.3 of self-intersection
number and the fact that γ is a geodesic, γ has exactly i(γ) self-intersection points.

For each self-intersection point q of γ, we form the decomposition γ = βqδqνq, where

βq = γ|[0,tq1], δq = γ|[tq1,tq2], and νq = γ|[tq2,1]. (2.17)

Skipping over the subloop δq based at γ(tq1), we form the concatenation τq = βqνq ∈ π1(S, p).
This is a piecewise geodesic loop based at p which may be given the explicit parameterization

τq(t) = βqνq =

{
γ(tq1), tq1 ≤ t ≤ tq2

γ(t), otherwise.
(2.18)

Each path lift xτq to H2 is a grid path that follows along a geodesic lift of γ and then turns,
at a lift of γ(tq1), onto a new geodesic. Accordingly, we refer to τq as the “turn at q.”

Let W = {γ} ∪
(⋃

q{τq}
)
⊂ π1(S, p) be the collection consisting of the “straight loop” γ

and these i(γ) turns. We will find dynamic marked points that constrain [αt]M by following
paths in H2 corresponding to words ω1 · · ·ωn ∈ π1(S, p) in the letters ωi ∈ W . For each
x ∈ π−1(p), every such word ω1 · · ·ωn lifts to a grid path µ = x(ω1 · · ·ωn) in H2. When µ
is decomposed µ = µ1 · · ·µj as a grid path, the number j of straight segments is one more
than the number of turns in µ, that is, j − 1 = |{i : ωi 6= γ}|. In order to apply the theory
we have developed, we need to consider grid paths whose straight segments define Γ-chains.
According to Lemma 2.11, this may be accomplished by “padding” the word ω1 · · ·ωn with
copies of γ in order to ensure that the straight segments are long enough.

Recall that ε0 ⊂ T consists of the edge σ(α0) ∈ E(T ) and its adjacent vertices, that
Gε0 ≤ G is the stabilizer of ε0, and that p0 is the fixed basepoint of H2.

Proposition 2.19 (The points). Let k ≥ 1 be an integer, and let h ∈ Gε0 be a deck trans-
formation that preserves the base edge ε0. Set ω1 = γ, and choose loops ω2, . . . , ωk ∈ W. For
1 ≤ i ≤ k, let xi ∈M be the dynamic marked point whose location at time 5i is given by

xi(5i) = (hp0) ·
[
(γ2ω1γ

2) · · · (γ2ωiγ2)
]
.

If V = {x1 . . . , xk}, then xk constrains [α5k]V and, in particular, [α5k]M.

Proof. For notational convenience, we let x0 ∈ M denote the dynamic marked point whose
initial location is x0(0) = hp0. Notice that the marked points xi are defined so that

xi+1(5i+ 5) =
(
(hp0) ·

[
(γ2ω1γ

2) · · · (γ2ωiγ2)
])
· (γ2ωi+1γ

2) = xi(5i) · (γ2ωi+1γ
2).

Since the marked point xi travels from xi(5i) to xi(5i) ·γ5 during the time interval [5i, 5i+5],
choosing ωi+1 = γ results in the equation xi+1(5i+5) = xi(5i+5). As distinct marked points
cannot be at the same place at the same time, this shows that choosing ωi+1 = γ is equivalent
to setting xi+1 = xi.

We proceed by induction on k, starting with the case k = 1 and V = {x1}. The
assignment ω1 = γ ensures that x1 = x0 so that V = {x0}. Proposition 2.14 now shows that
x1 = x0 constrains [α1]V and, consequently, [α5]V .

22



For k > 1, we inductively assume that the marked point xk−1 constrains [α5(k−1)]V ′ , where
V ′ = {x1, . . . , xk−1}. Since 5(k − 1) ≤ 5k and V ′ ⊆ V = {x1, . . . , xk}, this implies that xk−1
constrains [α5k]V . We must show that xk constrains [α5k]V as well. The result is immediate
if xk = xk−1, so it suffices to consider the case ωk 6= γ. The proof proceeds as a series of
steps that establish the properties needed to apply Lemmas 2.15 and 2.16 and conclude the
result.

Step 1: Notation. Each index i ≥ 2 with ωi = γ results in repeated entries in the list
x1, . . . , xk; upon deleting all neighboring repeats, we obtain an ordered list y1, . . . , yj of
marked points yi ∈M that satisfy yi 6= yi+1 and {y1, . . . , yj} = V . Here k− j is the number
of indices i ∈ {2, . . . , k} for which ωi = γ. Since we assumed xk 6= xk−1, we have yj = xk
and yj−1 = xk−1.

The path µ = hp0
[(γ2ω1γ

2) · · · (γ2ωkγ2)] defines a grid path in H2 that may be decom-
posed as a concatenation µ = µ1 · · ·µn of geodesic segments µi along lifts li ∈ Γ of γ that
satisfy li 6= li+1. The number n of straight segments µi in this decomposition is equal to 1+m,
where m = |{1 ≤ i ≤ k : ωi 6= γ}| is the number of turns in µ. Noting that k−j = (k−m)−1,
we find that j = n. It is clear from the definitions that the marked points x1, . . . , xk travel
along the straight segments of µ. Upon reindexing them as y1, . . . , yj, the resulting marked
point yi travels along the geodesic yi(R) = li containing the segment µi. Indeed, since each
turn τq along µ results in both a new segment µi and a distinct marked point yi, this follows
inductively from the observation that y1(R) = l1.

Step 2: xk−1 passes in front of xk. The assumption xk 6= xk−1 implies that the geodesics
xk−1(R) and xk(R) intersect in a single point. Suppose that ωk = τq ∈ W , where q = (tq1, tq2)
is a self-intersection point of γ, and τq = βqνq is the concatenation of the two geodesic
segments βq and νq defined in (2.17). It then takes tq1 time units for a marked point to
travel across βq and (1− tq2) time units to cross νq. Since xk(5k) = xk−1(5k − 5) · γ2βqνqγ2,
we see that

xk−1(5k − 5 + 2 + tq1) = xk(5k − 2− (1− tq2)).

Therefore xk−1 does pass in front of xk because 5k − 3 + tq1 < 5k − 3 + tq2.

Step 3: (l1, . . . , lj) is a Γ-chain. Each straight segment µi, with 1 < i < j, has length
lC(µi) ≥ 3lC(γ) because there are at least four copies of γ between any two turns along µ.
(We in fact have lC(µi) ≥ 4lC(γ); this will be used in the proof of Proposition 2.20 below.)
Therefore µ = µ1 · · ·µj satisfies the hypotheses of Lemma 2.11, and it follows that (l1, . . . , lj)
is a Γ-chain.

Step 4: [αs]V is disjoint from yj(R≤s). The proof of Lemma 2.11 shows that σ(l1) and σ(lj)
are disjoint if j > 2. Since σ(µ1) contains the base edge σ(α0) of T , this shows that lj and
α0 are disjoint when j > 2. While σ(µ1) ∩ σ(lj) is nonempty when j = 2, the fact that α0

intersects the initial subpath hp0γ of µ1 = hp0
(γ5 · · · ) implies that α0 is not one of the last

lC(γ) + 1 edges of σ(µ1) and therefore cannot be contained in the intersection σ(µ1) ∩ σ(l2).
In any case, we find that [α0]V is disjoint from yj(R) = lj. Since (y1(R), . . . , yj(R)) is a
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Γ-chain and yj−1 = xk−1 crosses in front of yj = xk, Lemma 2.16 now implies that [αs]V is
disjoint from yj(R≤s) for all times s ≥ 0.

Step 5: yj(R≤s) enjoys the separation property of Lemma 2.15. Fix a time s ≥ 5k and
consider the path

µ′ =
hp0

[
(γ2ω1γ

2) · · · (γ2ωk−1γ2)(γ5 · · · )
]

from hp0 to xk−1(s) = yj−1(s). Comparing this path with µ, we find that µ′ decomposes as a
grid path µ′ = µ1 . . . µj−2µ

′
j−1, where µj−1 is the initial subpath of µ′j−1. Let e be an internal

edge of σ(µj−1), in which case e must lie in the infinite component of σ(yj−1(R≤s))\σ(yj(R)).
Since µ′j−1 ⊇ µj−1, e is also an internal edge of σ(µ′j−1). As yj−1 passes in front of yj and
these two marked points have diverged in T by the time s ≥ 5k, it now follows that the ray
η = yj(R≤s) separates σ(yj−1(s)) from e in the sense of Lemma 2.15

Step 6: xk constrains [α5k]V . By our induction hypothesis, the isotopy class [αs]V intersects
σ(yj−1(s)). It follows that every path in [αs]V projects onto the T -geodesic from σ(yj−1(s))
to the base edge ε0. By Lemma 2.11, this T -geodesic contains the edge e, so it must be that
[αs]V intersects e as well. Applying the separation property from Lemma 2.15, we finally
conclude that [αs]V intersects σ(yj(s)). This proves that xk = yj constrains [α5k]V .

For each h ∈ Gε0 , we have now described (i(γ) + 1)k−1 = |W|k−1 dynamic marked points
that constrain the isotopy class [α5k]M. However, it remains to be seen that these marked
points are distinct and that they project to distinct vertices in the quotient graph Gε0\T .

Proposition 2.20 (Distinctness). Let k ≥ 1 be an integer. For each h ∈ Gε0 and each
ordered list ω = (ω1, ω2, . . . , ωk) of k elements ωi ∈ W satisfying ω1 = γ, consider the point

Ψ(h, ω) = (hp0) · [(γ2ω1γ
2) · · · (γ2ωkγ2)] ∈ H2.

For each distinct choice of h and ω, this point projects to a distinct vertex σ(Ψ(h, ω)) in T .
In particular, the orbits Gε0σ(Ψ(h, ω)) and Gε0σ(Ψ(h′, ω′)) are equal if and only if ω = ω′.

Proof. We first deal with the dependence on h ∈ Gε0 . Choose any list ω and consider the
path µ = p0

[(γ2ω1γ
2) · · · (γ2ωkγ2)] from the basepoint p0 to Ψ(1, ω). This defines a grid path

µ = µ1 · · ·µn whose straight segments µi satisfy the hypotheses of Lemma 2.11. Since ω1 = γ,
the first straight segment µ1 contains the initial subpath p0γ

5 and has length lC(µ1) ≥ 5lC(γ).
The beginning p0γ of this path intersects the base edge α0 ∈ E(T ) of T ; therefore σ(p0γ

5)
must contain a geodesic edge path of the form (α0, b2, . . . , bm), where bm is an internal edge
of σ(p0γ

5). Notice that bm is also an internal edge of σ(µ1) and that the choice of bm does
not depend on ω. If v ∈ V (T ) denotes the initial vertex of this edge path, then both α0

and v are fixed by every element of Gε0 . Lemma 2.11 now implies that the T -geodesic from
σ(p0) to σ(Ψ(1, ω)) contains the edge bm; in particular, the T -geodesic from v to σ(Ψ(1, ω))
must have the form

(α0, b2, . . . , bm, . . . ).
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Applying a deck transformation h ∈ Gε0 , we see that the T -geodesic from hv = v to
hσ(Ψ(1, ω)) = σ(Ψ(h, ω)) has the form (α0, hb2, . . . , hbm . . . ). That is, the mth edge of the
T -geodesic from v to σ(Ψ(h, ω)) is hbm. This feature is independent of ω. Since hbm 6= h′bm
for distinct h, h′ ∈ Gε0 , this proves that the vertices σ(Ψ(h, ω)) and σ(Ψ(h′, ω′)) are distinct
when h 6= h′.

It remains to consider the dependence on ω. The following notation will aid our analysis.
Let M denote the optimal upper bound from Lemma 2.7; thus M is either lC(γ) + 1 or lC(γ)
depending on whether or not lC(γ) > 2. Furthermore, in the case that lC(γ) ≥ 3, we take a
decomposition γ = ξ1ξ2 of γ into two subpaths which satisfy lC(ξ1) = 2 and lC(ξ2) ≥ 1. If
lC(γ) ≤ 2, we instead choose this decomposition such that lC(ξ1) = 1 and lC(ξ2) ≤ 1. Notice
that M + 1 = lC(γ) + lC(ξ1).

For the remainder of the proof, we may consider a fixed element h ∈ Gε0 . Let ω =
(ω1, . . . , ωk) and ω′ = (ω′1, . . . , ω

′
k) be two distinct lists, and let j be the smallest index with

ωj 6= ω′j. Set e ∈ E(T ) to be the last edge that the path η = hp0
[(γ2ω1γ

2) · · · (γ2ωjγ2)ξ1]
crosses, and let y = (hp0) ·η be the endpoint of this path. Define e′ ∈ E(T ) and y′ = (hp0) ·η′
similarly. The bulk of our argument is devoted to proving the following claim.

Claim. The T -geodesic from σ(y) to σ(y′) has length at least lC(γ) + 2 and contains both ē
and e′. This essentially means that the two geodesics connecting σ(hp0) to σ(y) and σ(y′)
have diverged in T .

Proof of Claim. First consider the case that neither ωj nor ω′j is equal to γ. Using the
notation of (2.18), we then have ωj = τq = βqνq and ω′j = τq′ = βq′νq′ for two distinct
self-intersection points q, q′ of γ. Let

z = (hp0) · [(γ2ω1γ
2) · · · (γ2ωj−1γ2)(γ2βq)]

be the point where η makes its final turn towards y, and let A = z(νqγ
2ξ1) be the geodesic

from z to y. Define z′ and A′ similarly. The geodesic segment X from z to z′ is then a
subpath of a segment of the form xγ; as such, it has lC(X) ≤ lC(γ). On the other hand, the
edge paths σ(A) and σ(A′) both have length at least 2lC(γ) + lC(ξ1), and their intersection
σ(A) ∩ σ(A′) contains at most M edges.

As in the proof of Lemma 2.11, σ(ĀXA′) is an edge path from σ(y) to σ(y′) that can be
made into a T -geodesic by successively cancelling edge pairs (. . . , d, d̄, . . . ) to remove any
backtracking. The path σ(X) can contribute to at most lC(X) cancellations, and, assuming
all of these edges cancel, we can then have at most M cancellations involving edges of σ(Ā)
with edges of σ(A′). Therefore, the T -geodesic L from σ(y) to σ(y′) will be obtained from
σ(ĀXA′) after at most lC(X) +M cancellations. Since each cancellation removes two edges,
it follows that

lC(L) ≥ 2
(
2lC(γ) + lC(ξ1)

)
+ lC(X)− 2

(
lC(X) +M

)
= 2lC(γ)− lC(X) + 2 ≥ lC(γ) + 2.

Furthermore, since σ(Ā) and σ(A′) each contain at least 2lC(γ) + lC(ξ1) ≥ lC(X) + M + 1
edges, we see that the first edge of σ(Ā) and the last edge of σ(A′) do not cancel. As these
edges are exactly ē and e′, the claim holds when neither ωj nor ω′j is equal to γ.
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The argument for the case ωj 6= ω′j = γ is similar: Define z as above and again let
A = z(νqγ

2ξ1) be the geodesic from z to y. The geodesic from z to y′ is then given by
A′ = z(δqνqγ

2ξ1), where δq is as in (2.17). Since these are both segments along geodesics
in Γ, the concatenation σ(Ā)σ(A′) can result in at most M cancellations. The resulting
T -geodesic from σ(y) to σ(y′) has length at least

2
(
2lC(γ) + lC(ξ1)

)
− 2lC(M) ≥ 2lC(γ) + 2

and still contains the initial and terminal edges ē and e′. This proves the claim.

We now complete the proof of Proposition 2.20. To prove that Ψ(h, ω) and Ψ(h, ω′) lie
in distinct vertices of T , it suffices to show that the T -geodesic between these vertices is
nondegenerate. To ease the notation, set x = Ψ(h, ω) and x′ = Ψ(h, ω′). First suppose that
j = k, in which case we have y = x · ξ1 and y′ = x′ · ξ1. Together with the above claim, the
triangle inequality then implies that

d(σ(x), σ(x′)) ≥ d(σ(y), σ(y′))− 2lC(ξ1) ≥ lC(γ) + 2− 2lC(ξ1) ≥ 1,

where d is the path metric in T . In the case that j < k, we instead consider the path
µ = hp0

[(γ2ω1γ
2) · · · (γ2ωkγ2)] from hp0 to x. This is a grid path whose straight segments

satisfy the hypotheses of Lemma 2.11. Let µi be the straight segment of µ containing the
edge e. Then µi contains a subpath of the form γ2ξ1ξ2γ, where e is the last edge that the
ξ1 factor crosses. It is now evident that e separates µi into two edge paths of lengths at
least 2lC(γ) and lC(γ) + lC(ξ2) ≥ M . Therefore, the definition of ξ2 ensures e is an internal
edge of σ(µi). Lemma 2.11 now implies that the T -geodesic from σ(hp0) to σ(x) contains e
and, similarly, that T -geodesic from σ(hp0) to σ(x′) contains e′. Writing these geodesic edge
paths as (b1, . . . , bn, e, a1, . . . , am) and (b′1, . . . , b

′
n′ , e

′, a′1, . . . , a
′
m′), and combining them with

the geodesic (e, d1, . . . , dl, e
′) from σ(y) to σ(y′), we find that

(am, . . . , a1, e, d1, . . . , dl, e
′, a′1, . . . , a

′
m′)

is a nondegenerate, non-backtracking edge path from σ(x) to σ(x′).

2.6 The point of pushing: proof of the lower bound

Now that we have found distinct orbits of dynamic marked points that constrain [αt]M, it is
a simple matter to count intersection numbers and bound the dilatation λγ. We first state
the following corollary to the above propositions.

Corollary 2.21 (Intersection numbers). Let γ ∈ π1(S, p) be a filling loop that represents
a primitive element of π1(S, p), and let α be an essential simple closed curve on S that is
contained in S \ {p}. Choose any pants decomposition C = {ci} of S that contains α and
consists of curves contained in S \ {p}. Then for all integers k ≥ 1, the iterates ϕ5k

γ (α) ⊂
(S, p) of α ⊂ (S, p) under the point-pushing homeomorphism ϕγ satisfy

i(ϕ5k
γ (α), C) =

∑
i

i(ϕ5k
γ (α), ci) ≥ (i(γ) + 1)k−1.
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Proof. After fixing a hyperbolic metric on S, modifying each curve by an isotopy to make
it geodesic, and adjusting the basepoint accordingly, we may assume that γ and α satisfy
Assumptions 2.3 and that each simple closed curve ci ∈ C is geodesic. We then have the
corresponding tree T = TC described in §2.2 and may apply the theory developed in §§2.2–
2.5. It follows that all of the dynamic marked points described in Proposition 2.19 constrain
[α5k]M. Let µ ⊂ S be any simple closed curve that is isotopic to ϕ5k

γ (α) in (S, p), and
let µ̃ ⊂ (H2, π−1(p)) be the lift of µ whose endpoints on ∂H2 agree with those of α0. We
assume that µ is transverse to the curves in C. Since µ̃ is in the isotopy class [α5k]M, its
projection σ(µ̃) to T is an edge path that necessarily visits all of the vertices described by
Proposition 2.20. Since these project to (i(γ) + 1)k−1 distinct vertices in the quotient graph
Gε0\T , it is apparent that σ(µ̃) projects to a closed loop in Gε0\T that crosses at least
(i(γ) + 1)k−1 edges. Observation 2.12 now implies that

|µ ∩ C| ≥ (i(γ) + 1)k−1.

Since µ is an arbitrary representative in the isotopy class of ϕ5k
γ (α), this proves the claim.

We remark that our proof of Corollary 2.21 is essentially an elaboration of the proof of
Kra’s theorem given by Farb and Margalit in [FM, Theorem 14.6]. Indeed, their technique
of point-pushing in the universal cover provided both the inspiration and the foundation for
our above analysis of the intersection numbers i(ϕkγ(α), C). In light of the connection between
dilatation and intersection numbers (Theorem 2.2), this analysis of i(ϕkγ(α), C) easily implies
a lower bound on the dilatation of ϕγ.

Theorem 2.22 (The lower bound). Let S = Sg,n be a surface satisfying 3g+ n > 3, and let
µ : [0, 1]→ S be a closed filling curve on S based at p = µ(0). Then the dilatation λµ of the
mapping class P(µ) ∈ Mod(S, p) is bounded below as follows:

i) If S = S0,4 or S1,2 and µ is the square of a primitive element in π1(S), then λµ ≥ 5
√

i(µ).

ii) If S = S1,1 and µ is the second, third, or fourth power of a primitive element, then

λµ ≥ 5
√

(i(µ) + 1)/2.

iii) In all other cases, λµ ≥ 5
√

i(µ) + 1.

Proof. Decompose µ as a power µ = γm, m ≥ 1, of some primitive filling curve γ ∈ π1(S, p).
Let ϕγ denote a representative homeomorphism for P(γ) and let α ⊂ S \{p} be any essential
simple closed curve on S. After choosing a pants decomposition C as in Corollary 2.21, it
follows that the simple closed curves ϕkγ(α) ⊂ (S, p) satisfy i(ϕ5k

γ (α), C) ≥ (i(γ) + 1)k−1 for
all k ≥ 1. Upon manipulating this inequality, we find that(

(i(γ) + 1)1/5

λγ

)5k

≤ (i(γ) + 1)
i(ϕ5k

γ (α), C)
λ5kγ

= (i(γ) + 1)
∑
ci∈C

i(ϕ5k
γ (α), ci)

λ5kγ
.

Theorem 2.2 implies that the rightmost expression has a finite limit. Therefore the leftmost
expression remains bounded as k tends to infinity, which is only possible if λγ ≥ (i(γ)+1)1/5.
This proves the theorem when µ = γ is a primitive element of π1(S).
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It remains to bound the dilatation λµ = λmγ in the case that m ≥ 2. Isotope γ to attain
the minimum intersection number i(γ) > 0 in Definition 1.3. By building a single closed
curve out of m offset copies of this loop, we obtain a representative for µ = γm that has
m2 i(γ) + (m− 1) transverse self intersections. This gives an upper bound

i(µ) + 1 ≤ m2 i(γ) +m (2.23)

on the self-intersection number of µ. To relate this to the dilatation of P(µ), we need to
consider several inequalities involving the numbers i(γ) and m. Firstly, the inequality

m2k +m ≤ (k + 1)m (2.24)

holds for all integers m ≥ 2 and k ≥ 3. Secondly, thinking of γ ⊂ S as a four-valent graph,
we have that

− i(γ) = χ(γ) ≤ χ(Sg,n) = 2− 2g − n, (2.25)

where this inequality is strict in the case that S is closed. The following three cases now
account for all surfaces Sg,n satisfying 3g + n > 3.

Case 1: χ(S) ≤ −3 or S = S2,0. In this case (2.25) implies that i(γ) ≥ 3 (note that S2,0 is
closed). Combining (2.23) and (2.24) then yields the desired inequality

λµ = λmγ ≥ (i(γ) + 1)
m/5 ≥

(
m2 i(γ) +m

)1/5 ≥ 5
√

i(µ) + 1.

Case 2: S = S0,4 or S = S1,2. In this case (2.25) only ensures that i(γ) ≥ 2. When k = 2,
the inequality (2.24) remains valid provided that m ≥ 3. In such cases, we obtain the bound
λµ ≥ (i(µ) + 1)1/5 as above. When m = 2, the modified inequality 22k + 2 − 1 ≤ (k + 1)2

holds provided k ≥ 2. Combining this with (2.23), we find that

λµ = λ2γ ≥ (i(γ) + 1)
2/5 ≥ (22 i(γ) + 2− 1)

1/5 ≥ 5
√

i(µ)

in the case that µ is the square of a primitive element of either π1(S0,4) or π1(S1,2).

Case 3: S = S1,1. The Euler characteristic now guarantees that i(γ) ≥ −χ(S1,1) = 1.
When k = 1, (2.24) still holds provided that m ≥ 5; therefore we may conclude the general
bound λµ ≥ (i(µ) + 1)1/5 in these cases. For 2 ≤ m ≤ 4, we instead have the inequality
(m2k +m)/2 ≤ (k + 1)m, which holds for all k ≥ 1. Together with (2.23), this shows that

λµ = λmγ ≥ (i(γ) + 1)
m/5 ≥

(
m2 i(γ) +m

2

)1/5

≥ 5

√
i(µ) + 1

2

in the case that µ is the second, third, or fourth power of a primitive element in π1(S1,1).

Remark 2.26. The above complications due to non-primitive loops are unfortunate but
unavoidable. If µ is any closed loop that realizes the minimum i(µ) and has transverse self-
intersections, then i(µ) is exactly equal to the number of distinct lifts µ̃ that a single path
lift xµ intersects. However if µ is the kth power of a primitive element, then the lifts of µ are
grouped into families of k “parallel” lifts with the same endpoints at ∂H2. Thus, following
along a path xµ and turning onto various other lifts µ̃ does not lead to exponential branching
out in T , as many of these lifts now fellow-travel in T forever.
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b1

b2

b3

Figure 7: A switch. Figure 8: The local tie neighborhood.

3 An invariant pretrack

Train tracks are an invaluable tool in the study of pseudo-Anosov homeomorphisms, and
they will play an essential role in in our investigation. While it is a nontrivial matter to find
an invariant train track for an arbitrary pseudo-Anosov map (there is, however, an algorithm
due to Bestvina and Handel [BH]), §3.2 describes a simple method for constructing invariant
pretracks for pseudo-Anosov elements of the the point-pushing subgroup. We will use this
construction to establish the upper bounds in Theorems 1.5, 1.12, and 1.13. We begin our
discussion by recalling the relevant train track theory, which is developed more thoroughly
in [PH,Mos,Pen1,PP].

3.1 Preliminary train track theory

A pretrack on S = Sg,n is a nonempty, smooth, closed 1-complex τ ⊂ S, whose edges are
called branches and whose vertices are called switches, with the property that all branches
incident on a given switch v ∈ τ share a common tangent line Lv ≤ TvS at v; in this way,
the branches incident at v are divided into two sides depending on whether their tangent
vectors at v (oriented into the branch) are parallel or antiparallel. The local picture around
a switch is shown in Figure 7. The closure C of a component of S \ τ is naturally a surface
with some number k ≥ 0 of cusps on its boundary, and we define the Euler index of such a
surface to be χ(C)− k/2. For instance, a k-gon, that is, a topological disk with k cusps on its
boundary, has Euler index 2−k

2
. A k-gon with k ≤ 3 will usually be referred to as a nullgon,

monogon, bigon, or trigon.
A train track on S is simply a pretrack whose complementary components all have neg-

ative Euler index. This amounts to ruling out complementary nullgons, monogons, bigons,
smooth annuli, and once-punctured nullgons. In the context of a marked surface (S, p), the
marked point p counts as a puncture and will be treated as such. We will use the term
“track” to refer to both pretracks and train tracks.

A weight function on a track τ is an assignment of a nonnegative real number to each
branch of τ in such a way that the net weights incident on either side of each switch agree.
For instance, if the weight wi is assigned to branch bi in Figure 7, then these weights must
satisfy the equation w1 + w2 = w3. The set of weight functions on τ is denoted by Eτ ; it is
a convex cone in RB, where B is the set of branches in τ .
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Let MF (S) denote the space of equivalence classes of measured foliations on S; see [FLP]
for the theory of measured foliations. Because of the train track condition on complementary
components, there is natural injection ρ : Eτ →MF (S) from the set of weights on a train
track τ onto a convex cone Vτ ⊆MF (S) consisting of those measured foliations which are
“carried” by τ [PP, pp. 360–361]. As every measured foliation is carried by some train track,
the cones Vτ are sometimes regarded as parameterized coordinate patches in MF (S). A
pretrack that fails to be a train track only due to the existence of complementary bigons will
be called a bigon track. The natural function ρ : Eτ → Vτ still makes sense for a bigon track,
but it may fail to be injective [Pen2, p. 183].

Associated to τ is a local tie neighborhood N ⊂ S; this is a small neighborhood of τ
equipped with a retraction N → τ whose fibers form a foliation of N by ties that are
transverse to τ , as in Figure 8. If σ is another track on S, then τ carries σ, denoted σ ≺ τ ,
if σ may be smoothly isotoped into N while remaining transverse to the ties. Such an
isotopy Φt : S → S with Φ1(σ) ⊂ N is called a supporting map for the carrying σ ≺ τ ; it
defines a corresponding incidence matrix M = (Mij) as follows: For each branch bi of τ
choose a distinguished fiber xi ⊂ N over an interior point of bi. Then, for each branch cj
of σ, set Mij =

∣∣Φ−11 (xi) ∩ cj
∣∣ to be the number of times Φ1(cj) crosses the distinguished

tie xi. Although the incidence matrix M depends on the supporting map Φt, the matrix
nevertheless induces a canonical linear transformation M : Eσ → Eτ from the set of weight
functions on σ to the set of weight functions on τ . In the case that σ and τ are train
tracks, the carrying σ ≺ τ implies that Vσ ⊆ Vτ , and any incidence matrix M describes the
corresponding transition function between these parameterizations of Vσ [PP, p. 362].

Because of the switch conditions, a weight function µ ∈ Eτ may be specified by its values
on a proper subset B′ ⊂ B of the branches of τ ; for example, in the situation of Figure 7,
the weight µ(b3) is determined by the values of µ(b1) and µ(b2). This means that the natural
projection RB → RB′ is injective on Eτ ⊂ RB. If E ′τ ⊂ RB′ denotes image of Eτ , then
inverting this projection gives a linear bijection Aτ : E ′τ → Eτ . In the case of a carrying
σ ≺ τ with incidence matrix M , we can make use of these bijections and instead consider
the |B′τ | × |B′σ| matrix M ′ = A−1τ MAσ. This smaller matrix gives a linear transformation
M ′ : E ′σ → E ′τ that contains all of the information of the carrying. To ease calculations, we
will work with incidence matrices of this smaller form.

In addition to isotopy, we will make use of three elementary moves on a track τ which
produce a new track τ ′ that carries τ . The moves are illustrated in Figure 9, and they
consist of: sliding one switch past another, collapsing a bigon, or pinching branches together
in the manner illustrated. For each move there is a natural choice of supporting map for the
carrying τ ≺ τ ′ whose corresponding incidence matrix has the obvious effect on weights.

If f ∈ Mod(S) is a pseudo-Anosov mapping class and τ is a track on S, then the image
f(τ) is well-defined up to isotopy. We say that τ is an invariant track for f if f(τ) ≺ τ .
If, additionally, τ is a train track or bigon track, then any incidence matrix M for the
carrying f(τ) ≺ τ describes the induced map f∗ : MF (S)→MF (S) in the coordinate chart
ρ : Eτ → Vτ , that is, we have f∗(ρ(µ)) = ρ(Mµ) for any weight function µ ∈ Eτ [Pen1, p. 444].
The projective class of the unstable measured foliation F+ of f is an attracting fixed point for
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pinch

collapse

Figure 9: The elementary carrying moves.

the action of f∗ on the space P(MF (S)) of projective classes of measured foliations. Since f∗
preserves Vτ , it follows that the projectivized coordinate chart P(Vτ ) contains sequences that
converge to the projective class of F+. Since Vτ is closed, this implies that F+ is contained
in Vτ and necessarily corresponds to an eigenvector of M . In particular, the dilatation of f
is an eigenvalue of the incidence matrix M .

A square integer matrix A is Perron–Frobenius if it has nonnegative entries and some
power Ak has strictly positive entries (such matrices are also known as “primitive irre-
ducible”). In this case, the eigenvalue of A with maximum modulus is positive real and
its corresponding eigenvector has strictly positive entries [Gan, Ch XIII §2 Theorem 2]. It
follows that the modulus of any eigenvalue of a Perron–Frobenius matrix is bounded above
by the largest row-sum of the matrix. Applying this classical result to the case of a Perron–
Frobenius incidence matrix M , we may conclude the following key lemma.

Lemma 3.1. Let f be a pseudo-Anosov mapping class, and suppose that τ is an invariant
train track or bigon track for f . If M is a Perron–Frobenius incidence matrix for the carrying
f(τ) ≺ τ , then the dilatation of f is bounded above by the largest row-sum of M .

3.2 Invariant tracks for point-pushing homeomorphisms

In this subsection we describe a simple procedure for producing a pretrack from a curve;
this construction will be used in §4 and §5 to analyze explicit examples and prove the upper
bounds in Theorems 1.5, 1.12 and 1.13. Let γ : [0, 1] → S be a smooth curve on S with
γ(0) = γ(1) = p. We say that such a loop is generic if it is simple except for finitely many
transverse double-intersection points in the interior of γ (i.e., not at p). If γ is generic and
q ∈ S is a self-intersection point of γ, we let tq1 and tq2 denote the two preimages of q under
γ, that is, we have γ−1(q) = {tq1, tq2} with 0 < tq1 < tq2 < 1.

Notice that a generic loop γ ⊆ S is naturally a smooth, closed 1-complex that only fails
to be a pretrack because its intersection points are transverse rather than tangential. Thus
we can build a pretrack that is intrinsically related to γ by simply adjusting this 1-complex
around its intersection points to ensure that it satisfies the tangential condition at switches.
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(a) A self-intersection point of γ.
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(b) The local pretrack τγ around q.

Figure 10: Constructing a pretrack τγ from a generic curve γ.

p

γ′(0)

Figure 11: Adjusting for the basepoint: the eye of the pretrack τγ .

Locally around an intersection point q, the curve γ cuts S into four quadrants which have
corners incident at q and boundaries given by arcs of γ. The quadrant whose two boundary
edges agree with the tangent vectors γ′(tq1) and γ′(tq2) is the outbound quadrant, and its
diagonal opposite is the inbound quadrant ; the situation is depicted in Figure 10(a).

We now describe how to adjust the 1-complex γ around q to obtain a pretrack. The path
γ crosses q twice, first at time tq1 and then at tq2. For a sufficiently small ε > 0, we consider
the four nearby points a±i = γ(tqi ± ε) on the edges of γ incident at q. Add three short,
curved segments connecting the three pairs of points (a−1 , a

+
2 ), (a+1 , a

−
2 ), and (a+1 , a

+
2 ); this

has the effect of cutting off the corner of every quadrant except for the inbound quadrant.
Removing the segment of γ between a−1 and a+1 , we obtain the local pretrack illustrated in
Figure 10(b); it has a trigon located at q, the inbound quadrant has a cusp, and the other
quadrants have smooth corners. Notice that this 1-complex is still tangent to γ′(tq2) but is
no longer tangent to γ′(tq1).

After making these adjustments at each self-intersection point, we obtain a pretrack on
the surface S. The last step is to create a track on S \ {p}. Consider the branch that passes
through p and split it (e.g., at γ(1 − ε) and γ(0 + ε)) into a bigon around p. Finally, as
illustrated in Figure 11, add a smooth arc across the front of the bigon separating it into a
trigon and a monogon containing p. We refer to this section of track that surrounds p, i.e.,
the section shown in Figure 11, as the eye of the track.

Definition 3.2 (Induced pretrack). Let γ : [0, 1] → S be a generic closed curve on the
surface S. The corresponding pretrack, as constructed above, is called the pretrack induced
by γ and will be denoted by τγ. See Figures 14 and 15 for examples of such pretracks.
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Proposition 3.3 (Invariance of the induced pretrack). Let γ : [0, 1] → S be a generic loop
representing a nontrivial element of the fundamental group π1(S, p). Then the induced pre-
track τγ is invariant under the mapping class P(γ) = [ϕγ].

Proof. Observe that the pretrack τγ depends on the choice of basepoint p ∈ S. For t ∈ [0, 1],
we may choose a reparameterization γ̂ of γ based at the point γ̂(0) = γ(t), and we let τt = τγ̂
denote the corresponding pretrack. This new track differs from τγ in two important ways:
Firstly, the eye of the track is now located at γ(t) instead of at p = γ(0). Secondly, the order
of traversal at a self-intersection point q might have changed; this would have the effect of
reversing the orientation of the local picture around q—the inbound and outbound quadrants
would be unchanged but the segment connecting a−2 and a+2 would be replaced by a segment
joining a−1 and a+1 (see Figure 10(b)). In this case we say that the branch containing q has
“flipped” in order to satisfy the condition that it is always transverse to the direction of
travel for γ̂’s first intersection with q.

Before proceeding with the proof, we highlight the key idea: pushing across a self-
intersection point has the effect of moving the eye and flipping the branch containing that
point. Since one full loop around γ crosses each intersection point twice, each branch flips
twice and there is no net effect. To make this precise, we argue as follows.

Recall from §2.1 that the point-pushing homeomorphism ϕγ is obtained at the end of an
isotopy Ft : S → S that pushes the point p around γ via the formula Ft(p) = γ(t). Recall also
that the pretrack τβ ⊂ S induced by a closed curve β : [0, 1]→ S is, by definition, contained
in the punctured surface S \ {β(0)}. Therefore, for each t ∈ [0, 1], the reparameterized track
τt defined above satisfies τt ⊂ S \ {γ(t)}. Notice that we also have Ft(τγ) ⊂ S \ {γ(t)}.

Let [s, s′] ⊆ [0, 1] be a time interval during which Ft either pushes p along an edge of γ
or pushes p through a self-intersection point of γ. We will prove that if Ft(τγ) ≺ τt in the
punctured surface S\{γ(t)} when t = s, then the same is true when t = s′. Since [0, 1] may be
covered by finitely many of these intervals, it will then follow that ϕγ(τγ) = F1(τγ) ≺ τ1 = τγ
in the punctured surface S \ {p}.

Strictly speaking, we should start with the track Fs(τγ) and apply the isotopy over the
interval [s, s′] to obtain Fs′(τγ). Instead, we will use the given carrying Fs(τγ) ≺ τs and start
with the track τs. We then apply the isotopy to τs and obtain a new track σ. Since we could
have alternately taken note of the steps in the carrying and simply performed them after
completing the isotopy, we see that Fs′(τγ) ≺ σ. Thus it suffices to show σ ≺ τs′ .

We first consider the case where Ft pushes p along an edge of γ during the interval [s, s′].
Consider a small neighborhood U of γ([s, s′]) that does not contain any self-intersection
points of γ. The isotopy may be chosen so that the complement of U is unchanged throughout
the interval [s, s′], that is, such that Ft ◦ F−1s′ |S\U is equal to the identity for all t ∈ [s, s′].
Furthermore, the pretrack τs may be constructed so that the eye of τs is contained in U . As
the isotopy pushes γ(s) along the path γ([s, s′]), we may assume that the eye of τs retains its
structure as it slides through U . Since the rest of the track remains unchanged, the resulting
track at time s′ is exactly τs′ . Thus Fs′(τγ) ≺ τs′ .

It remains to examine the case where Ft pushes p through a self-intersection point q
during the interval [s, s′]. At time t = s we have the track τs, and the initial situation

33



p

d

l

r
a

b

c

(a) Coming up to an intersection point.

p
d

l

r
a

b

c

(b) Push through the intersection point.

p

(c) Pinch branches together.

p

d′

l′

r′a′

b′c′

(d) Collapse the bigons.

Figure 12: Proving that τγ carries P(γ)(τγ): navigating a self-intersection point of γ.

is as depicted in Figure 12(a). Pushing p through q results in the track σ illustrated in
Figure 12(b). After pinching several branches together as in Figure 12(c), we may collapse
the the resulting bigons to obtain the track σ′ shown in Figure 12(d). Note that σ ≺ σ′.
A comparison of τs and σ′ shows that pushing through q has the effect of moving the eye
to γ(s′) and flipping the branch containing q. Since changing the starting point from γ(s)
to γ(s′) switches the order of traversal at q—the direction we just pushed is the second
direction of traversal if we start at γ(s′)—σ′ evidently satisfies the defining characteristics
of τs′ ; whence σ ≺ τs′ .

The proof of Proposition 3.3 exhibits an explicit carrying ϕγ(τγ) ≺ τγ, and it is straight-
forward to determine the corresponding incidence matrix. Notice that any weight function
is locally determined by its values on the six branches that are labeled in Figure 12(a). We
identify these distinguished branches in the following way. In the eye of the pretrack, d is the
branch immediately in front of the marked point, while l and r form the left and right sides
(in the direction of travel) of the trigon at the front of the eye. In the local picture around a
self-intersection point q, aq is the branch containing q, bq is the curved branch through the
outbound quadrant, and cq is the curved branch forming the other side of this trigon.

Suppose that w is a weight function on τγ, and let q1, . . . , qn denote the n = i(γ) self-
intersection points of γ. We say that we = (w(d), w(l), w(r)) is the weight vector at the eye,
and that wi = (w(aqi), w(bqi), w(cqi)) is the weight vector at qi. The weight function is then
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completely determined by its weight vectors we, w1, . . . , wn.
By keeping track of the weights throughout the carrying illustrated in in Figure 12, one

finds that pushing the marked point through qi transforms the weight vector (we, w1, . . . , wn)
according to the block matrix

Aright
i =



(
1 0 1
0 0 0
0 0 0

)
· · ·

(
1 0 0
0 1 0
0 0 1

)
· · · 0

...
. . .

...
...(

2 0 1
0 0 1
0 1 0

)
· · ·

(
0 0 0
1 1 0
0 0 0

)
· · · 0

...
...

. . .
...

0 · · · 0 · · · I


or Aleft

i =



(
1 1 0
0 0 0
0 0 0

)
· · ·

(
1 0 0
0 0 1
0 1 0

)
· · · 0

...
. . .

...
...(

2 1 0
0 1 0
0 0 1

)
· · ·

(
0 0 0
1 1 0
0 0 0

)
· · · 0

...
...

. . .
...

0 · · · 0 · · · I


depending on whether the inbound quadrant is on the right (as in Figure 12) or left side
of p. Here Aright

i and Aleft
i are each the identity matrix except for the four indicated blocks

in the e and i positions. The full incidence matrix for the carrying is then an appropriate
product of these matrices.

Corollary 3.4 (Incidence matrix). Suppose that a generic closed curve γ : [0, 1]→ S crosses
its n = i(γ) self-intersection points {qi} in the order qi1 , qi2 , . . . , qi2n and that the handedness
of the jth crossing is Oj ∈ {right, left}. Let Mγ : Eτγ → Eτγ be the linear transformation
induced by the carrying ϕγ(τγ) ≺ τγ described in Proposition 3.3. Then the action of Mγ on
a weight vector (we, w1, . . . , wn) is given by the matrix product

Mγ = AO2n
i2n
· · ·AO1

i1
.

Remark 3.5. It is an obvious drawback that τγ is only a pretrack and not, in general, a
train track. There is a beautiful algorithm, due to Bestvina and Handel [BH], that will find
an invariant train track for any pseudo-Anosov mapping class. However, in the case of a
point-pushing map, it is not clear how the resulting track depends on the pushing curve. The
point of our construction is that τγ depends visibly on γ, and, as seen in Corollary 3.4, the
corresponding incidence matrix depends quantifiably on the self-intersection number i(γ).
Thus τγ provides a connection between i(γ) and the dilatation λγ. It would be interesting
if our construction could be modified to produce a train track while maintaining these key
features.

4 The largest dilatations

Having established a general lower bound on the dilatation of a point-pushing homeomor-
phism, we now turn our attention to upper bounds. In this section we use the train track
theory developed in §3 to bound λγ from above and complete the proof of Theorem 1.5.
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4.1 The image of a loop

As in the proof of the lower bound, we will estimate dilatation by studying the action on
simple closed curves and counting intersection numbers. Rather than lifting to the universal
cover, as we did in §2, we will use train tracks to analyze curves directly on the surface. We
begin with some general observations.

A simple closed curve can naturally be given the structure of a pretrack. Thus it makes
sense to talk about simple closed curves being carried by a track. Let f ∈ Mod(S, p) be
a pseudo-Anosov map, and suppose that τ is an invariant track for f . We then have the
|B|×|B| incidence matrix M for the carrying f(τ) ≺ τ , where B = {bi} is the set of branches
of τ . If α ⊂ (S, p) is a simple closed curve that is carried by τ , then the carrying α ≺ τ defines
a |B| × 1 incidence matrix that we think of as weight vector v ∈ Eτ . Since τ is invariant
under f , it follows that τ carries fk(α) for k ≥ 0 and that the weight vector for the carrying
fk(α) ≺ fk(τ) ≺ τ is given by u = Mkv. This means that fk(α) is isotopic to a simple closed
curve that is contained in the tie neighborhood of τ and intersects the central tie over bi
exactly u(bi) times. Conversely, such a representative for fk(α) may be constructed directly
from the weight vector u: For each edge bi of τ , place u(bi) disjoint segments running parallel
to bi. Because u ∈ Eτ satisfies the switch conditions, the endpoints incident at each switch
match up in pairs to produce a simple closed curve that is isotopic to fk(α) in (S, p).

Now suppose that η ⊂ (S, p) is another simple closed curve. After adjusting η by an
isotopy, we may assume that its intersections with τ are all transverse and contained in
the interiors of the branches bi. Corresponding to this setup, we then have the 1 × |B|
intersection matrix N = (N1j) given by N1j = |η ∩ bj|. If a ⊂ (S, p) is the simple closed
curve constructed from the weight vector u = Mkv as above, it follows that the cardinality
of η∩a is given by the product Nu. In particular, for all integers k ≥ 0, the matrix products

NMkv = Nu = |η ∩ a| ≥ i(η, fk(α)) (4.1)

give convenient upper bounds on the intersection numbers of fk(α) and η.

4.2 An upper bound on dilatation

We now carry out such an estimate in the case of a point-pushing pseudo-Anosov map. Let
γ : [0, 1] → S be a filling curve on an oriented surface S = Sg,n, where 3g + n > 3. After
adjusting γ by an isotopy, we may assume it is generic and that it realizes the minimum
self-intersection number i(γ) > 0 in Definition 1.3. It follows from Kra’s theorem that the
point-pushing homeomorphism ϕγ is pseudo-Anosov, and we consider its induced invariant
pretrack τγ as constructed in Definition 3.2. In order to apply the above discussion and
relate intersection numbers to dilatation, we need to find an essential simple closed curve
that is carried by τγ.

Suppose that i(γ) = n, and let q1, . . . , qn ∈ S be the n self-intersection points of γ. The
path γ : [0, 1] → S crosses each of these points twice, and they are ordered according to
their first crossing times. Thus qn is the intersection point that is reached last, and not
necessarily the intersection point that is crossed last. Using qn ∈ γ as a break point, we form
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Figure 13: The track τγ carries both δ and σ; at least one of these curves is essential.

the decomposition γ = αδβ, where α is the initial portion of γ from p = γ(0) to qn, δ is the
subsequent loop based at qn, and β is the final segment from qn back to p = γ(1).

Lemma 4.2. The subloop δ ⊂ γ is a simple closed curve that is carried by τγ.

Proof. For each 1 ≤ i ≤ n, let 0 < ti1 < ti2 < 1 be the two preimages of qi under γ.
Thus δ is the restriction of γ to the interval [tn1, tn2]. The ordering on the self-intersection
points implies that ti1 < tn1 for all i < n. Therefore δ is simple because it crosses each
self-intersection point of γ at most once.

To prove that δ ≺ ττ , we must isotope δ into the tie neighborhood of τγ while keeping
δ transverse to the ties. We first argue that this condition already holds everywhere along
δ except near its basepoint qn. This is clear away from the self-intersection points of γ, so
consider the situation near a self-intersection point qi. There is nothing to prove unless δ
crosses qi, in which case we have tn1 < ti2 < tn2. Therefore δ crosses qi while travelling in
the γ′(ti2) direction. Since, by Definition 3.2, τγ contains a branch through qi that is tangent
to this direction, it follows that δ is tangent to τγ and that the carrying condition does hold
near qi.

It remains to adjust δ near its basepoint qn so that the carrying condition is satisfied.
Notice that δ leaves qn going in the direction γ′(tn1) and returns travelling in the direction
γ′(tn2). These two edges of γ do not bound the inbound quadrant at qn, so they are not
separated by a cusp of τγ. Using the notation of Figure 10, we find that one may isotope
δ so that is starts at the point a+1 , leaves in the direction γ′(tn1), travels once around δ to
the point a−2 , and then follows the curved branch of τγ back to a+1 . The resulting curve, as
illustrated in Figure 13, satisfies the carrying condition and proves that δ ≺ τγ.

Lemma 4.3. There exists an essential simple closed curve σ ⊂ (S, p) that is carried by τγ.

Proof. Any nullhomotopy of δ would provide a homotopy between γ = αδβ and αβ that
reduces the self-intersection number of γ. Since this is not possible, δ is nontrivial in π1(S).
If δ is also essential, then we are done by Lemma 4.2. Otherwise, δ is puncture-parallel and
we construct an essential curve as follows.
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The definition of qn ensures that the restriction of γ to (tn1, 1] crosses each self-intersection
point qi at most once. Therefore β = γ|[tn2,1] is a simple path from qn to p whose interior is
disjoint from δ. Note also that β is everywhere tangent to τγ for the same reason that δ is.
Let ε ⊂ S be a simple closed curve around the marked point p; for example, ε may be chosen
to be the boundary of a small neighborhood of p. Using β as a guide, form the connect sum
σ = δ#ε of δ with ε. More precisely, remove an interval from each loop and glue in two
parallel copies of β to form a single closed curve that is homotopic to δβεβ̄. As illustrated
in Figure 13, the structure of the pretrack near qn and p ensures that σ is carried by τγ.
Furthermore, σ is simple because it is the union of four simple segments whose interiors are
disjoint.

Recalling that the marked point p counts as a puncture, we see that δ and ε are both
puncture-parallel, separating curves. Therefore σ separates S into two components, one of
which is a twice-punctured disk. Since S is neither S0,2 nor S0,3, the other component of
S \ σ cannot be a disk or a once-punctured disk. This proves that σ is essential.

Now that we have found an essential, simple closed curve that is carried by τγ, we may
proceed to estimate intersection numbers and bound the dilatation λγ. Let B = {bi} be the
set of branches of τγ, and let M be the |B|×|B| incidence matrix for the carrying ϕγ(τγ) ≺ τγ
given in Proposition 3.3. Take σ ⊂ S to be the essential curve from Lemma 4.3, and let
v ∈ Eτγ be the |B| × 1 weight vector associated to the carrying σ ≺ τγ.

Let B′ ⊂ B be the set of 3(i(γ) + 1) distinguished branches defined after the proof of
Proposition 3.3, and let E ′τγ ⊂ RB′ be the image of Eτγ under the projection P : RB → RB′ .
Since any weight vector is determined by its values on these edges, there is a linear bijection
Q : E ′τγ → Eτγ that inverts P (see the discussion in §3.1). This map may be realized, in a

non-unique way, by a |B| × |B′| matrix Q whose ith row expresses a weight function’s value
on bi as a linear combination of its values on the branches b′ ∈ B′. Since the action of ϕγ on
E ′τγ is given by the |B′| × |B′| incidence matrix Mγ in Corollary 3.4, we evidently have that
M = QMγP .

Let v′ = Pv denote the projection of v to E ′τγ . This may be expressed as a vector
v′ = (v′1, . . . , v

′
l) of size l = |B′| whose entries are nonnegative integers. According to

Corollary 3.4, Mγ is a product of 2 · i(γ) matrices of the form Aright
i or Aleft

i . This structure
gives us good control on the size of Mk

γ v
′ in terms of k and i(γ).

Lemma 4.4. Let u = (u1, . . . , ul) be a vector of size l = |B′|, and let c = maxi{ui} denote
its largest entry. If D is a product of k ≥ 0 matrices of the form Aright

i or Aleft
i given in

Corollary 3.4, then every entry of the vector Du is bounded above by 3kc.

Proof. If A = (Aij) is any matrix of the specified form, then each row of A has sum at most
3. Assuming inductively that the claim holds for any given k-fold product D, we find that

(ADu)i =
∑
j

Aij (Du)j ≤
∑
j

Aij3
kc = 3kc

∑
j

Aij ≤ 3kc · 3.

Therefore the claim also holds for the (k + 1)-fold product AD.

38



We now give a general upper bound on the dilatation λγ. Together with Theorem 2.22,
the following result completes the proof of Theorem 1.5.

Theorem 4.5 (The upper bound). Let S = Sg,n be a surface satisfying 3g + n > 3, and let
γ : [0, 1]→ S be a filling loop based at γ(0) = p. Then the dilatation λγ of the mapping class
P(γ) is bounded above by 9i(γ).

Proof. Retaining the notation of the preceding discussion, we see that for k ≥ 0 the weight
vector associated to the carrying ϕkγ(σ) ≺ τγ is given by the matrix product

Mkv = QMk
γ v
′.

Let η ⊂ (S, p) be any essential simple closed curve that is transverse to the track τγ and
disjoint from the switches. We may then form the 1 × |B| intersection matrix N = (N1j)
whose entries are given by N1j = |η ∩ bj|. It now follows from (4.1) that the intersection
numbers i(ϕkγ(σ), η) are bounded above by the following matrix products

i(ϕkγ(σ), η) ≤ NMkv = NQMk
γ v
′.

Let d denote the sum of the entries in the 1×|B′| matrix NQ. By Corollary 3.4, Mk
γ is a

product of 2k · i(γ) matrices of the form Aright
i or Aleft

i . Therefore, we may apply Lemma 4.4
and conclude that

i(ϕkγ(σ), η) ≤
∑
j

(NQ)j(M
k
γ v
′)j ≤ 32k i(γ)c

∑
j

(NQ)j = dc32k i(γ),

where c = max{v′i} is the largest entry in v′. Dividing by λkγ, we see that the inequality

i(ϕkγ(σ), η)

λkγ
≤ dc

(
9i(γ)

λγ

)k
holds for all integers k ≥ 0. Since σ and η are both essential, simple closed curves, Theo-
rem 2.2 implies that the left hand side has a positive limit as k tends to infinity. It follows
that right hand side is bounded away from zero, which necessitates λγ ≤ 9i(γ).

Remark 4.6. It seems unlikely that this upper bound is optimal. When τ is a train track,
the matrix products in (4.1) actually grow like i(fk(α), η) and λkf . However, if τ has com-

plementary monogons, then the loops constructed from the weight vectors Mkv will be very
inefficient representatives of fk(α), and the matrix products NMkv will drastically overes-
timate the intersection numbers i(fk(α), η). Indeed, in order to minimize the cardinality of
fk(α)∩ η, one would need to straighten the representative loop fk(α) by pulling its strands
across all of the complementary monogons.

In the case of a pushing curve γ ⊂ S with very high self-intersection number, Euler char-
acteristic considerations imply that τγ will have on the order of χ(S)+i(γ)/2 complementary
monogons and nullgons. Consequently, we expect that our upper bound is far from sharp
when i(γ) is large.
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Remark 4.7. The above remark illustrates why the pretrack τγ is not able to provide a
general lower bound on the dilatation λγ. Namely, without the train track condition on
complementary components, the pretrack τγ does not aid in calculating the infimum in the
Definition 2.1 of intersection number. The pretrack τγ does provide an upper bound on λγ
precisely because one can bound i(ϕkγ(α), η) from above without taking infimums.

The following simple argument shows that any general upper bound must be at least on
the order of exp(C i(γ)1/2) for some constant C. In particular, the optimal upper bound on
λγ, in terms of i(γ), must lie somewhere between exp(C i(γ)1/2) and exp(log(9) i(γ)).

Proposition 4.8. There exists an infinite family {P(γk)} of point-pushing pseudo-Anosovs
and a constant C such that i(γk)→∞ and λγk ≥ exp(C

√
i(γk)).

Proof. Let µ ⊂ S be any filling curve on S and let λ = λµ be the dilatation of the pseudo-
Anosov mapping class P(µ). For example, µ may be chosen to fill S efficiently so that i(µ) is
relatively small. Powers γk = µk of µ may then be represented by closed loops that are built
by concatenating k offset copies of µ. These offset copies contribute k2 intersection points
for each self-intersection point of µ, so we have the upper bound

i(γk) = i(µk) ≤ k2 i(µ) + (k − 1) ≤ 2k2 i(µ).

Since the dilatation of P(γk) is given by λγk = λk, the above inequality implies that

λγk = λk ≥ λ
√

i(γk)/2 i(µ) =
(
λ

1/
√

2 i(µ)

)√i(γk)

.

5 Bounds on least dilatations

It remains to consider the least dilatations attained in the point-pushing subgroup PP(S).
In this section, we use the tools of §3 to examine two concrete examples on the closed surface
Sg of genus g. These calculations will prove Theorems 1.12 and 1.13.

5.1 A low-dilatation example

Recall from (1.8) that L(PP(S)) = inf {spec(PP(S))} is the the least element in the spectrum
of all entropies of point-pushing pseudo-Anosov homeomorphisms on the surface S. Our goal
in this subsection is to bound the least dilatation L(PP(Sg)) on the closed surface of genus g
and to estimate its asymptotic dependence on genus. More precisely, we prove the following.

Theorem 1.12. For the closed surface Sg of genus g ≥ 2, we have

1
5

log(2g) ≤ L(PP(Sg)) < g log(11).

Proof. As one may easily check, the inequality (1.9) is strict in the case of a closed sur-
face. Therefore the inequality in Corollary 1.10 may be improved to give the lower bound
L(PP(Sg)) ≥ 1

5
log(2g). To bound L(PP(Sg)) from above, it suffices to consider an example.
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Figure 14: A point-pushing example on S2 (the left and right boundaries are identified).

Example 5.1. Consider the surface S2 of genus 2, and let γ0 : [0, 1]→ S2 be the closed curve
illustrated in Figure 14(a). Notice that γ0 has three self-intersection points and that S2 \ γ0
is a single topological disk. Applying Definition 3.2 to γ0 produces the invariant pretrack τγ0
shown in Figure 14(b). Since the complementary components of τγ0 consist of five trigons
and one punctured monogon, τγ0 is, in fact, a train track.

Assigning weights as indicated in Figure 14(b) determines a weight function on τγ0 . If
ve = (d, l, r) denotes the vector of weights around the eye and v = (a, b, c, e, f, g, h, i, j)
denotes the vector of weights at the intersection points of γ0, then Corollary 3.4 implies that
the mapping class P(γ0) ∈ Mod(S2, p) transforms the weight vector (ve, v) according to the
block matrix

(
A B
C D

)
=



11 8 2
0 1 0
0 0 1

 5 0 5 4 4 0 1 0 1
1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0




2 2 0
2 2 0
0 0 0
6 4 2
2 2 0
0 0 0
10 8 2
6 4 2
0 0 0





2 0 2 2 1 0 0 0 0
1 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
2 0 2 2 2 0 2 0 1
2 0 2 1 1 0 0 0 1
0 0 0 0 0 0 0 1 0
6 0 5 3 3 0 2 0 2
2 0 3 3 3 0 1 1 0
0 1 0 0 0 0 0 0 0





. (5.2)

The surface Sg of genus g is a natural (g − 1)-fold, cyclic cover of S2, which one may
visualize as follows: Take g − 1 copies of the torus with two boundary components, as in
Figure 14(a), and glue them end-to-end to form a ring; the result is a rotationally symmetric
surface with g − 1 genera cyclically arranged around one central genus. The covering map
Sg → S2 is the quotient by the Z/(g− 1)Z rotational symmetry. Explicitly, this is the cover
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Figure 15: The invariant train track τγ for P(γ) ∈ Mod(Sg, p).

corresponding to the kernel of the map

π1(S2)→ H1(S2;Z)→ H1 (S2;Z/(g − 1)Z)
ψ→ Z/(g − 1)Z,

where ψ is Poincaré dual to the Z/(g − 1)Z homology class of the curve that is cut along
in Figure 14(a). We now lift γg−10 ∈ π1(S2) to a filling loop γ on Sg and consider the
corresponding mapping class P(γ) ∈ PP(Sg). As illustrated in Figure 15, the induced
invariant pretrack τγ is a train track that cuts Sg into a single punctured monogon and
4g − 3 trigons—one at each of the 3g − 3 self-intersection points of γ, one for each of the
g − 1 components of Sg \ γ, and one surrounding the punctured monogon. Although the
mapping class P(γ) is not a lift of P(γ0), we note that γ ⊂ Sg is precisely the preimage of
γ0 ⊂ S2 and that τγ is essentially just the preimage of τγ0 .

We now calculate the action of P(γ) on the weight vector

w = (ve, v1, v2, . . . , vg−1), where vi = (ai, bi, ci, ei, fi, gi, hi, ii, ji)

records the weights along the ith copy of γ0 and ve = (d, l, r) records the weights in the eye of
the track. Pushing the marked point along the ith copy of γ0 transforms the weight vectors
ve and vi according to (5.2) and leaves the other vectors vj unchanged. Therefore, the full
action of P(γ) on the weight vector w is given by the block matrix product

A 0 0 · · · B
0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

C 0 0 · · · D

 · · ·

A 0 B · · · 0
0 I 0 · · · 0
C 0 D · · · 0
...

...
...

. . .
...

0 0 0 · · · I




A B 0 · · · 0
C D 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

 . (5.3)
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Multiplying this out, we see that the incidence matrix for the carrying P(γ)(τγ) ≺ τγ is

Mγ =



Ag−1 Ag−2B Ag−3B · · · A2B AB B
C D 0 · · · 0 0 0
CA CB D · · · 0 0 0

...
...

...
. . .

...
...

...
CAg−3 CAg−4B CAg−5B · · · CB D 0
CAg−2 CAg−3B CAg−4B · · · CAB CB D


. (5.4)

An elementary calculation shows that the first row and first column of M3
γ have strictly

positive entries. This implies that M6
γ has strictly positive entries and, consequently, that Mγ

is a Perron–Frobenius matrix. According to Lemma 3.1, it now follows that the dilatation
λγ of P(γ) is bounded above by the largest row sum of Mγ. Using the fact that

An =

11n 8q(n) 2q(n)
0 1 0
0 0 1

 , where q(n) =
n−1∑
j=0

11j =
11n − 1

11− 1
≤ 1

10
11n, (5.5)

a direct comparison of the relevant matrix blocks shows that the first row of Mγ has the
largest sum. Indeed, since the first row of An−1B sums to 20q(n), we may easily calculate
the first row sum of Mγ and conclude that

λγ ≤11g−1 + 10q(g − 1) +

g−1∑
j=1

20q(j)

≤11g−1 + 11g−1 + 2

g−1∑
j=1

11j

=2
(
11g−1

)
+ 2

(
11g−1
11−1 − 1

)
<2

5
11g.

Since P(γ) ∈ PP(Sg), this example shows that

L(PP(Sg)) ≤ log(λγ) < g log(11)

and completes the proof of Theorem 1.12.

5.2 Least dilatation vs. self-intersection number

In keeping with the theme that the geometric structure of γ controls the dynamical complex-
ity of P(γ), we now refine our investigation of least dilatations to account for the dependence
on self-intersection number. Accordingly, we restrict our attention to the filtration

PPk(S) = {P(γ) | γ ∈ π1(S) with i(γ) = k}

43



µ0

p

n-times

(a) The loop µ0 winds around a handle of S2.

σ0

d
l

r
a

b

c e
f

g
h

ij

u w

x
y

z

(b) The track σ0 is invariant under P(µ0).

Figure 16: A more complicated example on S2.

of PP(S) and strive to understand the least pseudo-Anosov dilatation achieved by pushing
around a curve with prescribed self-intersection number. While Theorem 1.5 gives gen-
eral upper and lower bounds on the whole spectrum spec(PPk(S)), the following theorem
establishes a better upper bound on the least dilatation in PPk(Sg) and proves that, asymp-
totically, L(PPk(Sg)) grows like log(k).

Theorem 1.13. Let Sg be a closed surface of genus g ≥ 3. For any integer k ≥ 3g − 1, we
have that

1
5

log(k + 1) ≤ L(PPk(Sg)) < log(k) + g log(11).

Proof. The lower bound is a direct consequence of Theorem 1.5; the upper bound results
from the following family of examples.

Example 5.6. For fixed numbers n ≥ 2 and g ≥ 3, we will construct a filling curve on
Sg whose self-intersection number depends on n. As in Example 5.1, our construction uses
the cyclic covering Sg → S2 and the filling curve γ0 ⊂ S2 shown in Figure 14(a). To adjust
the self-intersection number, we also consider the modified loop µ0 : [0, 1]→ S2 illustrated in
Figure 16(a)—µ0 is identical to γ0 except in that it winds around a handle of S2 an additional
n times; as such, it has self-intersection number i(µ0) = n+ 3.

The winding structure of µ0 creates complementary monogons in the corresponding pre-
track τµ0 ⊂ S2, so we instead consider the modified track σ0 ⊂ S2 depicted in Figure 16(b).
This track cuts S2 into six trigons, two bigons, one monogon, and one punctured monogon.
Notice that σ0 has the same basic structure of τγ0 from Figure 14(b), but with additional
branches to deal with the winding in µ0.

Claim 5.7. The track σ0 ⊂ S2 is invariant under P(µ0), that is, P(µ0)(σ0) ≺ σ0.

Proof. The proof is in the same spirit as Proposition 3.3: as the marked point travels along
µ0, it pushes the track σ0 out of its way while we continually use isotopy and carrying moves
(c.f. Figure 9) to simplify the picture. After pushing the marked point once around µ0, the
resulting track will be identical to σ0.
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Figure 17: The carrying moves for navigating a winding path – part 1.

Let C ⊂ S2 be a compact cylinder containing all of the extra winding in the path µ0 so
that the paths γ0 and µ0 and tracks τγ0 and σ0 both agree on X = S2 \ C. It follows that,
while the marked point is in X, we may apply the same simplifying moves as in the carrying
P(γ0)(τγ0) ≺ τγ0 from Proposition 3.3. Namely, when the marked point travels along an edge
of µ0 ∩X, the eye of the track simply slides along the corresponding branch of σ0 ∩X, and
when the marked point pushes through a self-intersection point in X, we perform the usual
carrying from Figure 12.

The only difficulty, then, is to navigate the portions of µ0 that lie in C; once this is done,
the claim will follow. Notice that, in its journey around µ0, the marked point interacts with
C exactly twice. The first time, it winds n times around C as it progresses from the right
boundary component to the left; the second time, the marked point simply traverses C from
left to right. The necessary carryings for these sections are a bit involved, so we demonstrate
them explicitly in a sequence of 17 snapshots spanning Figures 17 through 20. In the figures,
the cylinder C is depicted as a rectangle with top and bottom edges identified.

The first time the marked point crosses C is illustrated in Figures 17 through 19. Frame
1 shows the initial situation after the marked point, surrounded by the eye of the track,
enters C from the right. In frames 2 and 3, the marked point passes around the back of C,
and we use a handful of slide moves to pull branches of the track apart. In frame 4, the
marked point pushes through a branch of the track, which we then pinch and collapse onto
the monogon containing the marked point.

The next step is for the marked point to wind around C; however, the long horizontal
branch of the track is blocking the way. In frame 5, we clear a path for the marked point by
twisting this branch around C so that, in frame 6, the marked point is able to wind n times
around C by moving along the space between these twistings. In frame 7, we pinch many
of these branches together and collapse the resulting bigons. The marked point then pushes
through another branch of the track in frame 8.

All that remains is to repackage the branches into an orderly configuration. In frame 9,
we collapse two bigons and use slide moves to pull apart some of the branches on the right
side of C. In frames 10 and 11, we collapse two more bigons and use slides to combine several
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Figure 18: The carrying moves for navigating a winding path – part 2.
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Figure 19: The carrying moves for navigating a winding path – part 3.

branches together. Frame 12 shows the eye of the track reformed and ready to exit through
the left boundary component of C.

The second time the marked point crosses C is illustrated in Figure 20, with the initial
configuration depicted in frame 13. In frame 14, we use slide moves to pull apart branches
and make room for the marked point to move forward. In frame 15, the marked point pushes
through the vertical branch, and in frame 16, a bigon is collapsed while branches are pinched
to form an eye around the marked point. Upon collapsing two more bigons, frame 17 shows
the eye of the track ready to exit C, leaving the branches in C exactly how they started in
frame 1. This completes the proof that P(µ0)(σ0) ≺ σ0.

As in Example 5.1, a weight function on σ0 is determined by the weight vectors

ve = (d, l, r) and v = (a, b, c, e, f, g, h, i, j, u, w, x, y, z)

that are indicated in Figure 16(b). By carefully keeping track of these weights throughout
the carryings in Figures 12 and 17–20, one finds that pushing the marked point around µ0

transforms the weight vector (ve, v) according to the block matrix
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Figure 20: The carrying moves for navigating a winding path – part 4.

(
Ã B̃

C̃ D̃

)
=



(
6n+11 6n+11 0

0 0 0
0 0 0

) (
6n+8 3 6n+5 6n+4 6n+3 0 1 0 1 3 9n−4 6n+4 9n−1 9n−7

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 2 1 1

)


2 2 0
2 2 0
0 0 0

4n+6 4n+6 0
2 2 0
0 0 0

4n+10 4n+10 0
4n+6 4n+6 0

0 0 0
0 0 1
6 5 0

2n−2 2n−2 0
0 0 0
2 3 0





2 0 2 2 2 0 0 0 0 1 2n 2 2n 2n−2
1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1

4n+4 2 4n+2 4n+2 4n+2 0 2 0 1 2 6n−2 4n+4 6n 6n−4
2 0 2 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0

4n+8 2 4n+5 4n+3 4n+3 0 2 0 2 2 6n−2 4n+4 6n 6n−4
4n+4 2 4n+3 4n+3 4n+3 0 1 1 0 2 6n−2 4n+4 6n 6n−4

0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 2 2 2 0 0 0 0 2 2n 2 2n 2n−2

2n−2 0 2n−2 2n−2 2n−2 0 0 0 0 0 n−1 2n−1 n−1 n−1
0 0 0 0 0 0 0 0 0 0 n−1 0 n n−1
3 1 2 2 2 0 0 0 0 0 n 2 n+1 n




. (5.8)

We are now ready to construct the example. Using the cyclic cover, Sg → S2, the loop
γg−20 µ0 ∈ π1(S2) lifts to a filling loop µ ⊂ Sg. Alternately, if T denotes the torus with two
boundary components, then Sg may be attained by gluing g − 1 copies of T together to
form a ring, and µ ⊂ Sg may be constructed by concatenating copies of the arc γ0 ⊂ T
along the first g − 2 copies of T with the arc µ0 ⊂ T on the last copy of T . Note that
i(µ) = 3(g−1)+n. Similarly, we may build an invariant track σ ⊂ Sg for P(µ) ∈ Mod(Sg, p)
by concatenating g− 2 copies of τγ0 ⊂ T with one copy of σ0 ⊂ T . As shown in Figure 21, σ
is a bigon track that that cuts Sg into (2 + 3(g − 1) + (g − 3) + 1) trigons, four bigons, and
one punctured monogon (each of the g − 1 pieces of σ contributes three trigons, the copy
of σ0 contributes two additional trigons and two bigons, the eye contributes a trigon and a
punctured monogon, and the junctions between the pieces form either bigons or trigons).

The track σ allows us to estimate the dilatation of P(µ) as follows. The action of P(µ)
on the weight space of σ is determined by a matrix product that is analogous to the one in
(5.3). Using (5.8) together with (5.4), we find that the incidence matrix Mµ for the carrying
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Figure 21: The bigon track σ is invariant under P(µ) ∈ Mod(S, p).

P(µ)(σ) ≺ σ is given by the block matrix product

Ã 0 0 · · · 0 B̃
0 I 0 · · · 0 0
0 0 I · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I 0

C̃ 0 0 · · · 0 D̃





Ag−2 Ag−3B Ag−4B · · · AB B 0
C D 0 · · · 0 0 0
CA CB D · · · 0 0 0

...
...

...
. . .

...
...

...
CAg−3 CAg−4B CAg−5B · · · CB D 0

0 0 0 0 0 0 I


,

which multiplies to give

Mµ =



ÃAg−2 ÃAg−3B ÃAg−4B · · · ÃAB ÃB B̃
C D 0 · · · 0 0 0
CA CB D · · · 0 0 0

...
...

...
. . .

...
...

...
CAg−3 CAg−4B CAg−5B · · · CB D 0

C̃Ag−2 C̃Ag−3B C̃Ag−4B · · · C̃AB C̃B D̃


.

As before, one may show that Mµ is Perron–Frobenius by checking that the first row
and first column of M3

µ have strictly positive entries. Lemma 3.1 then implies that the
dilatation of P(µ) is bounded above by the sum of the entries in the largest row of Mµ,
which is evidently the first. Making use of (5.5), we see that the first row of ÃAj has sum
(6n+ 11)(11j + 10q(j) + 1) and that the first row of ÃAjB sums to (6n+ 11)(20q(j+ 1) + 2).
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Since the first row of B̃ sums to 57n+ 20, we find that the first row of Mµ has total sum

(6n+ 11)(11g−2 + 10q(g − 2) + 1) + (57n+ 20) +

g−2∑
j=1

(6n+ 11)(20q(j) + 2)

≤ (57n+ 20) + (6n+ 11)

[
11g−2 + 11g−2 + 1 +

(
g−2∑
j=1

2 · 11j

)
+ 2(g − 2)

]

≤ (57n+ 10n) + (6n+ 6n)

[
2(11g−2) + 2

(
11g−1 − 1

11− 1
− 1

)
+ 2g − 3

]
≤ (67n) + (12n)

[
2
11

11g−1 + 2
10

11g−1 + 2
11

11g−1
]

≤
(
11g−1n

)
+ (12n)

[
3
5
11g−1

]
< n11g.

Since i(µ) = 3(g− 1) +n ≥ n, it follows that λµ < i(µ)11g. This construction shows that for
each k ≥ 3g − 1 in the statement of Theorem 1.13, we may take n = k − 3(g − 1) ≥ 2 and
produce a filling curve µ ⊂ Sg with i(µ) = k whose corresponding mapping class P(µ) has
dilatation at most k11g. Since P(µ) ∈ PPk(Sg) this shows that

L(PPk(Sg)) < log(k) + g log(11)

and completes the proof of Theorem 1.13.
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