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ABSTRACT. We show that for any lattice Veech group in the mapping class
group Mod(S) of a closed surface S, the associated m1S—extension group is
a hierarchically hyperbolic group. As a consequence, we prove that any such
extension group is quasi-isometrically rigid.

1. INTRODUCTION

This paper studies geometric properties of surface group extensions and how
these relate to their defining subgroups of mapping class groups. Let S be a closed,
connected, oriented surface of genus at least 2. Recall that a m S—extension of a
group G is a short exact sequence of the form

l>mS—>T—>G—1.

Such extensions are in bijective correspondence with monodromy homomorphisms
from G to the extended mapping class group Mod* (S) =~ Out(m,S) of the surface.
Alternatively, these groups I' are precisely the fundamental groups of S—bundles.

Many advances in the study of mapping class groups have been motivated by
a longstanding but incomplete analogy between hyperbolic space H™ and the Te-
ichmiiller space T (S) of a surface. In the theory of Kleinian groups, a discrete group
of isometries of H" is convex cocompact if it acts cocompactly on an invariant, con-
vex subset. Farb and Mosher [FM02a] adapted this notion to mapping class groups
by defining a subgroup G < Modi(S) to be convex cocompact if it acts cocom-
pactly on a quasi-convex subset of 7(S). This has proven to be a fruitful concept
with many interesting connections to, for example, the intrinsic geometry of the
mapping class group [DT15, BBKL20], and its actions on the curve complex and
the boundary of Teichmiiller space [KL08a]. Most importantly, the work of Farb—
Mosher [FM02a] and Hamenstadt [Ham] remarkably shows that an extension I" as
above is word hyperbolic if and only if the associated monodromy G — Mod™* (S)
has finite kernel and convex cocompact image (see also [MS12]).

For Kleinian groups, convex cocompactness is a special case of a more prevalent
phenomenon called geometric finiteness, which roughly amounts to acting cocom-
pactly on a convex subset minus horoballs invariant by parabolic subgroups. In
[Mos06], Mosher suggested this notion should have an analogous framework in map-
ping class groups that would extend the geometric connection with surface bundles
to a larger class of examples. The prototypical candidates for geometric finiteness
are the lattice Veech subgroups; these are special punctured-surface subgroups of
Mod(S) that arise naturally in the context of Teichmiiller dynamics and whose
corresponding S—bundles are amenable to study via techniques from flat geometry.

1



2 DOWDALL, DURHAM, LEININGER, AND SISTO

Our prequel paper [DDLS21] initiated an analysis of the m.S—extensions associ-
ated to lattice Veech subgroups, with the main result being that each such extension
I" admits an action on a hyperbolic space E that captures much of the geometry of
I". Building on that work, the first main result of this paper is the following, which
provides a concrete answer to [Mos06, Problem 6.2] for lattice Veech groups.

Theorem 1.1. For any lattice Veech subgroup G < Mod(S), the associated .S -
extension group I' of G is a hierarchically hyperbolic group.

Hierarchical hyperbolicity means that in fact all the geometry of T is robustly
encoded by hyperbolic spaces. This is exactly the sort of relaxed hyperbolicity for
w1 S—extensions that one hopes should follow from a good definition of geometric
finiteness in Mod(S). Thus Theorem 1.1 suggests a possible general theory of
geometric finiteness, which we expound upon in §1.4 below.

Hierarchical hyperbolicity has many strong consequences, some of which are
detailed in §1.1 below. It also enables, via tools from [BHS21], the proof of our
second main result, which answers [Mos06, Problem 5.4]:

Theorem 1.2. For any lattice Veech group G < Mod(S), the associated 75—
extension group I' of G is quasi-isometrically rigid.

The rest of this introduction gives a more in-depth treatment of these results
while elaborating on the concepts of, and connections between, hierarchical hyper-
bolicity, extensions of Veech groups, quasi-isometric rigidity, and geometric finite-
ness.

1.1. Hierarchical hyperbolicity. The notion of hierarchical hyperbolicity was
defined by Behrstock, Hagen, and Sisto [BHS17b] and motivated by the seminal
work of Masur and Minsky [MMOO]. In short, it provides a framework and toolkit
for understanding the coarse geometry of a space/group in terms of interrelated
hyperbolic pieces. More precisely, a hierarchically hyperbolic space (HHS) structure
on a metric space X is a collection of hyperbolic spaces {C(W)}wes, arranged in a
hierarchical fashion, in which any pair are nested £, orthogonal L, or transverse A,
along with Lipschitz projections to and between these spaces that together capture
the coarse geometry of X. A hierarchically hyperbolic group (HHG) is then an HHS
structure on a group that is equivariant with respect to an appropriate action on
the union of hyperbolic spaces C(W). See §4 for details or [BHS17b, BHS19, Sis19]
for many examples and further discussion.

Showing that a space/group is a hierarchically hyperbolic gives access to several
results regarding, for example, a coarse median structure and quadratic isoperi-
metric function [Bowl8, Bow13], asymptotic dimension [BHS17a], stable and qua-
siconvex subsets and subgroups [ABD21, RST18], quasiflats [BHS21], bordifications
and automorphisms [DHS17], and quasi-isometric embeddings of nilpotent groups
[BHS17b]. In particular, the following is an immediate consequence of Theorem
1.1.

Corollary 1.3. Let G < Mod(S) be any lattice Veech group and T the associated
m S—extension group. Then:
(1) T has quadratic Dehn function [Bow13].
(2) T is acylindrically hyperbolic and, moreover, its action on the E-maximal
hyperbolic space in the hierarchy is a universal acylindrical action [ABD21].
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(8) T is semihyperbolic and thus has solvable conjugacy problem [DMS20, HHP20].

As discussed in §1.2 below, further information about I' can be gleaned from
the specific HHG structure constructed in proving Theorem 1.1. We note that the
E-maximal hyperbolic space of this structure, and thus the universal acylindrical
action indicated in Corollary 1.3(2), is simply the space E from [DDLS21].

1.2. The HHG structure on I'. In order to describe the HHG structure more
precisely and explain its connection to quasi-isometric rigidity in Theorem 1.2, we
must first recall some of the structure of Veech groups and their extensions. Let
G < Mod(S) be a lattice Veech group and T' = ' the associated extension group.
First note that (up to finite index) T" is naturally the fundamental group of an S—
bundle E/T over a compact surface with boundary (see §2 for details and notation).
Each boundary component of £/ is virtually the mapping torus of a multi-twist on
S, and is thus a graph manifold: the tori in the JSJ decomposition are suspensions
of the multi-twist curves.

Graph manifolds admit HHS structures [BHS19] where the maximal hyperbolic
space is the Bass—Serre tree dual to the JSJ decomposition, and all other hyperbolic
spaces are either quasi-lines or quasi-trees (obtained by coning off the boundaries
of the universal covers of the base orbifolds of the Seifert pieces). The stabilizers
of the vertices of the Bass—Serre trees are called vertex subgroups, and are precisely
the fundamental groups of the Seifert pieces of the JSJ decomposition. We let V
denote the disjoint union of the vertices of all Bass—Serre trees associated to the
boundary components of the universal cover E of this S-bundle. Given v,w € V,
we say that these vertices are adjacent if they are connected by an edge in the same
Bass-Serre tree.

The HHG structure on the extension group I' may now be described as follows:

Theorem 1.4. Suppose G < Mod(S) is a lattice Veech group with extension group
T and let Yq,..., T < T' be representatives of the conjugacy classes of vertex
subgroups. Then I' admits an HHG structure with the following set of hyperbolic
spaces and relations among them (ignoring those of diameter < 4):

(1) The mazimal hyperbolic space E s quasi-isometric to the Cayley graph of
T coned off along the cosets of Y1,..., T [DDLS21].
(2) There is a quasi-tree v and a quasi-line v, for each v eV, and:
(a) For allveV, v? 1o,
(b) For allv,w eV, if v and w are adjacent, then wi Lv? and w? = vt
(c) All other pairs are transverse.

This description of the HHG structure readily leads to further consequences
for I'. For example, the maximal number of infinite-diameter pairwise orthogonal
hyperbolic spaces is evidently 2. In view of [BHS17b, BHS21], we thus see that I is
as “close to hyperbolic” as possible in that its quasi-flats are at worst 2—dimensional:

Corollary 1.5. FEach top-dimensional quasi-flat in T' has dimension 2 and is con-
tained in a finite-radius neighborhood of finitely many cosets of vertex subgroups.

We note that quasiflats will be crucial for our proof of quasi-isometric rigid-
ity, and we remark that the analogous statement for graph manifolds is due to
Kapovich-Leeb [KL97].

Recall that an element of a group is a generalized lozodromic if it acts loxodromi-
cally under some acylindrical action on a hyperbolic space, and that a universal
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acylindrical action on a hyperbolic space is one in which every generalized loxo-
dromic acts loxodromically [ABD21]. It is shown in [Sis16] that a generalized loxo-
dromic element g of a finitely generated group is necessarily Morse, meaning that in
any finite-valence Cayley graph for the group, any (K, C')—quasi-geodesic with end-
points in the cyclic subgroup {g) stays within controlled distance M = M(K,C)
of {(g>. While being Morse is, in general, strictly weaker than being generalized
loxodromic, these conditions are in fact equivalent in HHGs [ABD21, Theorem B].

In the case of our extension group I', it follows from Corollary 1.3(2) that the
generalized loxodromics and Morse elements are precisely those elements acting
loxodromically on E. In [DDLS21, Theorem 1.1] we characterized these elements
in terms of the vertex subgroups of I', thus yielding the following:

Corollary 1.6. Let I" be a lattice Veech group extension with vertex subgroups
Y1,..., Tk as in Theorem 1.4. The following are equivalent for an infinite order
element yeI':

e v is not conjugate into any of the vertex subgroups Y;
e v is a generalized loxodromic element of T’
e v is a Morse element of I

1.3. Quasi-isometric rigidity. To state our rigidity theorem, first recall that I'
is (up to finite index) the fundamental group of an S-bundle E/T" over a compact
surface with boundary. Here E is a I'-invariant truncation of the universal S—bundle
over the Teichmiiller disk stabilized by the Veech group G. In particular, E is quasi-
isometric to T'. Let Isom(E) and QI(E) denote the isometry and quasi-isometry

groups of F, respectively, and let Isomgy,(E) < Isom(F) denote the subgroup of
isometries that map fibers to fibers.

Theorem 1.7. There is an allowable truncation E of E such that the natural
homomorphisms Isomg,(E) — Isom(E) — QI(E) =~ QIT) are all isomorphisms,
and T' < Isom(E) = QI(T) has finite index.

This is an analog, and indeed was motivated by, Farb and Mosher’s [FM02b]
theorem that in the case of a surface group extension I'y associated to a Schottky
subgroup H of Mod(S), the natural homomorphism I'y — QI(T'g) is injective with
finite cokernel. This rigidity also leads to the following strong algebraic consequence:

Corollary 1.8. If H is any finitely generated group quasi-isometric to I', then H
and I' are weakly commensurable.

In the statement, recall that two groups Hi, Hy are weakly commensurable if
there are finite normal subgroups N; <t H; so that the quotients H;/N; have a pair
of finite-index subgroups that are isomorphic to each other.

1.4. Motivation and Geometric Finiteness. Before outlining the paper and
providing some ideas about the proofs, we provide some speculative discussion. For
Kleinian groups—that is, discrete groups of isometries of hyperbolic 3—space—the
notion of geometric finiteness is important in the deformation theory of hyperbolic
3-manifolds by the work of Ahlfors [Ahl66] and Greenberg [Gre66]. While the
definition has many formulations (see [Mar74, Mas70, Thu86, Bow93]), roughly
speaking a group is geometrically finite if it acts cocompactly on a convex subset of
hyperbolic 3—-space minus a collection of horoballs that are invariant by parabolic
subgroups. When there are no parabolic subgroups, geometric finiteness reduces
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to convex cocompactness: a cocompact action on a convex subset of hyperbolic
3—-space.

While there is no deformation theory for subgroups of mapping class groups, Farb
and Mosher [FMO02a] introduced a notion of convex cocompactness for G < Mod(.S)
in terms of the action on Teichmiiller space 7(S). Their definition requires that
G acts cocompactly on a quasi-convex subset for the Teichmiiller metric, while
Kent and Leininger later proved a variety of equivalent formulations analogous to
the Kleinian setting [KL07, KL08a, KL0O8b|. Farb and Mosher proved that convex
cocompactness is equivalent to hyperbolicity of the associated extension group I'g
(with monodromy given by inclusion) when G is virtually free. This equivalence
was later proven in general by Hamenstddt [Ham] (see also Mj—Sardar [MS12]),
though at the moment the only known examples are virtually free.

The coarse nature of Farb and Mosher’s formulation reflects the fact that the
Teichmiiller metric is far less well-behaved than that of hyperbolic 3—space. Quasi-
convexity in the definition is meant to help with the lack of nice local behavior of
the Teichmiiller metric. It also helps with the global lack of Gromov hyperbolicity
(see Masur—Wolf [MW95]), as cocompactness of the action ensures that the quasi-
convex subset in the definition is Gromov hyperbolic (see Kent—Leininger [KLO08a],
Minsky [Min96b], and Rafi [Raf14]).

The inclusion of reducible/parabolic mapping classes in a subgroup G < Mod(S)
brings the thin parts of T (S) into consideration; these subspaces contain higher rank
quasi-flats and even exhibit aspects of positive curvature (see Minsky [Min96al).
This is a main reason why extending the notion of convex cocompactness to geo-
metric finiteness is complicated. These complications are somewhat mitigated in
the case of lattice Veech groups. Such subgroups are stabilizers of isometrically and
totally geodesically embedded hyperbolic planes, called Teichmdiller disks, that have
finite area quotients. Thus, the intrinsic hyperbolic geometry agrees with the ex-
trinsic Teichmiiller geometry, and as a group of isometries of the hyperbolic plane,
a lattice Veech group is geometrically finite. This is why these subgroups serve as
a test case for geometric finiteness in the mapping class group. This is also why a
subgroup of a Veech group is convex cocompact in Mod(S) if and only if it is convex
cocompact as a group of isometries of the hyperbolic plane (which also happens if
and only if it is finitely generated and contains no parabolic elements).

The action of Mod(S) on the curve graph, which is Gromov hyperbolic by work
of Masur—-Minsky [MM99], provides an additional model for these considerations.
Specifically, convex cocompactness is equivalent to the orbit map to the curve graph
C(S) being a quasi-isometric embedding with respect to the word metric from a
finite generating set (see Kent—Leininger [KL08a] and Hamenstddt [Ham]). View-
ing geometric finiteness as a kind of “relative convex cocompactness” for Kleinian
groups suggests an interesting connection with the curve complex formulation. The
connection is best illustrated by the following theorem of Tang [Tan19].

Theorem 1.9 (Tang). For any lattice Veech group G < Mod(S) stabilizing a
Teichmiiller disk D < T(S), there is a G—equivariant quasi-isometric embedding
D¢ — C(S), where D is the path metric space obtained from D by coning off the
G—invariant family of horoballs in which D ventures into the thin parts of T(S).

Farb [Far98] showed that non-cocompact lattices in the group of isometries of
hyperbolic space are relatively hyperbolic relative to the parabolic subgroups. For
Veech groups, the space D¢ is quasi-isometric to the (hyperbolic) coned off Cayley
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graph, illustrating (part of) the relative hyperbolicity of G. We thus propose a kind
of “qualified” notion of geometric finiteness with this in mind:

Definition 1.10 (Parabolic geometric finiteness). A finitely generated subgroup
G < Mod(S) is parabolically geometrically finite if G is relatively hyperbolic, relative
to a (possibly trivial) collection of subgroups H = {Hy,..., Hy}, and
(1) H; contains a finite index, abelian subgroup consisting entirely of multi-
twists, for each 1 < i < k; and
(2) the coned off Cayley graph G—equivariantly and quasi-isometrically embeds
into C(5).

When H = {{id}}, we note that the condition is equivalent to G being convex
cocompact. By Theorem 1.9, lattice Veech groups are parabolically geometrically
finite. In fact, Tang’s result is more general and implies that any finitely generated
Veech group satisfies this definition. These examples are all virtually free, but
other examples include the combination subgroups of Leininger—Reid [LR06], which
are isomorphic to fundamental groups of closed surfaces of higher genus, and free
products of higher rank abelian groups constructed by Loa [Loa21].

In view of Theorem 1.1, one might formulate the following.

Conjecture 1.11. Let G < Mod(S) be parabolically geometrically finite. Then the
mS—extension group I' of G is a hierarchically hyperbolic group.

We view Definition 1.10 as only a qualified formulation because there are many
subgroups of Mod(S) that are not relatively hyperbolic but are nevertheless can-
didates for being geometrically finite in some sense. It is possible that there are
different types of geometric finiteness for subgroups of mapping class groups, with
Definition 1.10 being among the most restrictive. Other notions might include
an HHS structure on the subgroup which is compatible with the ambient one on
Mod(S) (e.g., hierarchical quasiconvexity [BHS19]). From this perspective, some
candidate subgroups that may be considered geometrically finite include:

e the whole group Mod(S5);

e multi-curve stabilizers;

e the right-angled Artin subgroups of mapping class groups constructed in
[CLM12, Kob12, Run20];

e free and amalgamated products of other examples.

Question 1.12. For each example group G < Mod(S) above, is the associated
extension I'¢ a hierarchically hyperbolic group?

We note that the answer is ‘yes’ for the first example, since the extension group
is the mapping class group of the surface S with a puncture. Moreover, since our
work on this subject first appeared, Russell [Rus21] addressed the second example
by proving extensions of multicurve stabilizers are hierarchically hyperbolic groups.

1.5. Outline and proofs. Let us briefly outline the paper and comment on the
main structure of the proofs. In §2 we review necessary background material and
introduce the objects and notation that will be used throughout the paper. In
particular, we define the spaces E and E, the latter being a quasi-isometric model
for the Veech group extension I', as well as the hyperbolic collapsed space E. All
of these were constructed in [DDLS21].
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In §§3-4 we prove that the extension group I' is hierarchically hyperbolic by
utilizing a combinatorial criterion from [BHMS20]. Besides hyperbolicity of E, the
other hard part of the criterion is an analogue of Bowditch’s fineness condition from
the context of relative hyperbolicity. Its geometric interpretation is roughly that
two cosets of vertex subgroups as above have bounded coarse intersection, aside
from the “obvious” exception when the cosets correspond to vertices of the same
Bass—Serre tree within distance 2 of each other. To this end, in §3 we associate
to each vertex v € V a spine bundle ®” < E, which corresponds to a Seifert
piece of the JSJ decomposition of the peripheral graph manifold, along with a
pair of hyperbolic spaces KV and EY that will figure into the HHS structure on
I'. The space KV is obtained via a quasimorphism constructed using the Seifert
fibered structure following ideas in forthcoming work of the fourth author with
Hagen, Russell, and Spriano [HRSS21], while E" is coarsely obtained by coning off
boundary components of the universal covers of the base 2—orbifold of this Seifert
fibered manifold. We then appeal to the flat geometry of the fibers of E to construct
and study certain projection maps

U/E
SN

IC’U — )\1} @’U

\ v
H’U § \

Z"U 5 E'U

and prove that various pairs of subspaces of E have bounded projection onto each
other (Proposition 3.19).

In §4, we begin assembling the combinatorial objects necessary to apply the HHG
criterion from [BHMS20], which involves both combinatorial and geometric aspects.
The first step involves the construction of a natural flag complex X containing the
union of the Bass-Serre trees, together with appropriate “subjoins” with the union
of all KV, over v € V. Next, we use the geometry of E to construct a certain graph W
whose vertices are maximal simplices of X and on which I' acts metrically properly
and coboundedly. The remainder of this section is devoted to verifying the necessary
combinatorial conditions as well as translating the facts about K¥ and =" and the
projections described above into proofs of the necessary geometric conditions. We
note that in the combinatorial HHG setup, the complex X comes with its own
hierarchy projections between the induced hyperbolic spaces (Definitions 4.9-4.10),
which may be different than the projections to KV and Ev.

In §5 we prove our QI-rigidity result Theorem 1.7. The starting point is the hier-
archical hyperbolicity of I' provided by Theorem 1.4, as it gives access to the results
and arguments in [BHS21] about the preservation of quasi-isometrically embedded
flats. Every collection of pairwise orthogonal hyperbolic spaces in an HHG deter-
mines a natural product subspace, with the maximal standard quasi-isometrically
embedded flats (or orthants) arising inside such subspaces as products of quasi-lines
in a maximal collection of pairwise orthogonal hyperbolic spaces of the HHG. The-
orem A of [BHS21] states that a quasi-isometry of an HHS preserves the structure
of its quasi-flats and takes any maximal quasi-flat within bounded Hausdorff dis-
tance of the union of standard maximal orthants. The maximal quasi-flats in the
HHG structure on E, namely the 2-dimensional flats indicated in Corollary 1.5, are
encoded by certain strip bundles that, roughly, correspond to flats in the periph-
eral graph manifolds. We use the preservation of the maximal quasi-flats to derive
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coarse preservation of these strip bundles, which we then upgrade to coarse preser-
vation of the fibers (§5.1). By using tools of flat geometry from [BL18, DELS18],
we then show any quasi-isometry induces an affine homeomorphism of any fiber
to itself (§§5.2-5.3) and moreover that this assignment is injective (§5.4). Finally,
we show this association is an isomorphism by proving (§5.5) that every affine
homeomorphism of a fiber induces an isometry and hence quasi-isometry of E.
Quasi-isometric rigidity and its algebraic consequence Corollary 1.8 are then easily
obtained in §5.6.
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2. SETUP: THE GROUPS AND SPACES

Here we briefly recall the basic set up from [DDLS21] which we will use through-
out the remainder of the paper. We refer the reader to Sections 2 and 3 of that
paper for details and precise references.

2.1. Flat metrics and Veech groups. Fix a closed surface of genus at least 2,
a complex structures Xy (viewed as a point in the Teichmiiller space T (S)), and
a nonzero holomorphic quadratic differential ¢ on (S5, X(). Integrating a square
root of ¢ determines preferred coordinates on (S, Xg) for ¢ which defines a trans-
lation structure (in the complement of the isolated zeros of ¢). We also write ¢
for the associated flat metric defined by the half-translation structure (though the
metric only determines the half-translation structure or quadratic differential up
to a complex scalar multiple). This metric is a non-positively curved Euclidean
cone metric, with cone singularities at the zeros of ¢. The orbit of (Xj,q) under
the natural SLs(R) action on quadratic differentials projects to a Teichmiiller disk,
D = D, < T(S), which we equip with its Poincaré metric p. The circle at infinity
of D is naturally identified with the projective space of directions, P!(g), in the
tangent space of any nonsingular point of q. For a € P!(q), we write F(«) for the
singular foliation by geodesics in direction .

We assume that the associated Veech group G = Gy is a lattice—recall that
G can be viewed as the stabilizer in the mapping class group of S of D as well
as the affine group of ¢, and the lattice assumption is equivalent to requiring the
quotient orbifold D/G to have finite p—area. The parabolic fixed points in the circle
at infinity form a subset we denote P < P!(g). This subset corresponds precisely to
the completely periodic directions for the flat metric ¢; that is, the directions « for
which the foliation F(«) decomposes S into cylinders foliated by g¢—geodesic core
circles. The boundaries of these cylinders are g—saddle connections (g-geodesic
segments connecting pairs of cone points, with no cone points in their interior),
and by the Veech Dichotomy, every saddle connection is in a direction in P. We
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let {Ba}acp denote any G-invariant, 1-separated set of horoballs in D and let

D =D~ | int(By)
aeP
be the G-invariant subspace obtained by removing these horoballs. We write p for
the induced path metric on D. Finally, we let

p:D—>l§

be the G—equivariant quotient obtained by collapsing each horoball B, to a point,
for aw € P. There is a natural path metric p on D so that p is 1-Lipschitz and is a
local isometry at every point not in one of the horoballs.

We will also make use of the closest point projection to the horoball

co: D — B,
for each o« € P.

2.2. The bundles E and E. For each point X € D, we let gx denote the associ-
ated flat metric or quadratic differential (defined up to scalar multiplication) on S.
The space of interest E is a bundle over D,

m: E— D,

for which the fiber Ex over X € D is naturally identified with the universal cover
Sof S , equipped with the pull-back complex structure X and quadratic differen-
tial/flat metric gx. We write B, = 7~ 1(B,) for a € P.

For any X,Y € D, the Teichmiiller map between these complex structures has
initial and terminal quadratic differentials ¢x and gy (up to scalar multiple) and
this map lifts to a canonical affine map between the fibers fy x: Ex — Ey. These
maps satisfy fz x = fz v fy,x for all X,Y,Z € D, and for any X € D, assemble to
amap fx: E — Ex defined by fx(y) = fx x(y)(y). Moreover, for any X,Y € D,
fy.x is e?XY)bi-Lipschitz. We use the maps fx x, to identify P'(g) = P'(gx) for
all X € D.

The fiber over Xy is denoted Ey = Ex, and the maps fy = fx,: £ — Ep and
m: E — D are projections on the factors in a product structure £ =~ Dx Ey =~ DX S.
For x € E, we write D,, = f;é)(x), which is just the slice D x {fo(z)} in the product
structure. The affine maps fy x sends the cone points X x of Ex to the cone points
Yy of Fy. Consequently, the union of all singular points

E:UZX

XeD

is a locally finite union of disks D, one for each z € £y = ¥x,.

We give the space E a singular Riemannian metric d which is the flat metric on
each fiber Ex and the Poincaré metric on each diskD,, so that at each smooth point
of intersection, the tangent planes are orthogonal. The singular locus of this metric
is precisely ¥. Each disk D, is isometrically embedded since 7 is a 1-Lipschitz
map, and hence restricts to an isometry 7|p, : D, — D. The metric on E\ X is in
fact a locally homogeneous metric, modeled on a four-dimensional, Thurston-type
geometry; see [DDLS21, §5].

The extension group I' acts on F by bundle maps with the kernel m.5 < T" of
the projection to G acting trivially on D and by covering transformation on each
fiber Ex. We set E = 7~ 1(D) c E, and write 7: E — D. When convenient to do
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s0, we put, “bars” over objects associated to D or E, e.g. Dy = Dy nE, p: D — D,
etc. In particular, we write d for the induced path metric on F < FE, induced from
the metric on F described above.

For any a € P, the closest point projection c,: D — B, has a useful “lift”
fa: E — B,, defined by

foz(x) = fca(ﬂ(w))(x)a
for any z € E. That is, f, maps each fiber Ex via the map fy x to Ey, where
Y = ¢4 (X) is the image of the closest point projection to B, of X in D.

2.3. The hyperbolic space E. The quotient p: D — D is the descent of a quo-
tient P: E — F which we now describe. First, for each o € P, the foliation F ()
lifts to a foliation on Ej in direction «, and hence on any fiber Ex by push-forward
via the map fx x,, also in direction «a (via the identification P(q) =~ P!(gx)).
There is a natural transverse measure coming from the flat metric on X. Given
a € P, we fix some X, € 0B, and let T,, be the dual simplicial R—tree to this mea-
sured foliation in direction o on Ex_, and we let t,: E — T, be the composition
of the leafspace projection Ex, — T, with the map fx, : F — Ex,.

Now we define P: E — F to be the quotient space obtained by collapsing the
subset B, to T, via t4|s, for each a € P. We also write P = P|z: E — E. The
maps P and P descend to the maps p and p, and the map 7 determines maps 7
and 7, which all fit into the following commutative diagram.

E

1
!

L

_

[es]
m)

v

S

]

A metric d on E is determined by d on E and the map P. The main facts about
this metric are summarized in the following theorem; see [DDLS21, Theorem 1.1,
Lemma 3.2].

Theorem 2.1. There is a Gromov hyperbolic path metm’c@ on E:’ sothat P: E — E
is 1-Lipschitz and is a local isometry at every point x € E — 0E. Furthermore, for
every a € P,

o The induced path metric on P(0B,) = Ty, is the R—tree metric determined
by the transverse measure on the foliation of Ex, in direction «.
e The subspace topology on T, < E agrees with the R—tree topology on T,,.

Remark 2.2. The underlying simplicial tree T, is precisely the Bass-Serre tree
dual to the splitting of m1S defined by the cores of the cylinders of F(«) on S.

For each x € E, we denote the image of D, in E by ﬁx, which is obtained by
collapsing B, n D, to a point, for each a € P. Consequently, 7| b, D, —> Disa
bijection, and so each Dm, with its path metric, is isometric to D and isometrically
embedded in E. We call objects in E, E, and E vertical if they are contained in a
fiber of 7, 7, or @, respectively, and horizontal if they are contained in D,, D,, or
D,, for some z € E., E.
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2.4. Vertices, spines, and spine bundles. We will write V < E for the union
over all a € P of all vertices of T,,. We will simultaneously view V as both a subset
of E and abstractly as an indexing set that will be used in sections §3—4 to develop
an HHS structure on E. Since each vertex belongs to a unique tree, and since the
trees are indexed by « € P, we obtain a map «: V — P so that v is a vertex of
Ty (v)- For convenience, we also write B, = Bq(y), 0By = 0B (v), etc for each v e V,
and write ¢, = c,(y) for the p—closest point projection D — B,,.

For v,w € V, we write v || w if a(v) = a(w). Then define diyee (v, w) € Zsg U {00}
to be the combinatorial (integer valued) distance in the simplicial tree 75, () = T (w)
when v || w (as opposed to the distance from the R-tree metric) and to equal oo
when v }f w.

Given o« € P, X € D, and v € T,, the v—spine in Ex is the subspace

0% = (Po fx, x) '(v) =t;'(v) n Ex.

The v-spine 0% is the union of the saddle connections on the fiber Ex in direction
« that project to v by to. When diree(v,w) = 1 (and hence v, w are adjacent in the
same tree T, ) there is a unique component of Ex \ (0% v 0%) whose closure is an
infinite strip, R x [a, b], that covers a maximal cylinder in the quotient Ex/m S =
(S, X,gx) in the direction a. We let ®% be the union of 8% and all such strips
defined by w € Ty, with diree(v, w) = 1. We call ®% the thickened v-spine in Ex.
Observe that the affine map fy,x maps 0% and ©% to 6y and ©7., respectively,
for all X,Y € D. Finally, we write

0= ) ox e = ] ek

XeoB, XeoB,

These spaces are bundles over 0B, which we call, respectively, the v—spine bundle
and the thickened v—spine bundle.

2.5. Schematic of the space E and its important pieces. Figure 1is a cartoon
of the bundle E over the truncated Teichmiiller disk D. We have tried to highlight
some of the key features of £ which are relevant to this paper.

(a) The stabilizer of a horoball based at a point 5 € P is virtually cyclic,
generated by a multitwist 7, acting as a parabolic on D. The base point
X on the horocycle based at 8 and its image are shown.

(b) The bundle over the boundary horocycle based at (3 is shown. This is the
universal cover, 0B, of a graph manifold which is the mapping torus of 7.
Two fibers Ex, and E.,(x,) are shown with the effect on a part of a spine
(in green) in some other direction illustrating the sheering in strips after
applying 73.

(c¢) This is another horoball in some direction «, with the chosen basepoint X,,
and its horocycle 0B,,.

(d) The spine 0% in direction « is shown in red, corresponding to a vertex
v € T,. The thickened spine ®% is indicated in lavender. Spines for
vertices of T, adjacent to v meet @%_  along lines in 0®% and are shown
in various other colors.

(e) The restriction of t: £ — T, to Ex, collapses each spine %  or strip in
direction « to the corresponding vertex w or edge the Bass-Serre tree T,.
The space E is formed by collapsing B, to T, via t4.
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(0 9B (d)
X,

~ ‘/GX{,

Ex, ETE<X13)

FIGURE 1. A schematic of E and various key features of it.

2.6. Some technical lemmas and coarse geometry. Here we briefly recall
some basic facts about the setup above proved in [DDLS21] as well as some useful
coarse geometric facts. The first fact is the following; see [DDLS21, Lemma 3.4].

Lemma 2.3. There exists a constant M > 0 such that for eachv eV and X € 0B,,
every saddle connection in 0% has length at most M and every strip in ©% has
width at most M. In particular, for points X € 0By, the saddle connections and

strips of Ex in direction a € P have, respectively, uniformly bounded lengths and
widths.

Every connected graph can be made into a geodesic metric space by locally
isometrically identifying each edge with a unit interval. We will need the following
well-known result (for a proof of this version, see [DDLS21, Proposition 2.1]).

Proposition 2.4. Let Q) be a path metric space and YT < Q an R—dense subset for
some R > 0. For any R' > 3R, consider a graph G with vertex set T such that:
o all pairs of elements of T within distance 3R are joined by an edge in G,
e if an edge in G joins points w,w’ € T, then do(w,w’) < R'.
Then the inclusion of T into ) extends to a quasi-isometry G — €.
The following criterion for a graph to be a quasi-tree is well-known, and an easy

consequence of Manning’s bottleneck criterion [Man05]. We include a proof for
completeness.

Proposition 2.5. Let X be a graph, and suppose that there exists a constant B
with the following property: For each pair of vertices w,w’ there exists an edge path
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y(w,w') from w to w' so that for any vertex v on y(w,w'), any path from w to w'
intersects the ball of radius B around v. Then X is quasi-isometric to a tree, with
quasi-isometry constants depending on B only.

Proof. We check that [Man05, Theorem 4.6] applies; that is, we check the following
property. For any two vertices w,w’ € X, there is a midpoint m(w, w’) between w
and w’ so that any path from w to w’ passes within distance B' = B'(B) of m(w, w’).
(The uniformity in the quasi-isometry comes from the proof of Manning’s theorem,
see [Man05, page 1170].)

Consider any geodesic o from w to w’, and let m = m(w,w’) be its midpoint.
We will show that m lies within distance 2B + 1 of a vertex of v = y(w, w’), so that
we can take B’ = 3B + 1.

Indeed, suppose by contradiction that this is not the case. Let w = wy, ..., w, =
w’ be the vertices of v (in the order in which they appear along 7), and let d; =
d(w,w;), so that |d;+1 —d;| < 1. Each w; lies within distance B of some point p; on
« which must satisfy d(p;, m) = B+ 1. In particular, we have that every d; satisfies
either d; < d(w,w’)/2 -1 or d; = d(w,w’)/2 + 1. Since dy = 0 and d,, = d(w,w’),
we cannot have |d;11 — d;| < 1 for all 0 < i < n — 1, a contradiction. O

We end with a few definitions from coarse geometry which may not be completely
standard but will appear in the next two sections. Given two metrics d and d’ on a
set X, we say that d is coarsely bounded by d’ if there exists a monotone function
N: [0,00) — [0,0) so that d(z,y) < N(d'(z,y)), for all ,y € X. If d is coarsely
bounded by d’ and d’ is coarsely bounded by d, we say that d and d’ are coarsely
equivalent. An isometric action of a group H on a metric space Y is metrically
proper if for any R > 0 and any point y € Y, there are at most finitely many
elements h € H for which h - B(y, R) n B(y, R) # &. For proper geodesic spaces,
this is equivalent to acting properly discontinuously. If there exists y, R so that
H-B(y,R) =Y, then we say that the action is cobounded, and for proper geodesic
metric spaces this is equivalent to acting cocompactly.

3. PROJECTIONS AND VERTEX SPACES

An HHS structure on a metric space consists of certain additional data, most
importantly a collection of hyperbolic spaces together with projection maps to
each space. For the HHS structure that we will build on (Cayley graphs of) T', the
hyperbolic spaces will (up to quasi-isometry) be the space E from [DDLS21] (see
§2.3) and the spaces K¥ and Z? introduced in this section, where v varies over all
vertices of the trees T,,. Morally, the projections will be given by the maps A” and
&Y that we study below. However, to prove hierarchical hyperbolicity we will use a
criterion from [BHMS20] which does not require actually defining projections, but
nevertheless provides them. Still, the maps AY and £" will play a crucial role in
proving this criterion applies.

We will establish properties of AY and £V that are reminiscent of subsurface
projections or of closest-point projections to peripheral sets in relatively hyperbolic
spaces/groups; these are summarized in Proposition 3.19. Essentially, these same
properties would be needed if we wanted to construct an HHS structure on I' directly
without using [BHMS20].

From a technical point of view, we would like to draw attention to Lemma 3.13,
which is the crucial lemma that ensures that the projections behave as desired and
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that various subspaces have bounded projections. Roughly, the lemma says that
closest-point projections to a spine do not vary much under affine deformations.

In what follows, we will write dg» and dpp, for the path metrics on @Y and
0B, induced from d. Using the map fo: E — 0B,, it is straightforward to see
that dpp, is uniformly coarsely equivalent to the subspace metric from d: in fact,
d < don, < edd. The same is true for dev, which follows from the fact that the
inclusion of @" into 0B, is a quasi-isometric embedding with respect to the path
metrics (see below).

Associated to each v € V we will be considering two types of projections. These
projections have a single projection IIV: ¥ — @V as a common ingredient. It is
convenient to analyze I1V via an auxiliary map which serves as a kind of fiberwise
closest point projection that survives affine deformations, and which we call the
window map. We describe the two types of projections restricted to ®v, as well
as the target spaces of said projections, in §3.1 and §3.3, where we also explain
some of their basic features. Next we define the window map and prove what is
needed from it. Finally, we define IT” and prove the key properties of the associated
projections.

3.1. Quasimorphism distances. For each v € V, we will use ideas from work-in-
progress of the fourth author with Hagen, Russell, and Spriano [HRSS21] to define
a map

AV O - K
where KV is a discrete set quasi-isometric to R. The key properties of this map are
given by the next proposition. We note that the proposition and Lemma 3.6 can

be used as black-boxes (in particular, the definitions of AV and KV are never used
after we prove those results).

Proposition 3.1. There exists K1 > 0 such that, for each v € TO(CO) c V, there
exist a space KV that is (K1, K1)—quasi-isometric to R and a map \’: @V — KV
satisfying the following properties:

(1) NV is K1—coarsely Lipschitz with respect to the path metric on Ov.

(2) For any x € 00, if Uy o = Dy n 0B, then A" ({y ) is a set of diameter
bounded by K; .

(3) For any v,w €V with diec(v,w) =1, AV X A¥: OV n O¥ - KLY x K¥ is a
K1 —coarsely surjective (K1, K1)—quasi-isometry with respect to the induced

path metric on the domain.

(4) (Equivariance) For any g € I' and v € Téo) there is an isometry g: K¥ —

K9Y and for all x € ©V we have A9 (gx) = gA\¥(x).
The sets ¢, o, in item (2) are certain lines whose significance is explained below.

Remark 3.2. An earlier version of this paper used work of Kapovich and Leeb
to construct the spaces KV and maps AV, resulting in a weaker version of this
proposition which did not include the last, equivariance condition. Consequently I"
could only be shown to be an HHS, rather than an HHG. The ideas from [HRSS21]
were crucial in this extension.

To explain the proof of the proposition, it is useful to review some background
on graph manifolds, which we do now.



VEECH EXTENSIONS II: HIERARCHICAL HYPERBOLICITY AND QI-RIGIDITY 15

Graph manifolds and trees. Recall that a graph manifold is a 3-manifold that
contains a canonical finite union of tori (up to isotopy), so that cutting along the tori
produces a disjoint union of Seifert fibered 3—manifolds, called the Seifert pieces.
Seifert fibered 3—manifolds are compact 3—manifolds foliated by circle leaves; see
[JS79)].

The universal cover of a graph manifold decomposes into a union of universal
covers of the Seifert pieces glued together along 2-planes (covering the tori). The
decomposition is dual to a tree, and the universal covers of the Seifert pieces are
the vertex spaces. For any Seifert fibered space, its universal cover is foliated by
lines, the lift of the foliation by circles, and we refer to the leaves simply as lines in
the universal cover.

Horocycles and bundles. Next we describe the specific graph manifolds that are
relevant for our purposes.

Let G, < G denote the stabilizer of B, for each o € P. This has a finite index
cyclic subgroup G generated by a multitwist, (7,) = GY < G,; see e.g. [DDLS21,
§2.9]. The preimage of G, in T' is the m S—extension group I', of G, and we
likewise denote by 'Y < I, the extension group of G. The action of I'y, on 0B, is
cocompact, and dB,,/T, has a finite sheeted (orbifold) covering by dB,/T'%, which
is the graph manifold mentioned in the introduction.

Consider the surface S with the flat metric gx_ , so that (S, X4, ¢x,) = Ex. /mS.
The multitwist 7, is an affine map that preserves the cylinders in direction «, acting
as a power of a Dehn twist in each cylinder and as the identity on their boundaries.
The union of the boundaries of the cylinders are spines (deformation retracts) for
the subsurfaces that are the complements of the twisting curves (core curves of the
cylinders). Consequently, 7, is the identity on these spines. The homeomorphism
T induces a homeomorphism on the subsurface obtained by cutting open S along
a core curve of each cylinder. Each such induced homeomorphism is the identity on
the corresponding spine, and is thus isotopic to the identity relative to the spine.
The mapping torus of each subsurface is a product of the subsurface times a circle,
and embeds in the the mapping torus 0B,/ of 7,. These sub-mapping tori are
the Seifert pieces for the graph manifold structure on 03,,/I'%.

The lifted graph manifold decomposition of 0B, corresponds to Ty,. That is, for
each v € T,io), there is a vertex space contained in ®" and containing 6”. In fact,
with respect to the covering group, ®" is an invariant, bounded neighborhood of
the vertex space and 0" is an equivariant deformation retraction of that space. We
let I'V < T, denote the stabilizer of ®" in T, and I'"Y < 'Y the stabilizer in T'Y.
The suspension flow on the mapping torus 0B, /TI'% restricted to each spine defines
circle leaves of the corresponding Seifert piece; that is, flow lines through any point
on the spine are precisely the circle leaves. In the universal covering 0B, the lifted
flowline through a point = € 0B, is a lifted horocycle, ¢y o = Dy N 0B,. Thus, for
any vertex v and any x € 0, {, . is a line for the vertex space corresponding to v.
We note that not only does I'*Y preserve this set of lines, but so does I'”.

For any z € 67, the stabilizer in "0 of £, , is generated by a lift g, of 7,.
Therefore, the quotient @/T'" is homeomorphic to a product, ©% /715" x St,
where 715" is the stabilizer of v in 7S < T' and X < 0B, is any point. Indeed,
there is a deformation retraction to 8 /T = 6% /715" x S. If we do not care about
the particular point X over which we take the fiber, we simply write SV for the
surface ®% /m1 S, so that O@V/T0 ~ S¥ x S!. Since Ex is a copy of the universal
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cover of S, we can consider SV as a subsurface of S (embedded on the interior) and
7157 is its fundamental group inside m1.5 (up to conjugacy).

The product structure SV x ST =~ @V/T"*? can be chosen so that @?/T"% — @Y/T’
is an orbifold cover sending circles to circles making ©®Y/T' into a Seifert fibered
orbifold (some of the Seifert fibers may be part of the orbifold locus) that also
(orbifold)-fibers over the circle (with finite order monodromy). Write ®?/T" — OV
for the Seifert fibration to the quotient 2—-orbifold. Further write

VTV — worb(Ov)
for the induced homomorphism of the Seifert fibration and
VTV > Z

for the induced homomorphism from the fibration over the circle. Because g, acts
as translation on the line ¢, ,, for z € ", it represents a loop that traverses a circle
in the Seifert fibration, which is thus also a suspension flowline for the fibration over
the circle. Thus we have v¥(g,) = 0 and ¢"(g,) # 0. To complete the picture, we
note that restricting S” x S! ~ @V/T"0 — @V/T" — OV to S? defines an orbifold
covering SV — O".

Finally, note that for any w adjacent to v in T, (g, x {gu) = Z> has finite
index in I'" n T Viewing {g.,) < I'”, we note that v"|., + is an isomorphism onto
an infinite cyclic subgroup of m§{"*Ov. In fact, the image " ({g,)) is (a conjugate
of a power of) the fundamental group of a boundary component of Ov.

Remark 3.3. One caveat about the lines for the vertex spaces: flowlines through
points not on a spine are not lines of any vertex space. In fact, they are not even
uniformly close to lines for any vertex space.

Constructing the map. Here we define K¥ and AV and prove the main proper-
ties we will need about them. We require a little more set up first. We choose
representatives of the I'-orbits of vertices, Vo = {v1,...,vx} < V. For each v € Vy,
choose a fundamental domain A" for the action of I'V on ®". We assume that A"
has compact, connected closure, that gA? n A = ¢F for all g € T'\{1}, and that
Uger» 9+ A = ©". The set

(1) {geT | gA" n A" # &}

is a finite generating set for I'Y. The I'—translates of A" define a tiling of @7,
and the map sending every point of gA” to g € I'Y is a quasi-isometry by the
Milnor-Schwarz Lemma. We denote this map as AV @V — I,

We note that any word metric on I'” defines a “word metric” on each coset gI'?,
for g € I' (elements are distance 1 if they differ by right multiplication by an element
of the generating set). We can push the tiling forward by g to a T'9" = gI'Vg—!-
invariant tiling of @9Y (if g € T'V, this is precisely the given tiling of ®"). For any
element ¢’ € ¢gI'Y, the map that sends every point in ¢’AY to ¢’ defines a quasi-
isometry X9V @9V gI'¥ which is I'9"—equivariant, with the same quasi-isometry
constants. If ¢’ € I and 2’ € A, then for all g e T

N9 (gg'a) = g’ = g\ (g'2!),
On the other hand, any w € T' - v and 2 € ®" have the form w = ¢'v and z = ¢’z
for some ¢’ € I and 2’ € AY. Thus, for any g € I', the equation above becomes

(2) N (gz) = GA“ ()



VEECH EXTENSIONS II: HIERARCHICAL HYPERBOLICITY AND QI-RIGIDITY 17

Having carried out the construction above for each v € Vy and each vertex in its
orbit, we have maps ¥ from O to a coset of a vertex stabilizer from V, for every
w €V, so that equation (2) holds for every z € ®", and g € I.

Next, recall that a homogeneous quasimorphism (with deficiency D) from a group
H to R is a map

Yv: H—->R
such that for all h, hy,hs € H and n € Z we have ¢(h™) = ny(h) and

[9(hiha) — 9 (h1) — P (h2)| < D.

Lemma 3.4. For any v € V, there is a homogeneous quasimorphism ¢*: 'V — R
such that ¥V ({gy)) is unbounded, and ¥"(gy) = 0 for any adjacent verter w € V.

Proof. Let wy,...,w, be '"—orbit representatives of the vertices adjacent to v. Here
r is the number of boundary components of OV, so that v"(guw, ), .-, ¥"(gw,) are
peripheral loops around the r distinct boundary components of OV. Since 7OV
is the fundamental group of a hyperbolic 2—orbifold with non-empty boundary,
appealing to [HO13, Theorem 4.2], which applies to 7¢"?O? and its subgroups
W (gw,; )y in view of [DGO17, Corollary 6.6, Theorem 6.8], one can find a homoge-
neous quasimorphism 7;: 7¢"°O" — R, for i = 1,...,r, such that 1;(v*(gu,)) = 1
and 7;(v"(gw,)) = 0 for j # i. (The construction of Epstein-Fujiwara [EF97] should
also be applicable to construct such quasimorphisms). Set sqg = 1/¢¥(g,), and for
eachi=1,...,r set s; = s0¢"”(guw,), and then define

s
Y'Y = 500" — Z simiov’.
i=1
As a linear combination of homogeneous quasimorphisms, " is a homogeneous
quasimorphism. Since g, € ker(v?), it follows that n; o v¥(g,) = 0 for all ¢, hence

U (gy) = 500" (gv) = ¢°(gv)/?"(g») = 1. On the other hand, for any j = 1,...,r

we have
T

Y (Guw;) = 500" (g, ) — Z 5ini(v7(95)) = 509" (guw;) — 2 500" (9w, )0i; = 0,
i=1 i=1
proving the lemma. (Il

According to [ABO19, Lemma 4.15], there is an (infinite) generating set for I'”
so that with respect to the resulting word metric, the quasimorphism ¢": I' - R
from Lemma 3.4 is a quasi-isometry. For v € Vy, define KV = I'¥ with this choice
of word metric and let

AV @Y - KV
simply be the map P (followed by the identification of I'” with V). For any g € ',
define K9 to be the coset gI'" with this generating set so that X9v defines a map

A9V @Y — K9V,
Carrying this out for every v € Vy, (2) implies
(3) A (gx) = g\ (x)
forallweV and x € ®", and ge T
Before we proceed to the proof of Proposition 3.1, observe that ['9? = gI'Vg~! acts

isometrically on gI'” with respect to any generating set, and thus we can use this to
define a generating set for the conjugate so that (any) orbit map is an isometry; in
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fact, this will just be a conjugate of the generating set for I'V. In particular, when
convenient we will identify K9% isometrically with the conjugate gI'¢g~' via such
an orbit map. Conjugating the quasimorphisms 9" from the lemma, for v € V, we
obtain uniform quasi-isometries

(4) YU KY > R
for all w € V, which for an appropriate choice of identification of K* with a conju-
gate of some I'V, v € V), is a quasimorphism (with uniformly bounded deficiency).

Proof of Proposition 3.1. From the discussion above and Equation (3), we imme-
diately see that item (4) of the proposition holds.

Next, observe that by adding finitely many generators to the infinite generating
set of T'° for any vg € Vy, changes K" by quasi-isometry. On the other hand,
the finite generating set described in Equation (1) for vy € Vy makes Vo g quasi-
isometry. Thus, adding these generators to the infinite generating set does not
change the quasi-isometry type of K", but clearly makes A" coarsely Lipschitz.
Therefore, AV is uniformly coarsely Lipschitz for all v € V, and hence item (1) holds
for all v e V.

To prove item (2), let v € V and x € 0©Y. Then x € 8", for some w € V adjacent
to v. As discussed above, we view KV and K" as conjugates I'V and I'" of groups
I'0 and '™, respectively, for vy, wy € Vy, equipped with their conjugated infinite
generating sets. Let ¢: KV — R and ¢"“: K* — R be the associated uniform
quasi-isometric homogeneous quasimorphisms. The element g,, € I'V stabilizes ¢, 4
acting by translation on it, and by construction, ¥ (g,) = ¥?(glt) = 0 for all n € Z.
It follows that every orbit of {g,,» acting on K? is uniformly bounded. Indeed, if D
is the deficiency of ¥, then for any g € KV, we have

[0 (gwg) =¥ (9)] = [¥* (909) — ¥ (9) =" (9u)| < D
and therefore g/'g and ¢ are uniformly bounded distance apart in KV (since ¥ is a

uniform quasiisometry).
Now, since gl’v = v, by item (4) of the proposition we have

X(gaa) = X" (gux) = g’ (),
and since g’ A’(z) is uniformly close to AV(x), it follows that A” sends the (g, )—
orbit of z to a uniformly bounded set. Since this orbit is R-dense in ¢, o for some
uniform R > 0, and since AV is uniformly coarsely Lipschitz (by item (1)) we see
that AY(¢; o) has uniformly bounded diameter. This proves item (2).

For item (3), we continue with the assumptions on v, w as above. Note that since
P¥(gr) = n, using again the fact that ¢¥ is a uniform quasi-isometric homogeneous
quasimorphism to R, it follows that for any z € ®", the map n — A\’(gl'z) is a
uniformly coarsely surjective, uniform quasiisometry Z — K. Since every orbit of
{gwy on K" is uniformly bounded, it follows that for all n,m € Z, the two points
AV (grgma) = gmA?(ga) and \Y(glx) are uniformly close to each other. Likewise,
A¥(grgma) and AV (ghx) are also uniformly close to each other. But this means
that

A x A(gy gy ) and (A (gyx), A (g, )
are uniformly close, and thus
(n,m) =AY x X*(g;/ g, @)

is a uniformly coarsely surjective, uniform quasiisometry Z2? — K? x Kv.
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On the other hand, the assignment (n,m) — gl'gm'x defines a uniform quasi-
isometry Z? — OV n OV since (g, ) x {(g,) = Z? acts cocompactly on @% n ¥
(with uniformity coming from the fact that there are only finitely many I'-orbits
of pairs (v, w) of adjacent vertices). Combining these two facts, together with the
fact that AV and A\ are uniformly coarsely Lipschitz, it follows that

A XAV @ N @Y — KU x KV

is a uniformly coarsely surjective, uniform quasiisometry. This proves item (3), and
completes the proof of the proposition. ([

3.2. A technical lemma. The goal of this subsection is to prove Lemma 3.6,
whose relevance will only be clear in §4. We prove it here since we have now
established the setup for its proof.

We recall that for each v, since ®7/T" is a Seifert fibered orbifold, we have have
a ['"—equivariant, uniformly biLipschitz map p’ x p¥: @V — Sv x R, where SY s
the surface-with-boundary % for some X € 0B, (and a = «a(v)) and the slices
{z} x R (more precisely, the level sets of (u¥)~!(z) = ®V) are lines for @". These
lines project to circle fibers in @Y/T"” and we may assume they contain all the lines
£y, forall ze6v.

Lemma 3.5. The map p’ x \V: @V — SV x KV is a uniform, I'V—equivariant
quasi-isometry with uniformly dense image. Moreover, the constant K1 from Propo-
sition 3.1 can be chosen so that for any v eV and s € KV, the subspace

M(s) = (\") " (Nk, (s)) = ©°,

has the property that p¥ x AY(M(s)) has uniformly bounded Hausdorff distance to
the slice SY x {s}, and furthermore M(s) nontrivially intersects every line of ®v.

We note that the intersection of M(s) with each line of ®? is necessarily a uni-
formly bounded diameter set by the uniform bounded Hausdorff distance condition.

Proof. All constants will be independent of the specific vertex v, so we drop it from
the notation. We write d for all path-metric distances in what follows (the location
of points will determine which metric is being used). Products are given the L!
metric for convenience. We further let K be the maximum of the coarse Lipschitz
constants of u, p, A and the biLipschitz constant of p x p, and assume, as we may,
that K > 2. From the proof of Proposition 3.1(3), if = is any point of a line of ©,
then n — AY(gl'z) is a uniformly coarsely surjective, uniform quasi-isometry from Z
to K. Therefore, A\ = AV is a uniformly coarsely surjective, uniform quasi-isometry
from any line of ® to . We further assume that the coarse surjectivity constants
and quasi-isometry constants are also all taken to be K.

Let x,y € ® be any two points. Since p and A\ are K—coarsely Lipschitz, u x X is
(2K, 2K )—coarsely Lipschitz. To prove the required uniform lower bound on p x A—
distances, we note that since p x p is K—biLipschitz, it suffices to uniformly coarsely
bound d(u x p(x), % p(y)) from above by d(u x A(z), u x A(y)). For reasons that
will become clear shortly, we observe that

d(px p(x),px py) = du(x), 1 (y)) +d(p(x), p(y))
(5) < 2max {K*d(u(z), p(y)), d(p(x), p(y))}-
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If the maximum is realized by K*d(u(x),u(y)), then note that

d(p > p(z),nx p(y)) < 2K*d(p(x), u(y))
< 2KYd(u(z), p(y)) + 2K d(\(2), M(y))
= 2K*d(p x M), 1 x M),

as required.
We are left to consider the case that the maximum in (5) is realized by d(p(z), p(v)),
which thus satisfies

d(p(z), p(y)) = K*d(p(x), u(y))-
Let z € ® be such that p(z) = p(z) and u(z) = p(y). Since u(z) = p(y), z and y
lie on a line, and since the restriction of A to this line is a (K, K)—quasi-isometry,
we have

d(X(2), \(y)) = %d(p(2), p(y)) — K = £d(p(z), p(y)) — K.
Since A is K—coarsely Lipschitz and p x p is K—biLipschitz, we have

dN2), =) < Kd(z,2)+ K
< K2d(u(e), w(2) + d(p(a), o) + K
= K%d(u(x), p(y)) + K
< K* (gd(p(@), p(y) + K

Il

=d(p(z), p(y)) + K

Combining the previous two sets of inequalities and the triangle inequality, we have

dA(z),A(y)) = d(A(2),A(y)) — d(A(2), A(z))
> #d(p(x),p(y)) — K — (g=d(p(x), p(y)) + K)
> fEtd(p(), p(y)) — 2K.

Combining this inequality with (5) where we have assumed the maximum is realized
by d(p(x), p(y)), we obtain

dp x p(x), ;< ply) < 2d(p(x),p(y))
< ZEA(\(@), A\(y) + K5
< HSd(p < Az),p x Ay) + 155

which provides the required upper bound. This completes the proof of the first
claim of the lemma.

For the second claim of the lemma, we now increase K7 from Proposition 3.1 if
necessary, so that K3 > K. Observe that

(6) (1 A) o (x o)~ () = (@, Al x p) ™ (1)),

That is, (1 x A) o (u x p)~! sends the line {z} x R to {z} x K, for any = € S.
As already noted at the start of the proof, restricting to this line, A is K—coarsely
Lipschitz and K—coarsely onto. Therefore, for any s € K and x € S , there exists ¢ so
that A\((u x p)~1(x,t)) is within K; > K of s. Thus, for any line of ©, the A-image
nontrivially intersects N, (s), and hence this line nontrivially intersects M (s). By
definition, p x A\ maps M (s) into Sv x Nk, (s), and by the previous sentence, every
point of S x {s} is within K; of some point of zz x A(M (s)). Thus, A x (M (s)) has
Hausdorff distance at most K; from § x {s}, as required. g
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As mentioned above, the following technical lemma will be needed in §4. In the
statement M (s) is as defined by Lemma 3.5.

Lemma 3.6. There is a function N = Ni: [0,00) — [0,00) with the following
property. Suppose that v,v1,v9 € V are so that diee(v,v;) = 1. Then for each
se€ KV and t; € KV we have

d(M(s) n M(t1), M(s) n M(t3)) < N(d(M(t1), M(t2))).
Proof. Tt suffices to prove the lemma with d replaced by the path metric dgp, on
0B, since they are uniformly coarsely equivalent. In fact, it will be convenient to
consider the path metric dy on the union of the three vertex subspaces

N=0,u0, vO,,,

which is also uniformly coarsely equivalent since each vertex space uniformly quasi-
isometrically embeds in 0B,. In this subspace, we will actually prove that the two
distances are uniformly comparable.

Now, for each ¢ = 1,2 the uniform quasi-isometry p%: x AV : @V — Svi x KCvi
from Lemma 3.5 maps the space @” n @V within bounded Hausdorff distance of a
subspace oY Svi x Kvi, for a boundary component 0vS% of Svi. Let n: Svi s gv Qv
be the closest point projection, and then set

(¥ x )\”i)fl o(nxid)o (u x A"): OV — @

where (1% x A1)~ is a coarse inverse of p% x AV with p% o (u? x \Vi)~1(x,s) = x
(c.f. Equation (6)). This map is a uniformly coarsely Lipschitz, coarse retraction
of @Y onto @V n @Y. Moreover, this sends M (t;), which is uniformly close to
the (¥ x A\Y)~'-image of Svi % {t;}, to a uniformly bounded neighborhood of
M(t;) n ©". Consequently,

(7) do(M(tl),M(tQ)) = dO(M(tl) @) @lU,M(tg) M @U)

with uniform constants.
Next, observe that M(t;) n ®Y < OV n OV c @Y.

Claim 3.7. The quasi-isometry p® x XU maps M(t;) n OV within a uniformly
bounded Hausdorff distance of the slice {z;} x K¥ < SV x K?, for each i = 1,2,
where (z;,t}) is a point in the p¥ x X\’—image of M(s) n M(t;).

Assuming the claim, we note then that
do(M(tl) ﬁ@v,M(tQ) ﬁ@v) = dgvxlcv({zl} X ]Cv,{ZQ} X ]Cv)

= dg.(21,22)
do(M(s) n M(t1), M(s) n M(t2))

It

again with uniform constants. Combining this coarse equation with (7) we get the
required uniform estimate

do(M(s) n M(t1), M(s) n M (t2)) = do(M(t1), M (t2)).

Fix i = 1 or 2 and we prove the claim. Since A" x AV is Kj—coarsely surjective
(Proposition 3.1(3), there exists some point y; € @V n OY with (A(y;), AV (y;))
within distance K7 of (s,t;) € K¥ x V. Therefore, y; € M(s) n M(t;) and we set
1t x A%(y;) = (2, ;).
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Next, we observe that A" is uniformly coarsely constant on any line of ®*
contained in ®Y N ®Y by Proposition 3.1(2) and uniformly coarsely Lipschitz by
Proposition 3.1(1). Hence, the line

(1") 7 (z:) = (" x p") " ({zi} x R)
of ®” maps under AV x A\ : @Y n O — K¥ x L into a neighborhood of uniformly
bounded radius of KV x {t;}. Therefore, any point in the image of the line in ¥ x K
lies uniformly close to a point in A? x AV (M (¢;) n ©®?) by Proposition 3.1(3) (which
guarantees that any point in K x {¢;} is Kj—close to a point in the image of
the subspace @Y n @v#). Therefore any point in the line lies uniformly close to
some point in M(t;) N OV since A\Y x A¥ is a uniform quasi-isometry again by
Proposition 3.1(3).
On the other hand, Lemma 3.5 implies p% x AV (M (t;)) is uniformly bounded
Hausdorff distance from the slice SU x {t;} < §v x Kv. Moreover, since M (t;)
meets every line of ®¥ (Lemma 3.5 again), it follows that

uY % \U(M(t) A ©°)

is uniformly bounded Hausdorff distance to the quasi-line ovSvi x {t;} (see the
proof of Lemma 3.5). In particular, M(¢;) n ©7 is itself a uniform quasi-line and
consequently lies within a uniformly bounded neighborhood of the line (1%)~*(z;).
Since this line maps within within a uniformly bounded Hausdorff distance of the
slice {z;} x K¥ in SV x KV by u? x A, we see that M (t;) n ©? does as well O

3.3. Coned-off surfaces. For v € V, we define E” to be the graph whose vertices
are all w € V so that diyee(v,w) = 1, and with edges connecting the pairs w, w’
whenever @V @V % &. As such, vertices w € V are in bijective correspondence
with the boundary components of @Y and there is an “inclusion” map

i’ 009" - BY

that sends any point z € 0©Y to the vertex w for which z € ®". In light of the
following lemma, we note that we could alternately define the edges of EV in terms
of subspaces lying within bounded distance of each other, and produce a space
quasi-isometric to Zv.

Lemma 3.8. There is a function N = Ng: [0,00) — [0,00) so that whenever
v, wy,wy € V satisfy d(OV N OV, @2 N OV) < 7, the sets OVt N OV and OV N OV2
may be connected via a concatenation of at most N(r) paths, each of which is
contained in a set of the form @V n O,

Proof. If d(@"* n ®Y,@"“2 n OY) < r, then there are cone points p; € O%i n ¥
within distance r + 3M, where M is the bound on the width of a strip and length
of a saddle connection from Lemma 2.3. Since the path metric dg» on 6" is coarsely
equivalent to the subspace metric, dgv(p1,p2) is bounded in terms of r. The path
metric on 0¥ is biLipschitz equivalent to the ¢!'-metric on the product 0%, x R.
Since each edge of 0% has definite length, there is a path from p; to ps in 6”
obtained by concatenating boundedly many (in terms of r) paths «; with fx, («;) a
saddle connection in % . Since each «; is contained in some ©", we are done. [

Corollary 3.9. For any x,y € 0OY, we have dg- (i (z),1"(y)) < N(dev(z,y)) + 1.
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Proof. Let w = i’(x) and w’ = i¥(y). Since de- and d are path metrics, we have
d(z,y) < dev(z,y). By Lemma 3.8, x and y may be joined by a concatenation
aq - - oy of k < N(dev(x,y))+2 paths «; each of which lies in some @Y n©®™4, and
where w = w; and w’ = wy. For successive paths o, 0541, the vertices w;, w; 11 are

adjacent in 2V by definition. Therefore dgv»(w,w') < k—1 < N(dev(z,y))+1. O

Lemma 3.10. Each EY is uniformly quasi-isometric to a tree. In particular, there
exists 6 > 0 so that each BV is d—hyperbolic. Moreover, 2V has at least two points
at infinity.

Proof. We appeal to Proposition 2.5 and show that for any vertices w,w’ of E?
there exists a path v(w,w’) so that any path from w to w’ passes within distance
3 of each vertex of v(w,w’).

First, note that 2" is isomorphic to the intersection graph of the collection of
strips in ©g. For each strip we have a vertex, and for each saddle connection of
the spine 6, there is an edge of E¥ that connects the vertices corresponding to
the strips that contain the saddle connection. For each cone point in the spine 6,
there is also a complete graph on the vertices corresponding to strips that contain
this cone point. This accounts for all edges (because intersections of strips either
arise along saddle connections or single cone points), and we note that the closure
of each edge of the first type separates E¥ into two components.

Suppose w, w’ € BV are two vertices, and let z,z’ € ) be points in the (bound-
aries of the) strips corresponding to w and w’, respectively, that are closest in ©§,
and consider the geodesic in 6§ connecting these points, which is a concatenation
of saddle connections o109 ---0,. For each 1 <i < n, let w:—r be the vertices corre-
sponding to the two strips Aii that intersect in the saddle connection o;. We can
form an edge path v(w,w’) in EY, containing w,w’, and the w;" as vertices, since
Al n Al | # &. Observe that any path from z to 2’ must pass through the union

i+1
Af U A;, for each i, since x and 2’ lie in the closures of distinct components of
Oy~ (47 U A4)).

Now let w = wg, w1,...,w, = w’ be the vertices of an edge path connecting w
to w’ in EY. For any points in the strips corresponding to w and w’, respectively,
it is easy to construct a path in ®f between these points that decomposes as a
concatenation vyvy - - - v, so that v; is contained entirely in the strip corresponding
to w;. From the previous paragraph, this path must pass through Af v A7, for
each i = 1,...,n. It follows that for each 1 < i < n, the edge path must meet the
union of the stars star(w;") U star(w; ). Since these stars intersect, their union has
diameter at most 3, and we are done.

We now show that 2" contains a quasi-geodesic line. Consider strips A; of ©g,

for i € Z, such that for all i we have

e A; and A;,; share a saddle connection;

e A; 1 and A; 5 lie on distinct components of the complement of the interior
of Al v Ai+1 in @8

The A; give a bi-infinite path in EY, and we now show that this path is a quasi-
geodesic. Fix integers m,n and consider a geodesic vy in ZY from A,, to A,, (where
we think of the strips themselves as vertices of 2" for convenience). Then for each
m < k < n—1 we have that v needs to contain a vertex v(k) which, regarded as
a strip, intersects Ay or Ap,i. Indeed, the interior of Ay U Ag. 1 separates A,,
from A,,, and the sequence of vertices of 7 corresponds to a connected union of
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strips containing A,, and A,. Moreover, there is no strip intersecting both Ay
and Ay if |k — k'] = 3, and in particular we have v(k) # v(k') if |k — k'| = 4.
These observations imply that v contains at least |(n —m — 2)/4| vertices, so that
geodesics connecting A,, to A, have length comparable to n —m, and the A; form
a quasi-geodesic line as required. U

3.4. Windows and bridges. For v € V, consider the set 3V of points in ¥ that
are inside some v-spine, as well as those points 3¢V that are outside every v-spine:
U= U 0% N X) and $F = B\XY.

XeD

For each Y € D we now define a window map I1%: ¥ — P(00%) from cone
points to the set of subsets of the boundary 0®y < ©7,. There are two cases.
Firstly,

for z € £, Ty (z) = {z € 0Oy | [fy(2),2] n OF = {2}}.

In words, IIY (z) is the union of entrance points in ®% of any flat geodesic in Ey
from fy(x) to O} (basically the closest point projection in Ey ), and we call it
the window for z in @Y. Observe that for any X,Y € D we have fxy(II¥(z)) =
1% (z). The second case, that of 3%, is handled slightly differently:

forz e ¥Y, Oy (z) = fyx(%(x)), where X = c,(n(z)) € dB,
and Y% (z) = {z € 00% | z is a closest cone point to fx(z) € 0% }.
Thus affine invariance I1%(z) = fzy (Ily-(z)) is built directly into the definition.
Now for any Y € D and z,y € X, we define
dy (,y) = diam(IIy (z) U IT5 (y)),

where the distance is computed in the path metric on Ey (or equivalently on ©Y,).
Finally, we extend window maps to arbitrary subsets by declaring

for Uc B, Ty(U) =T (Un%) = (] Ty(2)

zeSNU

which has the same effect as defining I3 () = & < 0©% for z ¢ X.

Lemma 3.11. If z,y € £% satisfy f(z) = f(y), then IIY(z) = 1Y (y) for all
YeD.

Proof. This is immediate since ITY (x) is defined just in terms of fy (z) = fy(y). O
The following gives a counterpoint to Lemma 3.11 for points in 3?.

Lemma 3.12. There exists Ko > 0 such that for any v € V the following holds: If
x,y € XY satisfy f(x) = f(y) and either

(1) x and y are connected by a horizontal geodesic of length < 1, or

(2) x and y are contained in 0B, for some w eV with a(w) # «a(v),
then d% (x,y) < Ks, where X = ¢, (m(x)).

Proof. Set X = c,(n(z)) and Y = ¢,(w(y)). Since ¢,: D — 0B, is 1-Lipschitz
and diam(c,(0B,,)) is uniformly bounded for all such w, either condition (1) or
(2) gives a uniform bound K > 0 on the distance between X and Y. Hence fxy
is ef-biLipschitz. The distance between fy(y) € 6% and its closest cone points
ITY (y) in 0OV is also uniformly bounded by 2M, by Lemma 2.3. The same holds
for the distance between fx(x) and ITI% (z). It follows that II% (y) = fx,v (I} (v))
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The window IIY (z)

1

fy(z)

The v spine, 65,

I8

The strip between 6}, and fy(z)
- WV
3

FIGURE 2. A window

lies within distance 2eXM of fx(z) = fxy(fy(y)) and hence within distance
2e5 M + 2M of 1% (z). O

The next lemma explains that the image of II. is not so far from being a point.

Lemma 3.13 (Window lemma). For anyve V,Y € D, and x € %V, the window
Iy () < 0OY, is either a cone point or a single saddle connection.

Proof. If fy (x) € 0% then clearly IT% (z) is the cone point fy () itself. So suppose
fy(z) ¢ © and let ¢ be the component of 0@y, separating fy (z) from 05, in Ey,
so that II{.(z) < . Take any flat geodesic [fy (z),z] in Ey from fy(x) to a cone
point z € £. The geodesic [fy (), z] first meets £ in some cone point p. Since the
total cone angle at p is at least 37 and the angle at p along the side of ¢ containing
®V is exactly 7, the last saddle connection ¢ in the geodesic [fy (x),p] < [fy (z), 2]
must make an angle of at least 7 with £ on one side. Hence any geodesic from fy (z)
to a cone point on that side of p must pass through p.

If both angles between § and £ at p are at least 7, then any geodesic from fy ()
to £ passes through p. Hence p is the unique point in 6@3% closest to fy (z) and
ITY (x) = {p} is a cone point as required. Otherwise, consider the flat geodesic from
fy (z) to the adjacent cone point p’ on the other side of p along ¢. The last saddle
connection of this geodesic must also make an angle with £ of at least 7 on one side.
This cannot be the side containing p, or else the geodesic from fy (x) to p would
pass through p’ contradicting our choice of p. Hence any geodesic from fy (z) to a
cone point on the opposite side of p’ must pass through p’. Therefore IT}, (x) is the
saddle connection between p and p’, and we are done. See Figure 2. d

The following lemma gives us partial control over the window for points in ad-
jacent vertex spaces in the same Bass—Serre tree.

Lemma 3.14 (Bridge lemma). For any v,w € V with dyec(v,w) = 1, any Y €
D, and any component U = Ey ~ 6% not containing 6%, there exists a (possibly
degenerate) saddle connection dy < 0OY with the following property: Every x € )
with fy(x) € U satisfies 1% (x) < 0y .
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We call 6y the bridge for U in Ey. It is clear from the construction in the proof
below that fzy (dy) is the bridge for fzy (U), for any Z € D.

Proof. Let U be as in the statement and W be the component of Ey \. 68y containing
0%. Let vy = U n 0¥ and vy = W n 6% < 0O%, which are both bi-infinite flat
geodesics in 6.

If yo nyw = &, then there is a unique geodesic between them in 6}/, and we take
0y to be the endpoint of this geodesic which lies along ~y. On the other hand, if
YU N yw # &, then their intersection is contained in the boundary of a strip along
0y, and another along 03. Two distinct strips in the same direction that intersect
do so in either a single point or a single saddle connection, and hence vy N yw is
a point or single saddle connection, and we call d;;. See Figure 3.

7L_

A

FiGURE 3. Bridges, and the proof of Lemma 3.14.

Now consider any point z € ¥ with fy(x) € U. Observe that 2 € %V so that
ITY (x) falls under the first case of the window definition. Further, any flat geodesic
from fy (z) to ®Y must pass through both ~y and vy, and hence must pass through
dy < 00%.. It follows that IT (x) < dy, as required. O

The following is an easy consequence of the previous lemma.

Corollary 3.15. For any v,w € V with 2 < diee(v,w) < 00 and Y € D, ‘there
exists a (possibly degenerate) saddle connection 8} (w) < 0©Y so that if x € X has
fy(z) € O, then IV (z) < 6% (w). In particular, IIY (OY) < 03 (w).

Proof. There exists u € To(f()i) between v and w with dgee(u,v) = 1, and a compo-

nent U < Ey\0% whose closure contains ®%. Setting 6% (w) = dy and applying
Lemma 3.14 completes the proof. [l

The next corollary is similar.

Corollary 3.16. Ifv,w € V satisfy diee(v,w) = 00 and 0y’ N0 = &, then for each
Y € D there is a connected union 0y-(w) < 003, of at most two saddle connections
such that IIY, (z) < 8% (w) for all x € . In particular TIY (%) < 0% (w).

Proof. From the hypotheses, 0y is contained in some component W < Ey ~\ 05..
Let u € V be such that diee(v,u) = 1 and 0% < W. Since a(u) = a(v) # a(w), 03
and 6§ can intersect in at most one point. If 05 N 0y = J, then 6y is contained in
a component U of Ey\#y disjoint from 6% ; thus IIy, (83 ) is contained in the bridge
0y for U by Lemma 3.14. Otherwise 6y n 6% # J, and we claim there is a cone
point p € % such that p € U for every component U of Ey\@% that intersects 6.
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Indeed, if 0} N 6% is a cone point, we take p to be this intersection point, and if not
03 N 0% is an interior point of a saddle connection of #5. and we may take p to be
either of its endpoints. For each component U < Ey \#% that intersects 6y we then
have Iy (p) < 0y, where 0y is the bridge for U. Since fy(i_w) < 0¥ is contained
in the union of the closures of such U, it follows that II},(X%) is contained in a
union of saddle connections along 073, all of which contain II}, (p), and hence is a
connected union of at most two saddle connections. This completes the proof. [

The final case to consider is that of spines in different directions that intersect:

Lemma 3.17. There exists K3 > 0 such that if v,w € V with diee(v,w) = 0 and
0y N0y # &, then diam(II}, (60")) < K3 for allY € ¢,(0By,).

FI1GURE 4. The proof of Lemma 3.17

Proof. Let zo = 03 n 03 be the unique intersection point of the spines. Let Wy
be the smallest subgraph of 6} containing 6y N ©3, and let Wi,..., W} be the
closures of the components of 03\Wjy, so that 0% = Wy U --- U Wj,. See Figure 4.
For 1 < i < k, let &; € W; be the closest (cone) point to 2. Then define p; to be the
intersection of the geodesic [zg, ;] < 0% with 0©Y and let §; = 0©Y, be the segment
consisting of the (1 or 2) saddle connections along d®% that contain p;. Define
0% (w) = 81 U -+ - Uk, and note that 6% (w) = fx v (6} (w)) and 6 N 0OY. < §} (w)
by construction.

For any z € ¥ with fy(z) € W;, where i = 1,...,k, the flat geodesic from
fr(x) to xo first intersects @} at p;; therefore p; € II},(z) by definition of the
window. By Lemma 3.13, it follows that IT% (z) < &;. The union U¥_, W; contains
every cone point of 8% except possibly zo. Thus we have proven I1% (8% n $?) =
I (0 0 S90) < o} (w).

Let Z € D be the closest point on 0B, to dB,,, thus Z € dB, lies on the unique
hyperbolic geodesic that intersects 0B, and 0B,, orthogonally. In Ez the directions
a(v) and a(w) are perpendicular. Therefore the cone points of 0@% that are closest
to 6% n0Y all lie in 0% (w), since they must be endpoints of saddle connections along
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007 that intersect #%. More generally, for any Y € ¢,(0B,,), the directions «a(v)
and a(w) are nearly perpendicular and thus we have

1% (0% A %) < 6% (w) € B (6% N 6%).

for some uniform constant K > 0 that depends only on the length of ¢,(0B,,) and
the maximum over 0B, of the length/width of any saddle connection/strip in the
a(v) direction (Lemma 2.3). Now, for any x € 8 N 37, the point X = ¢, (7 (x)) lies
in ¢,(@B,,) and we have that fx(x) = 0% n0%. The above equation shows there are
cone points of 0@% within K of fx(z); hence IT% (z) = IT% (fx (z)) lies in Bg (0% N
0%) by definition. Using the fact that the length of ¢,(0B,,) is uniformly bounded,
we see that the map fy x is uniformly biLipschitz and therefore that II} (x) =
fr,x (IT% ()) lies within bounded distance of 65, N6y = fy, x (0% N 0% ). Combining
this with the above finding that I1% (8% n %#) lies within bounded distance of
09 N 0¥, we finally conclude that diam(II% (")) is uniformly bounded. O

3.5. Projections. Here we define projections A”: Y - P(KY)and £V: ¥ — P(EV).
In preparation, we first define ITV: ¥ — P(0@v) by

I (x) = U Y (z), foranyve) and z€X.
YeoB,

In words, I1"(x) consists of the v—windows of z in all fibers over 0B,. As before,
we extend to arbitrary subsets U — E by setting IIV(U) = IIY(U n X).
Now, for each v € V our projections are defined as the compositions

A =X\ oIlY  and &Y(x) =i%oII".

A useful observation is that for any two vertices v, w € V with diree(v,w) = 1 and
X € D, we have

(8) (%) =£°(0°) =we B,
Mirroring the notation d% (z,y) above, for z,y € ¥ we define
dico (z,y) = diam(A”(z) U A(y)) and  dgv(z,y) = diam(£"(z) U £ (y)).

Lemma 3.18. There is a function N': [0,00) — [0,00) such that for allveV, X €
0B, and x,y € ¥ the quantities dicv(x,y) and dgv(x,y) are at most N'(d% (z,y)).

Proof. For Y € 0B,, let us compare the images of some subset U < 003, and

Smear(U) = U fzy(U) c 0@

Z€eoB,

under the maps AY,i"”. Since the boundary components of @Y are preserved by the
maps fzy, the images ¢*(U) = ¢¥(Smear(U)) are exactly the same. Moreover, for
each z € 0@ we have \’(Smear({z})) = A\’({; 4(v)), and so by Proposition 3.1(2)
this is a set with diameter at most K;. Therefore AV(U) and A”(Smear(U)) have
Hausdorff distance at most 2K7.

Now, let 7,y € ¥ and X € 0B, be as in the statement. Set U = II% (x) U 1T (y)
so that diam(U) = d% (x,y). Since IIV(z) = Smear(II% (z)) and similarly for II”(y)
we see that

dicv (2, y) = diam(A\"(Smear(U))) and dgv(z,y) = diam(i”(Smear(U))).

i
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Since A? is coarsely K;—Lipschitz by Proposition 3.11, the preceding paragraph and
the triangle inequality shows that

dico (x,y) = diam(X’(Smear(U))) < diam(A(U))+2K; < (K d%(x,y)+ K1) +2K];.
Similarly, by Corollary 3.9 we have that
diamgye (2, y) = diam(:°(U)) < N(d%(x,y)) + 1.

Setting N'(t) = max{N(¢) + 1, Kyt + 3K} completes the proof. O

Proposition 3.19. There exists K4 > 0 so that for any v e V:

(1) A¥ and ¥ are K4—coarsely Lipschitz;

(2) For any w eV, we have
(a) diam (A?(O™)) < Ky, unless diyee(v, w) < 1;
(b) diam (£¥(OY)) < K4 unless w = v.

Proof. For part (1), we first observe that by [DDLS21, Lemma 3.5, there exists an
R > 0 so that any pair of points z,y € ¥ may be connected by a path of length

at most Rd(z,y) that is a concatenation of at most Rd(z,y) + 1 pieces, each of
which is either a saddle connection of length at most R in a vertical vertical fiber,
or a horizontal geodesic segment in £. By the triangle inequality, it thus suffices to
assume that x and y are the endpoints of either a horizontal geodesic or a vertical
saddle connection of length at most R. Appealing to Lemma 3.18, it further suffices
to show that d%(x,y) is linearly bounded by d(z,y) for some X € 0B,. Lemmas
3.11 and 3.12(1) handle the horizontal segment case, since we are free to subdivide
such a path into [d(z, y)] segments of length at most 1.

For the vertical segment case we assume x and y lie in the same fiber Fy and
differ by a saddle connection ¢ of length at most R. Let 6/, where w € V, be the
spine containing 4. The fact that J is bounded means that ¥ = n(z) = 7n(y) is
bounded distance from the horocycle 0B,,. Let X = ¢,(Y) € 0B, and let §' =
fx,v(0) be the saddle connection in 6% connecting =’ = fx y(z) and ¥’ = fx v ().
By the triangle inequality and the first part above about bounded length horizontal
segments, it suffices to work with the points z’,7’ € 0%. There are three cases to
consider: Firstly, if v = w, then ', y’ € 0% so that II% (z') and IT% (y') choose the
closest cone points in d@% to z’ and ¥/, respectively. Since ' and y’ are close, so
are IT% (z') and II% (y'). Secondly, if diyee(v, w) > 1, then Corollaries 3.15 and 3.16,
and Lemma 3.17 give a uniform bound on d%(2’,y") < diam(II%(6")) for any point
Z € ¢y(0By). Finally, if diree(v, w) = 1 then 6% and 6% are adjacent non-crossing
spines in Ex. Since 0% is totally geodesic, if follows that II% (2') and II% (y') are
either equal or connected by a single edge of 0©®% . But this saddle connection has
uniformly bounded length, since X € dB,, which completes the proof of (1).

For (2), first recall that strips/saddle connections in the «(w) direction have
uniformly bounded width/length over ¢B,, (Lemma 2.3). Therefore @% n ¥ is
contained in a bounded neighborhood of #¥ n . By part (1) it thus suffices to
bound diam(A”(6%*)) and diam(£¥(6*)). When diee(v, w) = 2, Corollaries 3.15
and 3.16, and Lemma 3.17, imply that there exists X € 0B, so that II%(6") has
bounded diameter in ®%. Appealing to Lemma 3.18 now bounds diam(AY(6"))
and diam(£¥(0")) in these cases. For the remaining case diyec(v, w) = 1 of 2(b), we
note that £¥(0") is a single point by (8), and thus 2(b) follows. O
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4. HIERARCHICAL HYPERBOLICITY OF T

In this section we complete the proof that I' is hierarchically hyperbolic. We
will use a criterion from [BHMS20], which we now briefly discuss. For further
information and heuristic discussion of this approach to hierarchical hyperbolicity,
we refer the reader to [BHMS20, §1.5, “User’s guide and a simple example”].

Consider a simplicial complex X and a graph W whose vertex set is the set
of maximal simplices of X. The pair (X, W) is called a combinatorial HHS if it
satisfies the requirements listed in Definition 4.8 below, and [BHMS20, Theorem
1.18] guarantees that in this case W is an HHS. The main requirement is along the
lines of: X is hyperbolic, and links of simplices of X" are also hyperbolic. However,
this is rarely the case because co-dimension-1 faces of maximal simplices have
discrete links. To rectify this, additional edges (coming from W) should be added
to X and its links as detailed in Definition 4.2. In our case, after adding these
edges, X will be quasi-isometric to E, and each other link will be quasi-isometric
to either a point or to one of the spaces KV or EY introduced in §3.

There are two natural situations where such pairs arise that the reader might
want to keep in mind. First, consider a group H acting on a simplicial complex X’
so that there is one orbit of maximal simplices, and those have trivial stabilizers.
In this case, we take W to be (a graph isomorphic to) a Cayley graph of H. (More
generally, if the action is cocompact with finite stabilizers of maximal simplices,
then the appropriate W is quasi-isometric to a Cayley graph.) For the second
situation, X’ is the curve graph of a surface; then maximal simplices are pants
decompositions of the surface and W can be taken to be the pants graph. We will
use this as a working example below, when we get into the details.

Most of the work carried out in §3 will be used (as a black-box) to prove that,
roughly, links are quasi-isometrically embedded in a space obtained by removing all
the “obvious” vertices that provide shortcuts between vertices of the link. This can
be seen as an analogue of Bowditch’s fineness condition in the context of relative
hyperbolicity.

This section is organized as follows. In §4.1 we list all the relevant definitions
and results from [BHMS20], and we illustrate them using pants graphs. In §4.2 we
construct the relevant combinatorial HHS for our purposes. In §4.3 we analyze all
the various links and related combinatorial objects; we note that most of the work
done in §3 is used here to prove Lemma 4.22. At that point, essentially only one
property of combinatorial HHSs will be left to be checked, and we do so in §4.4.

4.1. Basic definitions. We start by recalling some basic combinatorial definitions
and constructions. Let X be a flag simplicial complex.

Definition 4.1 (Join, link, star). Given disjoint simplices A, A’ of X, the join
is denoted A « A’ and is the simplex spanned by A© U A’ if it exists. More
generally, if K, L are disjoint induced subcomplexes of X such that every vertex of
K is adjacent to every vertex of L, then the join K L is the induced subcomplex
with vertex set K(© o L),

For each simplex A, the link Lk(A) is the union of all simplices A’ of X such that
A'nA =g and A’ A is a simplex of X. The star of A is Star(A) = Lk(A) x A,
i.e. the union of all simplices of X that contain A.

We emphasize that ¢ is a simplex of X, whose link is all of X and whose star
is all of X.
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Definition 4.2 (X—graph, W—augmented dual complex). An X —graph is any graph
W whose vertex set is the set of maximal simplices of X (those not contained in
any larger simplex).
For a flag complex X and an X—graph W, the W -augmented dual graph XV
is the graph defined as follows:
e the 0-skeleton of X*W is X (0,
e if v,we X© are adjacent in X, then they are adjacent in X+W;
e if two vertices in W are adjacent, then we consider o, p, the associated
maximal simplices of X, and in X*tW we connect each vertex of o to each
vertex of p.

We equip W with the usual path-metric, in which each edge has unit length, and do
the same for X *". Observe that the 1-skeleton of X is a subgraph X(1) < X+W.

We provide a running example to illustrate the various definitions in a familiar
situation. This example will not be used in the sequel.

Example 4.3. If X' is the curve complex of the surface S, then an example of the
an X—graph, W, is the pants graph, since a maximal simplex is precisely a pants
decomposition. The W—augmented dual graph can be thought of as adding to the
curve graph, X(©) an edge between any two curves that fill a one-holed torus or four-
holed sphere and intersect once or twice, respectively: indeed, these subsurfaces are
precisely those where an elementary move happens as in the definition of adjacency
in the pants graph.

Definition 4.4 (Equivalent simplices, saturation). For A, A’ simplices of X, we
write A ~ A’ to mean Lk(A) = Lk(A’). We denote by [A] the equivalence class of
A. Let Sat(A) denote the set of vertices v € X for which there exists a simplex A’
of X such that v € A’ and A’ ~ A, i.e.

(0)

Sat(A) = | (] 4’
A’e[A]

We denote by & the set of ~—classes of non-maximal simplices in X.

Definition 4.5 (Complement, link subgraph). Let W be an X—graph. For each
simplex A of X, let Yo be the subgraph of X+" induced by the set of vertices
(X" O) — GQat(A).

Let C(A) be the full subgraph of YA spanned by Lk(A)(®. Note that C(A) =
C(A’) whenever A ~ A’. (We emphasize that we are taking links in X, not in
X*+W _and then considering the subgraphs of YA induced by those links.)

We now pause and continue with the illustrative example.

Example 4.6. Let X and W be as in Example 4.3. A simplex A is a multicurve
which determines two (open) subsurfaces U = U(A),U’ = U'(A) < S, where U
is the union of the complementary components of the multicurve that are not a
pair of pants, and U’ = S — U. Note that 0U < A is a submulticurve and that
A —0U is a pants decomposition of U’. A simplex A’ is equivalent to A if it defines
the same subsurfaces. Thus Sat(A) consists of 0U(A) together with all essential
curves in U’(A), while C(A) is the join of graphs quasi-isometric to curve graphs
of the components of U(A). For components of U(A) which are one-holed tori or
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four-holed spheres, the corresponding subgraphs are isometric to their curve graphs
(since the extra edges in X W precisely give edges for these curve graphs).

Definition 4.7 (Nesting). Let X be a simplicial complex. Let A;A’ be non-
maximal simplices of X. Then we write [A] £ [A'] if Lk(A) € Lk(A).

We note that if A’ < A, then [A] T [A']. Also, for Example 4.3,4.6, [A] C [A]
if and only if U(A) c U(A').
Finally, we are ready for the main definition:

Definition 4.8 (Combinatorial HHS). A combinatorial HHS (X, W) consists of a
flag simplicial complex X and an X-graph W satisfying the following conditions
for some n € N and § > 1:

(1) any chain [A1] & [A2] & ... has length at most n;

(2) for each non-maximal simplex A, the subgraph C(A) is 6—hyperbolic and
(9, 6)—quasi-isometrically embedded in Ya;

(3) Whenever A and A’ are non-maximal simplices for which there exists a non-
maximal simplex I' such that [I'] = [A], ['] & [A’], and diam(C(T")) = 4,
then there exists a simplex II in the link of A’ such that [A’+II] = [A] and
all [T'] as above satisfy ['] £ [A’ » IT];

(4) if v,w are distinct non-adjacent vertices of Lk(A), for some simplex A of
X, contained in W-adjacent maximal simplices, then they are contained in
W-adjacent simplices of the form A » A’

We will see below that combinatorial HHS give HHSs. The reader not inter-
ested in the explicit description of the HHS structure can skip the following two
definitions.

Definition 4.9 (Orthogonality, transversality). Let X be a simplicial complex.
Let A, A’ be non-maximal simplices of X. Then we write [A]L[A'] if Lk(A’) <
Lk(Lk(A)). If [A] and [A'] are not L-related or =-related, we write [A]h[A].

Definition 4.10 (Projections). Let (X, W) be a combinatorial HHS.
Fix [A] € & and define a map ma): W — P(C([A])) as follows. First let
p: YA — P(C([A])) be the coarse closest-point projection, i.e.

p(x) = {y € C([A]) | dya(x,y) < dy, (2,C([A])) + 1}

Suppose that w e W) so w corresponds to a unique simplex A, of X. Define

maj(w) = p(Ay 0 Ya).

We have thus defined mpap: W@ — P(C([A])). If v,w € W are joined by
an edge e of W, then A,,A,, are joined by edges in X*"W, and we let ma)(e) =
TA] (v) U TA] (w)

Now let [A],[A] € & satisfy [A]M[A'] or [A] = [A]. Let

p%i]] = p(Sat(A’) " Ya).

Let [A] = [A']. Let p%ﬁi]: C([A']) — C([A]) be the restriction of p to C([A]) n
YA, and & otherwise.

The next theorem from [BHMS20] provides the criteria we will use to prove that
T" is a hierarchically hyperbolic group.
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Given a combinatorial HHS (X, W), we denote Gy the set as in Definition 4.4,
endowed with nesting and orthogonality relations as in Definitions 4.7 and 4.9.
Also, we associated to Gy the hyperbolic spaces as in Definition 4.8, and define
projections as in Definition 4.10.

Theorem 4.11. [BHMS20, Theorem 1.18, Remark 1.19] Let (X, W) be a combi-
natorial HHS. Then (W, 8w ) is a hierarchically hyperbolic space.

Moreover, if a group G acts by simplicial automorphisms on X with finitely many
orbits of links of simplices, and the resulting G-action on maximal simplices extends
to a metrically proper cobounded action on W, then G acts metrically properly and
coboundedly by HHS automorphisms on (W, Sw ), and is therefore a hierarchically
hyperbolic group.

4.2. Combinatorial HHS structure. We now define a flag simplicial complex
X. The vertex set is X(® = V 1 K, where

K=|]k".
vey

Given a vertex s € K, let v(s) € V be the unique vertex with s € K¥. We also write

als) = a(v(s)).

There are 3 types of edges (see Figure 5):

(1) v,w €V are connected by an edge if and only if diyee(v, w) = 1.
(2) s,t € K are connected by an edge if and only if diyee(v(s),v(t)) = 1.
(3) se€ K and w € V are connected by an edge if and only if diyee(v(s), w) < 1.

We declare X to be the flag simplicial complex with the 1-skeleton defined above.

FIGURE 5. The simplicial map Z restricted to a part of X' (on the
left) to a part of the union of trees T, (on the right).

The map K — V given by s — v(s) and the identity ¥V — V extends to a
surjective simplicial map
Z: X - | | Ta.
aeP
We note that we may view the union | |7, on the right as a subgraph of x),
making Z a retraction.
For any vertex v in any tree T, Z~1(v) is the join of {v} and the set KV:

(9) Z Y w) = {v} * K".
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For any pair of adjacent vertices v, w € T, (80 diree(v, w) = 1), the preimage of the
edge [v,w] c T, is also a join:

(10) Z7([v,w]) = Z7H(v) » Z7H(w) = ({v} * K?) * ({w} x K¥).
Lemma 4.12. The maximal simplices of X are exactly the 3—simplices with vertex

set {s,v(s),t,v(t)} where s,t € K and diree(v(s),v(t)) = 1. In this case, we say that
(s,t) defines a mazimal simplex, denoted o(s,t).

Proof. Because the map Z is simplicial, any simplex of X is contained in Z~!(v)
or Z~Y([v,w]) for some vertex v in some T, or some edge [v,w] in some T,. The
lemma thus follows from (9) and (10). O

Given a vertex s € K, recall from Lemma 3.5 that M(s) = (\"(®))~1(Ng, (s)) <
©v() for K, as in Proposition 3.1 (and Lemma 3.5). Given a pair of vertices (s, t)
in K that define a maximal simplex o(s,t), we will write M(s,t) = M(s) n M (t).

Lemma 4.13. There exists R > 0 with the following properties.
(1) For any pair of adjacent vertices s,t € K (i.e., defining a maximal simplex
o(s,t)), M(s,t) is a non-empty subset of diameter at most R.
(2) Given v eV, we have

0" = U M(s,t).
v(8)=v,dtree (v(s),0(t))=1
(8) Fizing s, we have

M= | M,
diree(v(8),v(t))=1
(4) The collection of all M (s,t) is R-dense in E.

Proof. Ttem (1) follows from Proposition 3.1(3). More precisely, the fact that
M (s,t) is non-empty follows from K;-coarse-surjectivity of A0() 5 \v() - while
boundedness follows from the fact that said map is a quasi-isometry.

In order to show item (2), notice that

e'= |J e'nev
diree (v, w)=1
That is, every point of ®Y is also in @ for some w adjacent to v. In view of this,
we conclude by noticing that if z € @Y n @Y, then x € M (A" (z), \*(z)). Item (3)
follows similarly.
Finally, item (4) follows from item (2) and the fact that the collection of all ®
is coarsely dense in E. O

Next we define a graph W whose vertex set is the set of maximal simplices
of X. We would like to just connect maximal simplices when the corresponding
subsets M (s,t) are close in E (first bullet below); however, in order to arrange
item (4) of the definition of combinatorial HHS (and only for that reason) we need
different closeness constants for different situations. We fix R as in Lemma 4.13,
and moreover we require R > K?+ K, for K; as in Proposition 3.1 and Lemma 3.5.

Given maximal simplices o(s1,¢1) and o(se, t2), we declare them to be connected
by an edge in W if one of the following holds:

11 o d(M(s1,t1), M(s2,12)) < 10R
- e 51 = sy and d(M(t1), M(t2)) < 10R
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Here the the d-distances are the infimal distances between the sets in E (as opposed
to the diameter of the union). Note that since M (s,t) = M (t, s), the second case
also implicitly describes a “symmetric case” with s; and t¢; interchanged.

The following is immediate from Lemma 3.6, setting R’ = max{10R, N (10R)}.

Lemma 4.14. There exists R > 10R so then the following holds. If s,t1,t5 € K
are vertices with s connected to both t; in X and d(M(ty), M(t3)) < 10R, then
d(M(s,t1), M(s,t2)) < R'. In particular, whenever o(s1,t1) and o(s2,t2) are con-
nected in W, we have d(M (sy,t1), M(sa,t2)) < R'.

Lemma 4.15. W is quasi-isometric to E, by mapping each o(s,t) to (any point
in) M(s,t). Moreover, the extension group I' acts by simplicial automorphisms
on X, induced by the existing action on V < X©) and the action on K < X©
as in Proposition 3.1(4). The resulting action on mazimal simplices extends to a
metrically proper cobounded action on W.

Proof. In view of Lemma 4.14, the first part follows by combining Lemma 4.13(4)
and Proposition 2.4 (applied to any choice of a point in each M (s,t)).

It is immediate to check that the I'-action defined on the 0-skeleton of X extends
to an action on X'. That the resulting action on maximal simplices of X" (that is, the
0-skeleton of W) extends to an action on W follows from the equivariance property
in Proposition 3.1(4) and the definitions of the sets M (s) and M(s,t).

Moreover, the quasi-isometry YW — E described in the statement is ['-equivariant,
so that the action of I" on W is metrically proper and cobounded since the action
of I on E has these properties. [l

The goal for the remainder of this section is to prove the following.

Theorem 4.16. The pair (X, W) is a combinatorial HHS. Moreover, there is an
action of I' on X satisfying the properties stated in Theorem 4.11.

4.3. Simplices, links, and saturations. Before giving the proof of Theorem 4.16,
we begin by describing explicitly the kinds of simplices of X that there are, explain
what their links and saturations are, and observe some useful properties.

Lemma 4.17 (Empty simplex). For the empty simplez, C(&) = XV is quasi-
isometric to E.

Proof. We define a map Z': XtW — E that extends the (restricted) simplicial
map Z: XV — | |T, already constructed above. To do that, we must extend
over each edge e = [z,y] of X"V coming from the edge of WW connecting o(sy,t;)
and o(sg,ts). Since Z(x),Z(y) € V, and d(M(sy,t1), M(s2,t2)) < R’ (for R’ as
in Lemma 4.14), we see that dg(v,w) < R'. We can then define Z’ on e to be a
constant speed parameterization of a uniformly bounded length path from Z(x) to
Z(y). Tt follows that Z’ is Lipschitz.

The union of the trees | | Ty, is Ro—dense for some Ry > 0 by [DDLS21, Lemma 3.6],
so it suffices to find a one-sided inverse to Z’, from | |T,, to X", and show that
with respect to the subspace metric from E, it is coarsely Lipschitz. As already
noted, Z restricts to a retraction of X onto LT, < XM < W which is
thus the required one-sided inverse. All that remains is to show that it is coarsely
Lipschitz.

According to [DDLS21, Lemma 3.8], any v € T,,, w € T are connected by a com-
binatorial path of length comparable to cf(v, w). Such a path is the concatenation
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of horizontal jumps, each of which is the P-image in FE of a geodesic in D,, for
some z € ¥, that connects two components of 0D, and whose interior is disjoint
from 0D,. From that same lemma, we may assume each horizontal jump has length
uniformly bounded above and below, and thus has total number of jumps bounded
in terms of dA(v,w). Therefore, we can reduce to the case that v, w are joined by
a single horizontal jump of bounded length. Such a horizontal jump can also be
regarded as a path in £ connecting ®Y to ®". Hence, in view of Lemma 4.13(2),
there are M (s1,t1) € ©V and M(s2,t2) € ©" within uniformly bounded distance
of each other in E. Lemma 4.15 implies that there exists a path in W of uniformly
bounded length from o(s1,%1) to o(s2,t2), which can be easily turned into a path
of uniformly bounded length from v to w in X*", as required. (I

There is an important type of 1-dimensional simplex, which we call a E—type
simplex, due to the following lemma. See Figure 6. Given w € V), set

(12) Lks(w)= ) Z27'w= |J {uxk"
diree (uw,w)=1 diree (u,w)=1

Lemma 4.18 (E-type simplex). Let A be a 1-simplex of X with vertices s,v(s),
for se K. Then

Lk(A) = Lk=(v(s)) and Sat(A) = {v(s)} u K",

Moreover, C(A) is quasi-isometric to =0 via a quasi-isometry which is the iden-
tity on V n C(A) and maps t to v(t) forte K nC(A).

I

Sat(A)

FIGURE 6. E-type simplex: Part of the link and saturation of a
1-simplex A with vertices s,v = v(s).

Proof. 1t is clear from the definitions that the link of A is as described. Also, any
simplex with vertex set of the form {v(s),¢} for some ¢t € K¥(*) has the same link
as A. Therefore, to prove that the saturation is as described we are left to show
if a simplex A’ has the same link as A, then its vertex set is contained in the set
we described. If w € V is a vertex of A’ then diec(v, w) = 1 for all neighbors v
of v(s) in Tf (). This implies w = v(s). Similarly, if ¢ € K is a vertex of A’, then
v(t) = v(s), and we are done.
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Let us show that the map given in the statement is coarsely Lipschitz. To do so,
it suffices to consider w # w’ with diree(w, v(8)) = diree(w’, v(s)) = 1 and connected
by an edge in X", and show that they are connected by a bounded-length path
in 2. We argue below that d(©" n @), @ ~ @"()) < R’. Once we do that,
the existence of the required bounded-length path follows directly from Lemma 3.8.

Let us now prove the desired inequality. Notice that w, w’ cannot be connected by
an edge of & since they are both distance 1 from v(s) in the tree T,(,y. Hence, w and
w’ are contained respectively in maximal simplices o(t,u) and o(¢',u') connected
by an edge in W. Say, up to swapping ¢ with v and/or ¢’ with ', that v(t) =
w and v(t') = w'. In either case of the definition of the edges of W we have
d(M(t), M(t')) < 10R. Since M(t,s) € O n @) and M(t',s) < O n @),
using Lemma 4.14 we get

(O 8" 8" A @) < d(M(t,s), M(t,s) <R,
as we wanted.

Conversely, if w,w’ as above are joined by an edge in E*(*) we will now show
that they are also connected by an edge in C(A). By definition of Z*(¥), we have
Ov n O" % . By Lemma 4.13(2), There exists t,u,t’,u’ with v(t) = w and
v(t') = w', so that M (t,u) n M(¢',v') # . In particular, d(M (t,u), M(t',u')) <
10R. This says that o(t,u) and o(t’,u") are connected in W, and hence that w and
w’ are connected in X, as required. O

There is also an important type of 2—-dimensional simplex, which we call a K—type
simplex, due to the next lemma. See Figure 7.

Lemma 4.19 (K-type simplex). Let A be a 2—simplex of X with vertices s,v(s),w,
for s e K and w € V with diee(w,v(s)) = 1. Then

Lk(A) = K¥ and Sat(A) = {w} U Lkg(w)®.

Moreover, C(A) is quasi-isometric to K¥, the quasi-isometry being the identity at
the level of vertices.

Sat(A)

FIGURE 7. K-type simplex: Part of the link and saturation of a
2-simplex A with vertices s,v = v(s), w.
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Proof. Tt is clear from the definitions that the link of A is as described. Also, any
simplex with vertex set of the form {t, v(t), w} for some ¢ € K with dipee(v(t), w) =1
has the same link as A. Therefore, to prove that the saturation is as described we
are left to show if a simplex A’ has the same link as A, then its vertex set is
contained in the set we described. Given any vertex w € V of A’, it has to be
connected to all ¢ € I with v(t) = w, implying that either u = w or diyee(u, w) =1,
as required for vertices in V. Similarly, any vertex u € K of A’ has to be connected
to all t € IC with v(t) = w, implying diree(v(u), w) = 1, and we are done.

To prove that C(A) is naturally quasi-isometric to K™, it suffices to show that if
u,t € C(A) are connected by an edge in X+, then they are uniformly close in %
and that, vice versa, if dicw (u,t) = 1, then u,t are connected by an edge in C(A).

First, if u,t € C(A) are connected by an edge in X", then there exist u’,# so

that d(M (u,t"), M(v',t)) < R’ (see Lemma 4.14). In particular, d(M (u), M(t)) <
R’, which in turn gives a uniform bound on the distance in the path metric of
©v between M (u) and M (t) because the metrics d and the path metric on 6% are
coarsely equivalent. By Proposition 3.1(1) we must also have a uniform bound on
dicw (u, t).

Now suppose that diw(u,t) = 1. We can then deduce from Proposition 3.1(3)
that d(M(s',u), M(s',t)) < K?+K; < 10R for any fixed s’ € K"(*) (the proposition
yields the analogous upper bound in the path metric of ®"  which is a stronger
statement). Therefore u,¢ are connected by an edge in X"V, whence in C(A), as
required. ([

The remaining simplices are not particularly interesting as their links are joins
(or points), and hence have diameter at most 3, but we will still need to verify
properties for them. We describe each type and its link in the next lemma. Recall
the definition of Lkg(w) in (12).

Lemma 4.20. The following is a list of all types of non-empty, nonmazximal, sim-
plices A of X that are not of E—type or K—type, together with their links. In each
case, the link is a nontrivial join (or a point), and C(A) has diameter at most 3.

In the table below the simplices A have vertices u,w € V with diyee(u,w) =1 and
s,t € K with diree(v(s),v(t)) =1 and diree(v(s),u) = 1.

A Lk(A)
{u} K % Lkg (u)
{s} {v(s)} * Lk=(v(s))

{u, w} K x
{s,t} {v(s),v(t)}
{s,u} {o(s)} = K*

{s,t,v(s)} {v(t)}

Proof. This is straightforward given the definition of X and we leave its verification
to the reader. Referring to Figure 5, and comparing with Figures 6 and 7, may be
helpful. [
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The next lemma collects a few additional properties we will need. By the type
of a simplex in X', we mean its orbit by the action of the simplicial automorphism
group of X. There are 9 types of nonempty simplices: maximal, E-type, K-type,
and the six types listed in Lemma 4.20.

Lemma 4.21. The following hold in X.

(a) The link of a simplex with a given type cannot be strictly contained in the link
of a simplex with the same type.

(b) For all non-maximal simplices A and A’ so that there is a simplex T' with
Lk(T") € Lk(A") n Lk(A) and diam(C(I")) > 3, there exists a simplex II in
the link of A" with Lk(A’ « II) < Lk(A) so that for any T' as above we have
Lk(I) < Lk(A’ * II).

Proof. Part (a) follows directly from the descriptions of the simplices given in Lem-
mas 4.18, 4.19, and 4.20, and we leave this to the reader.

Before we prove (b), we suppose Lk(A’) nLk(A) # &, and make a few observa-
tions. First, A’ and A must project by Z to the same tree: Z(A’), Z(A) < T, for
some « € P. Next, note that Z(Lk(A’) nLk(A)) is contained in the intersection of
the stars in T, of Z(A’) and Z(A). Moreover, (as in any tree) the intersection of
these two stars is contained in a single edge, or else Z(A’) = Z(A) = {w} € 7V vy
is a single point. In this latter case, by (9), we have

AJA < {w} K.

Next, note that for any K—type simplex I' = {s,v(s),w}, Lk(') = K* by
Lemma 4.19, and if Lk(T") < Lk(A’) n Lk(A), then w is in the intersection of the
stars of Z(A’) and Z(A). For a E-type simplex ' = {s,v(s)}, Lk(T") = Lkg(v(s))
by Lemma 4.18, and together with Lemma 4.20 and the previous paragraph, we see
that Lk(T") < Lk(A’) n Lk(A) if and only if Z(A') = Z(A) = {v(s)} in T,.

With these observations in hand, we proceed to the proof of (b), which divides
into two cases.

Case 1. There is a E-type simplex I' = {s,v(s)} with Lk(I") < Lk(A’) n Lk(A).

In this situation, Z(A') = Z(A) = {v(s)}, and thus A, A’ < {v(s)} *K¥). From
Lemmas 4.18 and 4.20, we see that Lk(A’) n Lk(A) must be equal to one of Lk(T"),
Lk({s}), or Lk({v(s)}). Inspection of these links shows that Lk(T") is the only link
of a E-type simplex contained in it. First suppose that Lk(A’) n Lk(A) has the
form Lk(T") or Lk({s}). In this situation, we easily find IT < Lk(A’) so that Lk(T") =
Lk(A’ = IT). Furthermore, for any K-type simplex link % in the intersection, we
must have ¥ < Lk(T') = Lk(A’ » IT). Therefore, the link of any E-or K-type
simplex contained in Lk(A’) n Lk(A) must be contained in Lk(T") = Lk(A’ » II), as
required. Now suppose instead that Lk(A’) nLk(A) = Lk({v(s)}). By Lemma 4.20,
we see that A = A’ = {v(s)}. In this case, setting II = ¢ trivially completes the
proof since then Lk(A’) n Lk(A) = Lk(A’) = Lk(A’ = II).

Case 2. No link of a E-type simplex is contained in Lk(A’) n Lk(A).

From the observations above, Z(A) and Z(A’) do not consist of the same single
point, and hence the stars of Z(A) and Z(A’) intersect in either a point or an edge
in T,,. Since Z(Lk(A’) nLk(A)) is contained in the intersection of these stars, there
are at most two K—type simplices whose links are contained in Lk(A’) n Lk(A). If
there are two K-type simplices I', I with £ = Lk(I") and K* = Lk(I"') contained
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in Lk(A") n Lk(A), then observe that
K", K" < Lk({u,w}) = K* « ¥ < Lk(A") n Lk(A).

By inspection of the possible links in Lemmas 4.18, 4.19, and 4.20, it must be that
A is either {u}, {w}, or {u,w}, and so setting IT to be {w}, {u}, or &, respectively,
we are done. On the other hand, if there is exactly one K—type simplex I' with
K* = Lk(T') € Lk(A’) n Lk(A), then again inspecting all possible situations, we
can find II < Lk(A’) with K* = Lk(T') = Lk(A’ x IT), and again we are done with
this case. This completes the proof. [

Lemma 4.22. There exists L = 1 so that for every non-maximal simplex, there is
an (L, L)-coarsely Lipschitz retraction ra: Ya — P(C(A)). In particular, C(A) is
uniformly quasi-isometrically embedded in Y.

Proof. By Lemma 4.20, we only have to consider simplices of E-and K-type.

Consider A = {s,v} with v = v(s) of E-type first. Recall from Lemma 4.18
that EY naturally includes into C(A) by a quasi-isometry. Here we will use make
use of the map &Y, whose relevant properties for our current purpose are stated in
Proposition 3.19. For a vertex u € V\Sat(A) (so, u # v) we define ra (u) = £V (OY).
For t € K ~ Sat(A) we define ra(t) = £°(©¥®). Notice that the sets ra(u) are
uniformly bounded by Proposition 3.19 (and Lemma 4.18). Also, ra is coarsely the
identity on the vertices of Lk(A) in V by Equation (8) and Proposition 3.19(2b).
To check that ra is coarsely Lipschitz it suffices to consider X+"V—adjacent vertices
of V. Notice that vertices w,w’ € V that are adjacent in X" have corresponding
oV, ©"" within 10R of each other in E. Indeed, ®Y and ®" actually intersect if
w,w’ are adjacent in X, and they contain subsets M (-) within 10R of each other
if w,w’ are contained in W-adjacent maximal simplices (this is true regardless of
which case of the definition (11) for the edges of W applies). The fact that ra
is coarsely Lipschitz now follows from, Proposition 3.19(1), which says that £V is
coarsely Lipschitz on F.

Next, consider A = {s,v(s),w} of K-type. For a vertex u € V ~\ Sat(A) (so,
diree(u,w) = 2), define ra(u) = A¥(O"). For a vertex t € K ~ Sat(A), define
ra(t) = A¥(M(t)). Notice that, by definition of M (t), if t € K™, then ra(t) lies
within Hausdorff distance K; of ¢. Also, since dipee(u, w) = 2, Proposition 3.19(2a)
ensures that the diameter of A*(©") is bounded. Since M(t) € @) we see that
all the sets in the image of ra are bounded, and also we see that in order to prove
that ra is Lipschitz it suffices to consider vertices of L. But vertices s,t € K that
are adjacent in X" have corresponding M (s), M (t) within 10R of each other in E,
so the conclusion follows from Proposition 3.19(1), which states that A" is coarsely
Lipschitz on E. [l

4.4. Final proof. We now have all the tools necessary for the:

Proof of Theorem 4.16. We must verify each of the conditions from Definition 4.8.
Item (1) (bound on length of =—chains) follows from Lemma 4.21(a), which
implies that any chain Lk(A1) < ... has length bounded by the number of possible
types, which is 9.
Let us now discuss item (2) of the definition. The descriptions of the C(A) from
Lemmas 4.17, 4.18, 4.19, 4.20 yields that all C(A) are hyperbolic, since each of them
is either bounded or uniformly quasi-isometric to one of E (which is hyperbolic by
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Theorem 2.1), some E¥ (which is hyperbolic by Lemma 3.10), or R. Moreover, any
C(A) is (uniformly) quasi-isometrically embedded in YA by Lemma 4.22.
Item (3) of the definition (common nesting) is precisely Lemma 4.21(b).
Finally, we show item (4) of the definition (fullness of links), which we recall for
the convenience of the reader:

e If v, w are distinct non-adjacent vertices of Lk(A), for some simplex A of
X, contained in W-adjacent maximal simplices, then they are contained in
W-adjacent simplices of the form A x A’

It suffices to consider simplices A of E-and K-type. Indeed, in all other cases
(see Lemma 4.20), the vertices v, w under consideration are contained in the link of
a simplex A’ containing A where A’ is of E—or K—type (as can be seen by enlarging
A until its link is no longer a join; v and w are not X—adjacent so they are contained
in the same “side” of any join structure). Hence, once we deal with those cases,
we know that there are suitable maximal simplices containing the larger simplex,
whence A.

Consider first a simplex A of K—type with vertices s,v(s),w. Consider distinct
vertices t1,ts (necessarily in K) of Lk(A), and suppose that there are vertices
s1,82 € K so that the maximal simplices o(s1,¢1) and o(se,t2) are connected in
W. There are two possibilities:

o d(M(sy,t1), M(s2,t2)) < 10R. In this case, we have d(M(t), M(t2)) <
10R. In particular, in view of the second bullet in the definition of the edges
of W, we have that t;, ¢y are contained, respectively, in the WW—connected
maximal simplices A = t; = o(s,t1) and A # ty = o(s,t2).

e 51 = sy and d(M(t1), M(t2)) < 10R (notice that t; # t» so that the
“symmetric” case cannot occur). Again, we reach the same conclusion as
above.

We can now consider a simplex A of E—type with vertices s,v(s). Consider
vertices 1, z2 of Lk(A) that are not X—adjacent but are contained in W-adjacent
maximal simplices. Furthermore, we can assume that x;,zs are not in the link
of a simplex of K-type (the case we just dealt with) which contains A, since in
that case we already know that there are suitable maximal simplices containing the
larger simplex, whence A. Then, using the structure of Lk(A), we see that there
are vertices s;,t; € KC so that:

® ;€ {tz‘,’l}(ti)},

e ¢; and v(t;) all belong to Lk(A), and

o 0(s1,t1) and o(s2,t2) are connected in W.

In turn, the last bullet splits into two cases:

o d(M(s1,t1), M(s2,t2)) < 10R. In this we have d(M(t1), M(t2)) < 10R,
so that xq,x2 are contained, respectively, in the VW—connected maximal
simplices A = {t1,v(t1)} = o(s,t1) and A= {ta,v(t2)} = o(s,t2), so this case
is fine.

o 51 =5y and d(M(t;), M(t2)) < 10R. But again we reach the same conclu-
sion as before.

We now also have to check the existence of an action of I' with the required
properties. The action is constructed in Lemma 4.15, where all properties are
checked except finiteness of the number of orbits of links of X'. The finitely many
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possible types of links are listed in Lemmas 4.17 — 4.20, and for each type of simplex
there are only finitely many orbits, so we are done. ([

5. QUASI—ISOMETRIC RIGIDITY

In this section, using the HHS structure, we prove a strong form of rigidity for
the group I' and the model space E. Recall that E is defined via a particular trun-
cation D of the Teichmiiller disk D obtained by removing 1-separated horoballs.
We say that such a truncation E is an allowable truncation of E if I' acts by isome-
tries on it with cocompact quotient. Write Isom(€2) and QI(Q2) for the isometry
group and quasi-isometry group, respectively, of a metric space Q. For E, we write
Isomgy, (E) < Isom(E) for the subgroup of isometries that map fibers to fibers.

Theorem 1.7. There is an allowable truncation E of E such that the natural
homomorphisms Isomgap(E) — Isom(E) — QI(E) = QUT") are all isomorphisms,

and T' < Isom(E) = QI(T) has finite index.

The proof is divided up into several steps which we outline here before getting
into the details. The first step is to use the HHS structure to identify certain quasi-
flats in E, and prove that they are coarsely preserved by a quasi-isometry. The
maximal quasi-flats are encoded by the strip bundles in E, and using the preserva-
tion of quasi-flats, we show that a quasi-isometry further preserves strip bundles,
and even sends all strip bundles for strips in any fixed direction to strip bundles
in some other fixed direction. From there we deduce that a quasi-isometry sends
fibers E'x within a bounded distance of some other fibers Fy, and in fact induces
a quasi-isometry between the fibers. Fixing attention on Fy and further appealing
to the structure of strip bundles, we show that a self quasi-isometry of F induces
a special type of quasi-isometry from FEj to itself sending strips in a fixed direc-
tion within a uniformly bounded distance of strips in some other fixed direction.
This quasi-isometry is promoted to a piecewise affine biLipschitz map from Ejy to
itself, which we then show is in fact affine. This produces a homomorphism to
the full affine group of Ey, QI(E) — Aff(Ep). Given an affine homeomorphism of
FEy, we construct an explicit fiber preserving isometry associated to it, which via
the inclusions Isomgy,(E) — QI(E) serves as a one-sided inverse. Finally, we prove
that the homomorphism QI(E) — Aff(Eg) is injective, hence the homomorphisms
Isomgp,(E) — Isom(E) — QI(E) — Aff(Eg) are all isomorphisms. The fact that T
has finite index in Isomg,(E), and hence in Isom(E), is straightforward using the
cocompactness of the action of I' and the singular structure.

5.1. HHS structure and quasi-flats. Denote by G the set Vx{0,1}. We denote
the element (v, 0) by v (for “quasi-tree”) and (v, 1) by v? (for “quasi-line”).

We denote by F the set of all strip bundles of E, that is, subbundles with fiber a
strip and base the horocycle corresponding to the direction of the strip. (Roughly,
these are the flats of the peripheral graph manifolds.)

Proposition 5.1 (Properties of the HHS structure). The HHS structure (E,&)
on E coming from Theorem /.16 has the following properties, for some K > 1.
(1) The set of non-=-mazimal Y € & with diam(C(Y)) = 4 is in bijection with
So. Under said bijection:
(2) C(v) is (K, K)-quasi-isometric to a quasi-tree with at least two points at
infinity, and C(v?) is (K, K)-quasi-isometric to a line;
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(8) For allv eV, we have vt Lve;

(4) For all adjacent v,w €V, we have w? Lv? and w? = v?;

(5) All pairs of elements of &¢ that do not fall into the aforementioned cases
are transverse;

(6) For each adjacent v,w € V there is F € F so wya(F) and m,a(F) are
K —coarsely dense, and my (F) has diameter at most K for all Y # v, wi.

Proof. The second paragraph of the proof of Theorem 4.16 implies C(v?) is quasi-
isometric to the quasi-tree E¥ (with at least two points at infinity by Lemma 3.10)
and C(v?) is quasi-isometric to the quasi-line K, and that these are the only non-
maximal elements of diameter at least 4. This proves (1) and (2). In view of the
combinatorial description of orthogonality and nesting from Definition 4.9, prop-
erties (3)-(5) boil down to combinatorial properties of X' that are straightforward
to check. For example, regarding property (3) note that two (equivalence classes
of) simplices are orthogonal if their links form a join. The links of the simplices
corresponding to v4¢ and v¥ are Lkgz(v) and K¢ (see Lemmas 4.18 and 4.19), which
indeed form a join.

Regarding property (6), first of all the projections in the HHS structure on E
are obtained composing the quasi-isometry £ — W from Lemma 4.15 and the
projections defined in Definition 4.10 (roughly, those are closest-point projections
in the complement of saturations).

The required strip bundle is the intersection ®Y n ®", which under the quasi-
isometry of Lemma 4.15 corresponds to the set of all maximal simplices of W of
the form o(s,t) for s € K¥, t € K*. In view of the description of the my from
Definition 4.10, the coarse density claim follows since the union of the simplices
described above contains the links of the simplices corresponding to v? and w9,
which are KV and K£%.

Regarding the boundedness claim, it can be checked case-by-case that the set of
simplices described above gives a bounded set of YA for [A] # v¥, w? (for example,
note that said set is bounded if the saturation of A does not intersect ¥ U K%, or
if it does not contain v or w). This implies boundedness of the projections since
the projections are coarsely Lipschitz; this follows from Theorem 4.16 since the
projection maps of an HHS are required to be coarsely Lipschitz. O

From now on we identify &, with the set of all Y € & with diam(C(Y)) > 4 asin
Proposition 5.1. Notice that the maximal number of pairwise orthogonal elements
of & is 2. Therefore, a complete support set as in [BHS21, Definition 5.1] is just a
pair of orthogonal elements of &y.

Let H be the set of pairs (Y,p) where Y € & and p € 0C(Y) with Y = v? for
some v € V. We say that two such pairs (Y, p) and (W, q) are orthogonal if Y and
W are. Any element o = (Y, p) € H comes with a quasi-geodesic ray h, in E, as in
[BHS21, Definition 5.3], so that 7y o h, is a quasi-geodesic in C(Y') and my (h,) is
bounded for all W # Y.

We recall that given subsets A and B of a metric space X, we say that the
subset C' of X is the coarse intersection of A and B if for every sufficiently large
R we have that Ng(A) n Ng(B) lies within finite Hausdorff distance of C. If the
coarse intersection of two subsets exists, then it is well-defined up to finite Hausdorff
distance.
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Lemma 5.2. Let ¢: E — E be a quasi-isometry. Then there is a bijection
bw: H — H preserving orthogonality and so that duaus(¢(he), Rg,, (o)) < ©-

Proof. Let H' be the set of pairs (Y, p) where Y € & and p € dC(Y), without the
restriction on Y.

The lemma with H’ replacing H would follow directly from [BHS21, Theorem
5.7], except that the HHS structure on E does not satisfy one of the 3 required
assumptions, namely Assumption 2 (while it does satisfy Assumption 1 by parts
(1) and (2) of Proposition 5.1, and it also satisfies Assumption 3 since there are no
3 pairwise orthogonal elements of &g, by parts (3)-(5) of Proposition 5.1).

Inspecting the proof of [BHS21, Theorem 5.7], we see that Assumption 2 is used
in two places.

The first one is to define the map ¢y on a certain pair o = (Y,p) € H'. The
argument applies verbatim if Y satisfies Assumption 2, that is, if and only if Y is
the intersection of 2 complete support sets. This is the case if Y = v9 for some
v € H, that is, if 0 € H. Therefore, one can use that argument to define a map
oy : H — H'. What is more, the image of ¢ needs to be contained in H. This can
be seen from the fact that hg,, () for o € H arises as a coarse intersection of standard
orthants, which are, essentially, products of rays h,, see [BHS21, Definition 4.1] for
the precise definition. Notice that [BHS21, Lemma 4.11] says, roughly, that coarse
intersections of standard orthants are the expected sub-products. Hence, the failure
of Assumption 2 for Y = v implies that h(y,p) cannot be a coarse intersection of
standard orthants, and therefore ¢ (o) for o € H also needs to lie in H.

The second place where Assumption 2 is mentioned in [BHS21, Theorem 5.7]
is the proof that ¢4 preserves orthogonality. There the assumption is used to say
that certain quasi-geodesic rays are of the form h,. Such quasi-geodesic rays arise
as coarse intersections of standard orthants, so, as mentioned above, they need to
be of the form h, for o € H, hence Assumption 2 is not actually needed there.

Thus, the arguments in the proof of [BHS21, Theorem 5.7] give the lemma. O

Lemma 5.3. For every K there exists C' so that the following holds. Let ¢: E -
E be a (K, K)—quasi-isometry. Then there is a bijection ¢r: F — F so that
dHaus(¢(F)7¢]—'(F)) <C fO?" all F e F.

Proof. Let p* be the two points at infinity of C(v9!) for some v € V. We claim
that there exists w € V so that, for ¢ the points at infinity of C(w?), we have
dx((v?, pT)) = (w¥, ¢F), up to relabeling. We use that ¢, preserves orthogonality
to show this. Let u1,us € V be distinct and adjacent to v, and let r%, r;*r be the
points at infinity of C(u?'), C(ud'). Then (v?,p*) are the only elements of H
that are orthogonal to all the (u?l,r;—“). Since ¢4 preserves orthogonality, we see
that ¢#((v?,pT)) are both orthogonal to the same 4 distinct elements of H with
the property that no pair of them is orthogonal. This is easily seen to imply
that ¢ ((v?, pT)) must be of the form (w,¢t), since said 4 elements need to be
associated to at least 2 distinct vertices of V. This shows the claim.

In view of the claim, we see that [BHS21, Lemma 5.9] applies. (We note that
Assumption 2 in said Lemma is only needed to have the map from [BHS21, Theorem
5.7], but our map from Lemma 5.2 has the same defining properties, just with a
smaller domain and range.)
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The standard flats in [BHS21, Lemma 5.9] coarsely coincide with the elements
of F in view of Proposition 5.1(6) (compare with [BHS21, Definition 4.1]) so the
lemma follows. O

Denote by S the collection of all strips in Ep, and for A € S denote by a(A4) € P
the direction of A. Similarly, for F' € F we denote a(F') € P the direction of the
strip defining F.

Proposition 5.4. Given K > 1, there exists C > 0 so that if ¢: E — E is a
(K, K)—quasi-isometry, then for all X € D, there exists Y € D so that the Hausdorff
distance between ¢(Ex) and Ey is at most C. In particular, digaus(Eo, $(Ep)) < 0.
Moreover, there are bijections ¢p : P — P and ¢s: S — S so that:

(1) daus(#(0Ba), 0By (o)) < C for each a € P.
(2) a(ps(A)) = ¢pp(a(A)) and dyauns(P(A), ds(A)) < © for all Ae S,

Proof. First, note that fibers are quantitatively coarse intersections of the sets 0B,
in the sense that exists a function f: R — R and ¢ > 0 such that

e for any X € D and any t > t; there are two distinct 0B, whose -
neighborhoods intersect in a set within Hausdorff distance f(t) of Ex;

e for t = tg, if the t—neighborhoods of two distinct 0B, intersect, then this
intersection lies within Hausdorff distance f(t) of a fiber.

This follows via the bundle-map 7: E — D and the corresponding relationship
between neighborhoods of distinct horocycles 0B, in D.

We next make three preliminary observations. Firstly, for each a € P the set 0B,
is the union of all F' € F with «(F) = a. Secondly, if F}, F» € F have a(Fy) # a(F)
then the coarse intersection of F; and F5 is bounded. Indeed, F; is contained in
0Bo(F,), and the coarse intersection of these 0B (r,) is some (or really, any) fiber
Ex. Since the coarse intersection of F; with Ex is a strip in the corresponding
direction, and strips in different directions have bounded coarse intersection, the
claim follows. Thirdly, observe that Fy, F» € F have a(F;) = a(Fy) if and only if
there is a chain of elements in F from F} to F5 so that consecutive elements have
unbounded coarse intersection. The “if” part follows from the previous observa-
tion, while the “only if” follows from the fact that elements of F corresponding to
adjacent edges of some T, have unbounded coarse intersection.

In view of all this and Lemma 5.3, we see that for each « there exists a (necessarily
unique) ¢p(a) € P so that ¢(0B,) and 0By, () have finite Hausdorff distance. In
fact, the distance is uniformly bounded by the constant C, depending only on K,
coming from Lemma 5.3. This is how we define ¢p.

Now for any X € D, we may choose a1, s € P so that the fiber Ex has Hausdorff
distance at most f(tg) from the intersection of the to—neighborhoods of 0B,,. Thus
there is some uniform t{, > tg, again depending only on K, so that ¢(Ex) has
Hausdorft distance at most ¢;, from the intersection of the t¢{—neighborhoods of
0By (a;); further, as mentioned above, this intersection of tj-neighborhoods has
Hausdorff distance at most f(¢;) to some fiber Ey, as claimed.

Finally, we define ¢ via the bijection F < S between strip bundles and strips in
Ey. That is, if A € S corresponds to F' € F, then ¢s(A) is the strip corresponding
to ¢px(F'). Since A is the coarse intersection of F' with Ey, the desired properties for
¢s then follow from the facts that oy, () = ¢p(a(F)) and that ¢z (F) lies within
finite Hausdorff distance of ¢(F). O
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5.2. From QI(E) to QI(Ej). The next step is to construct a homomorphism
QI(E) — QI(Ey) by associating a quasi-isometry of Ey to each quasi-isometry of
E (see Lemma 5.7). This step requires some preliminaries which we now explain.

To distinguish between two relevant notions of properness, we will call a map
f: X — Y between metric spaces topologically proper if it is continuous and preim-
ages of compact sets are compact, and metrically proper if there exist diverging
functions p_, p+ : Rsg — Rxp (which we will call properness functions) such that
for all x,y € X we have

p—(dx (z,y)) < dy(f(z), f(y)) < p4(dx(z,y)).
(Both types of maps are just referred to as “proper” in the appropriate contexts,
but neither notion implies the other.)

For R > 0 and X € D, we endow Ng(Ex) with the restriction of the metric of
E, while Ex is endowed with its path metric. Then the restriction of fx: E — Ex
to Nr(Ex) is metrically proper. Indeed, fx is topologically proper and equivariant
with respect to a group acting cocompactly. Note that the properness functions
here can be taken independently of the fiber X (once we fix R) because there is
also a cocompact action on D. We also note the following lemma.

Lemma 5.5. A metrically proper coarsely surjective map between geodesic metric
spaces is a quasi-isometry. Moreover, the quasi-isometry constants depend only on
the properness functions and the coarse surjectivity constant.

This follows from standard arguments. First, a metrically proper map from a
geodesic metric space is coarsely Lipschitz (the proof involves subdividing geodesics
into segments of length at most 1, each of which has bounded image). Also, coarse
surjectivity allows one to construct a quasi-inverse of the map, which is furthermore
metrically proper. As above, the quasi-inverse is coarsely Lipschitz, and we conclude
since a coarsely Lipschitz map with a coarsely Lipschitz quasi-inverse is a quasi-
isometry.

Given any quasi-isometry ¢: E — E and X € D, define uf: Ex — Ex to be
1/;( = fx o @|gy. In the case of the base fiber X = X, we denote this vy = l/jf".
When ¢ is understood, we also write X = 1/(;( and v = vg.

Lemma 5.6. For any (K, K)-quasi-isometry ¢: E — E and X € D, the map
V;(: Ex — Ex is a (K', K')—quasi-isometry, where K' depends only on K and
ditaus(Ex 8(Ex)). Furthermore, for any A€ S, ditaus(vY (A), d5(A)) < o0.

Proof. First note that the restriction of ¢ to Ex is metrically proper, since the
path metric on Ex and the restricted metric from E are coarsely equivalent (that
is, the identity on Ex is a metrically proper map between these metric spaces).
Next let R = dyaus(Ex, ¢(Ex)), which is finite by Proposition 5.4, and note that
the restriction fx|n.(my): Nr(Ex) — Ex is also metrically proper. Therefore the
composition Vq)f = (fxINp(Ex)) © (#|Ex) is metrically proper and, moreover, the
properness functions depend only on K, R and not on the fiber Ex.

By [KL12, Theorem 3.8] and the fact that Ex is uniformly quasi-isometric to H?,
any metrically proper map of E'x to itself is coarsely surjective and, moreover, the
coarse surjectivity constant depends only on the properness functions. Therefore
ij is coarsely surjective and a uniform quasi-isometry by Lemma 5.5.

Regarding the claim about A, this follows from Proposition 5.4(2) and the fact
that fx moves each point of ¢p(A) € Nr(Ex) at most R away. O
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Lemma 5.7. The assignment ¢ — vy, for any quasi-isometry ¢: E — E, well-
defines a homomorphism Ay: QI(E) — QL(Ep).

Proof. Given any quasi-isometry ¢: E — E and x € Ey we have

d(¢(x)a I/¢(I)) = d(¢(I), fO(@b(x)) < dHaus(¢(EO)a EO)

The right hand side is finite by Proposition 5.4, so the left hand side is bounded,
independent of x. From this, the triangle inequality, and the uniform metric proper-
ness of the inclusion of Ey into E, it easily follows that if ¢ and ¢’ are bounded
distance, then so are vy and vg . Therefore the assignment ¢ — vy descends to a
well-defined function Ag: QI(E) — QI(Ep).

To see that Aj is a homomorphism, suppose ¢, ¢’ are (K, K)—quasi-isometries of
E. Then from the inequality above, for all 2 € Ey we have

d(¢' 0 p(x),¢" o vy(x)) < Kd((x),v(7)) + K < Kdnaus(d(Eo), Eo) + K.

The left-hand side is thus uniformly bounded, independent of z. From this, the
triangle inequality, and Proposition 5.4, it follows that dpaus(¢’ o ¢(Ep), Ep) and
diaus (¢’ 0 vy (Ey), Ep) are bounded by some constant > 0. Then for all z € Ey,

d(vgop (), ve ovg(x)) = d(fo(¢' 0 ¢(2)), fo(d ovg(@))) < e"d(¢' 0 ¢(x), ¢’ o vg()).
Combining this with the previous inequality, we see that the quantity on the right,

and hence the left, is uniformly bounded above, independent of x. Therefore vy o4
and vg o vg are bounded distance apart and Ag is a homomorphism. O

5.3. From quasi-isometries to affine homeomorphisms. The flat metric ¢ on
Ey determines an associated affine group Aff(Eg), and we observe that if ¢ € T
is an element of the extension group (which is an isometry of E, and so also a
quasi-isometry), we have vy € Aff(Eg). The next step in the proof of rigidity is the
following.

Proposition 5.8. For any quasi-isometry ¢: E — E, the quasi-isometry Vg 18
uniformly close to a unique element vy € Aff(Eg).

The proof of the proposition will take place over the remainder of this subsec-
tion. Before getting to the proof, however, we note a useful corollary. Two quasi-
isometries ¢1, ¢2 that are a bounded distance apart have vy, and vy, a bounded
distance apart, and so by the uniqueness vg = vg . Thus we have the following.

Corollary 5.9. The map [¢] — v§ defines a homomorphism A: QI(E) — Aff(Eo).
Moreover, the homomorphism Ay: QI(E) — QI(Ey) from Lemma 5.7 factors as
the composition of A with the natural inclusion Aff(Eq) — QI(Ey).

Fix a triangulation t of X so that the vertex set is the set of cone points and all
triangles are Euclidean triangles (that is, they are images of triangles by maps that
are locally isometric and injective on the interior; see e.g. [DDLS21, Lemma 3.4]).
Moreover, we assume that all saddle connections in some direction g appear as
edges of the triangulation. Lift t to a triangulation t of E;. By assumption, all
saddle connections in Fy in direction g are edges of f, and the complement of the
union of this subset is a union of all (interiors of) strips in direction ayg.

Lemma 5.10. Given a quasi-isometry ¢, there is a biLipschitz homeomorphism
vg: Eg — Eo a bounded distance from vy so that vg restricts to an affine map on
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each triangle of t. Moreover, if an edge § of t has direction a € P, then 1/@(5) has
direction ¢p ().

We will later prove that vg is in fact globally affine, justifying the notation.

Proof. Given v = v4: Eg — Eg, let dv: SL, — SL be the restriction of the ex-
tension to the Gromov boundary SL of Ey. The space G of (unordered) pairs of
distinct points in SL is precisely the space of endpoint-pairs at infinity of unori-
ented biinfinite geodesics (up to the equivalence relation of having finite Hausdorff
distance). The map v induces a map ovy: G — G.

Let G* < G be the closure of the set of endpoint-pairs at infinity of non-singular
geodesics (i.e. geodesics that miss every cone point). Observe that all geodesics
in a given strip have the same pair of endpoints, and any geodesic with that pair
of endpoints is contained in the strip. Given a strip, we are therefore justified in
referring to the pair of endpoints of the strip.

It follows from the description of geodesics with endpoints in G* (see [BL1S,
Proposition 2.4]) together with the Veech Dichotomy (see e.g. [MTO02]), that for
any {¢,(} € G*, either {&, (} are the endpoints of a strip, or endpoints of a geodesic
meeting at most one cone point.

According to Proposition 5.4, for any strip A € S, the strip ¢s(A) has finite
Hausdorff distance to ¢(A), and hence it also has finite Hausdorff distance to v(A).
Since ¢s is a bijection, this means that the homeomorphism Jv, sends the dense
subset of G* consisting of endpoint of strips onto itself, hence v, (G*) = G*. From
this and [BL18, Proposition 4.1] (see also [DELS18, Proposition 11]), it follows that
there is a bijection

¢20 1 X0 — 2o

from the set of cone points X of Fy to itself with the following property. If v ¢ Ejy
is a geodesic or strip containing x € ¥ with endpoints {¢,(} € G*, then dv,.({&,(})
are the endpoints of a geodesic containing ¢s,(x). Given z € ¥y consider any
two geodesics v1 and 2 with endpoints in G* (not necessarily contained in strips)
passing through x making an angle at least /2 with each other. We note that
v(x) is contained in v(7y1) and v(v2), and is thus some uniform distance r > 0 to
both of their geodesic representatives. Since 7; and v, meet at angle at least 7/2,
the r—neighborhoods of the geodesic representatives of v(y1) and v(72) intersect
in a uniformly bounded diameter set, which contains ¢x,(x). Therefore, ¢s,(x) is
uniformly close to v(x), for all z € 3.

From the properties of ¢y, described above, we see that if x € ¥ is contained in
a strip A, then ¢x,(x) is contained in the strip ¢s(A). For any saddle connection
0 in some direction a € P between a pair of points z,y € X, there is a unique
pair of strips Aj, A, also in direction «, that contain §. Since ¢x, (), ¢x,(y) are
contained in ¢s(A1) and ¢s(Asz), it follows that there is a unique saddle connection
with endpoints ¢x, (x), ¢x,(y). For any strip A the saddle connections whose union
makes up one of its boundary components is determined by a collection of strips
meeting A in the given saddle connections. Considering the cyclic ordering of
the endpoints of these strips (and those of A) on SL. and the fact that dv is a
homeomorphism, it follows that ¢, maps the ordered set of cone points along each
boundary component of the strip A by an order preserving (or reversing) bijection
to the ordered set of cone points along the boundary components of ¢s(A).
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We can now extend the map ¢x,, to a map vg: Eg — Ej using { as follows. First,
recall that any edge of t is a saddle connection & connecting two points z,y € Y.
By the previous paragraph, there is a saddle connection §’ connecting ¢y, (z) and
¢, (y), and we define v/§ on ¢ so that it maps 0 by an affine map to ¢’ extending
@3, on the endpoints. This defines vg on the 1-skeleton, 1, and since ¢x, is a
bounded distance from vy, it follows that 4, is a bounded distance from v|;.

By our assumptions on f, there is a subset of the edges of t whose union is pre-
cisely the union of boundaries of all strips in direction ag. The order preserving
(or reversing) property described above for the cone points along the boundary of
a strip, together with Proposition 5.4, implies that for any boundary component of
any strip A in direction ay, vy restricted to its boundary components is a homeo-
morphism onto the boundary components of ¢s(A). Furthermore, since the sides
of any triangle of t are contained in such a strip A, the vg—image of the sides are
contained in ¢s(A). We can now extend vg over the triangles by the unique affine
map extending the map on their sides.

Since disjoint strips map to disjoint strips, the map vy is a homeomorphism. By
construction, any edge in direction « is sent to an edge in direction ¢p(«). Since 1
projects to t, there are only finitely many directions that the sides of a triangle can
lie in and so finitely many isometry types of triangles. Each of these finitely many
isometry types maps by an affine map to only finitely many types of triangles in
the image (because the direction of the images of sides are determined by ¢p), and
therefore these affine maps are uniformly biLipschitz. Therefore, vg is biLipschitz,
completing the proof. ([

To show that vj is affine, we analyze the effect of using it to conjugate the action
of 1.5 on Ey.

Lemma 5.11. The action of m.S on Ey obtained by conjugating the isometric
action by Z/g 18 again an isometric action.

Before proving the lemma, we use it to prove the proposition.

Proof of Proposition 5.8. By Lemma 5.11, A = vgwlS(ug)_l acts by isometries,
and vg descends to a homeomorphism pug: S — Ep/A and is biLipschitz with
respect to descent to S and Fy/A of g. Since vy and v are a bounded distance,
they have the same boundary maps. Since (9(Vg)* = Ovy maps G* to G*, the
Current Support Theorem of [DELS18] (and its proof) implies that the descent of
ng: (S,q) = (Eo/A, q) is affine. Therefore v/§ is an affine map which is a bounded
distance from v = vy, as required.

Uniqueness follows from the fact that no two distinct affine maps are a bounded
distance apart. O

Proof of Lemma 5.11. We need to show that for all g € 715, the map
vgogo (1/;)_1 : Ey — Ey

is an isometry. For this, fix a triangle 7 of  and consider the restriction to v (7).
Let a1, g, a3 € P be the directions of the sides. Setting o) = ¢p(ay), for i = 1,2, 3,
Lemma 5.10 implies that the directions of the sides of v§(7) are o/, a5, a3. The
action of 715 on Ey is by isometries, but it also preserves parallelism (i.e. each
element induces the identity on P!(q)). Therefore, for any g € 7.9, the directions
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of the sides of g(7) are also al, ozg,ozg, and by Lemma 5.10 again, it follows that
the sides of v (g(7)) are oy, a5, aj.

For any g € m S, since vy is affine on 7, the composition vg o g o (yg)_1 is also
affine on v§(7). On the other hand, it also preserves the directions of the sides,

lis a Euclidean similarity.

o, ay, a5, Therefore, the restriction of v§ o go (v§)~
Triangles of Vg (I) that share a side are scaled by the same factor by the similarity
vgogo(vg)™" in each triangle (since this is the scaling factor on the shared side).
Therefore, the similarities agree along edges, and hence vj o g o (hj))_1 defines a
global similarity of Fy.

So, the action of m.S on Ej obtained by conjugating by vg is an action by
similarities. To see that the action is by isometries, suppose that for some element
g € m S, the similarity go = vgogo (z/g)*l scales the metric some number \ #
1. Taking the inverse if necessary, we can assume A < 1. Fix any =z € Ey and
observe that dy(go(z), g3 (x)) = Ady(x, go(z)), where d, is the distance function on
Ey determined by ¢. Iterating this, it follows that

n

dq(, g5 (z Z )9 Z/\k Ly (2, go(x)) <dg (@, 9o(x

= k=1

\|M8

Since the right-hand side is a convergent geometric series, it follows that {gO ( )},
is a Cauchy sequence. On the other hand, this sequence exits every compact set
(since go is an infinite order element of 7715), and since q is a complete metric on
Ey, thus we obtain a contradiction. Therefore, the conjugation action of 71.5 is by
isometries. (I

5.4. Injectivity of A. Our next goal is to prove that A: QI(E) — Aff(Eg), the
homomorphism from Corollary 5.9, is injective.

In preparation, it will be useful to have the following general fact about quasi-
isometries of hyperbolic spaces, whose proof we sketch for convenience of the reader:

Lemma 5.12. For each K,C,§ there exists R so that the following holds. Suppose
that Z is 6—hyperbolic and that each z € Z lies within 0 of all three sides of a
nondegenerate ideal geodesic triangle. Let f: Z — Z be a (K,C)-quasi-isometry
that lies within finite distance of the identity. Then f lies within distance R of the
identity.

Proof. Since f is within bounded distance of the identity, its extension df: 0Z —
07 is the identity. Hence if z € Z and A is an ideal geodesic triangle as in the state-
ment, then f(A) is a (K, C)-quasigeodesic ideal triangle with the same endpoints
as A. By the Morse lemma, there is a constant k = (K, C,d) > 0 such that f(z)
lies within & of the three quasi-geodesic sides of f(A), and these sides in turn lie
within x of the sides of A. Thus z and f(z) both lie within 2k + ¢ of all three sides
of A. Since the set of points within 2k + ¢ of all three sides of a nondegenerate
geodesic triangle in a d—hyperbolic space has diameter bounded in terms of x and
J, we see that dz(z, f(2)) is bounded solely in terms of J, K, C, as required. O

With this fact in hand, we can now prove:

Proposition 5.13. Let ¢: E — E be a quasi-isometry with vy = idpg,. There is
a constant C" = C'(¢) > 0 such that for all z € E, d(z,¢(x)) < C'. Consequently,
A: QIE) — Aff(Ey) is injective.
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Proof. We first claim that for any X € D, ¢(Ex) lies within the C”-neighborhood
of Ex, where C” = C"(¢) > 0. To see this, observe that since v/§ is the identity
and is bounded distance from vy, it follows that ¢|g, is within bounded distance of
the inclusion of Ey in E. Proposition 5.4 then implies that dpaus(4, ¢s(A4)) < +o0
for each strip A € S. Since strips that lie within finite Hausdorff distance coincide,
we have ¢s(A) = A. Combining this fact with Proposition 5.4 it follows that
op(a(A)) = a(ps(A)) = a(A). Hence for each «, we have that ¢(0B,) lies within
Hausdorft distance C of 0B, = 0By, (a), for C' as in Proposition 5.4.

Now let X € D be any point and choose distinct o, &’ € P so that X is contained
in the coarse intersection of 0B, and 0B,/ , implying that Ex lies in the coarse
intersection of 0B, and 0B,.. By the coarse preservation of the 03, in the previ-
ous paragraph, the coarse intersection of ¢(0B,) and ¢(0B,/) is within Hausdorff
distance C' of the coarse intersection of 0B, and 0B,/ and hence Ex and ¢(Ex)
are within uniform Hausdorff distance. This proves the claim.

Since fx: E — Ex is e -bi-Lipschitz when restricted to fibers in the C”-
neighborhood of Ex, the claim implies that Vq)f = fx o¢: Ex — Ex is a quasi-
isometry with constants depending only on ¢ and not X. Moreover, since each
Ex lies within finite (but not necessarily bounded) Hausdorff distance of Ey, the
fact that ¢|g, lies within finite distance of the inclusion Ey < E implies that Vq)f
lies within finite distance of the identity Fx — FEx. Since each Ex is uniformly
quasiisometric to H?, it follows that I/f: Ex — Ex satisfies the assumptions of
Lemma 5.12. We conclude that Vq)f is within uniformly bounded distance of the
identity for each X € D. Since d(v} (x),¢(x)) < C”, it follows that d(z, ¢(z))
is uniformly bounded, independent of x. This proves the first statement of the
proposition.

If A(¢) is the identity for some ¢ € QI(E), then by the first part of the propo-
sition, ¢ is a bounded distance from the identity. Therefore, ¢ and the identity
represent the same class, and A is injective. This completes the proof. O

5.5. From affine homeomorphisms to isometries. Next we will choose a par-
ticular allowable truncation and construct a homomorphism Aff(Eq) — Isomgy(E),
that we will eventually show is an isomorphism. We first construct such a homo-
morphism to the fiber-preserving isometry group of the space E, which avoids the

issue of choosing the truncation.

Lemma 5.14. For any v € Aff(Ey), there exists a isometry ¢ = ¢, € Isomg,(E)
such that fo o ¢,|g, = v. Moreover, this assignment v — ¢, defines an injective
homomorphism Aff(Ep) — Isomap(E).

Proof. Recall from §2.1 that the projective tangent space at any non-cone point
of Ey is denoted P!(g) and is canonically identified with dD. The derivative of
v: Ey — Ey (which may reverse orientations) is a well-defined projective transfor-
mation dv € PGL(P!(q)) which, using the preferred coordinates on q = gy with dis-
tinguished vertical and horizontal directions, we canonically identify with PGLo(R).
The Teichmiiller disk D is the orbit of ¢ under the SLy(R) action and is identified
with H? = SLy(R)/SO(2) (see e.g. [DDLS21, §2.8]). As PGL2(R) acts isometrically
on H2, we thus obtain an isometry ® = dv: D — D whose induced map 0® of the
circle at infinity 0D agrees with the derivative dv under the canonical identification
0D = P!(q). In particular, setting X = ®(Xj), the geodesic ray in D emanating
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from X, and asymptotic to & € P1(q) is sent to the geodesic ray emanating from X
asymptotic to dv(§).

We claim the map ¢ = fx x,ov: Ey — Ex is an isometry of fibers. Indeed, any
pair &, &+ € P(q) of orthogonal directions on FEy are the endpoints of a geodesic p
in D containing Xg. Since @ is an isometry with 0® = dv, we have that X = (X))
lies on the geodesic ®(p) from dv (&) to dv(€); that is, dv(€), dv(¢+) are orthogonal
on X. But since P!(q) and P!(gx ) are canonically identified by the Teichmiiller map
fx,x, (see e.g. [DDLS21, §2.8]), this means ¢¢ is an affine map whose derivative
dog = dv preserves orthogonality of lines; hence ¢q is an isometry as claimed.

Now we define ¢ = ¢,: E — E by the formula:

() = fo(r(a)),x, ©V o folx).

In words, this maps the fiber over a point Y to the fiber over ®(Y), and the
horizontal disk D, for # € Ep, to D, (). The restriction ¢|p,: Dy — D, () is an
isometry since it covers ®. To prove that ¢ is an isometry, it therefore suffices to
show that ¢|g, : Ey — Eg(y) is an isometry for any Y € D.

Fix any Y € D. For Y = X;, we have already seen that ¢|g, is the isometry
$o: By — Ex. If Y # X, there exist unique orthogonal directions a, a € P(q) and
t > 0, so that Xy and Y both lie on the the geodesic from at to a in D and Y lies
distance ¢ from X in the direction of a. This means that fy x,: Ey — Ey contracts
in direction a by e~* and stretches in direction a by e*. The image ®(Y") lies along
the geodesic from dgo(at) to deo(a) at distance ¢ from ®(Xy) = X; therefore
fov),x: Ex — Eg(y) contracts by e~ in direction d¢po(cr) and stretches by e’ in
direction d¢o(a™). The restriction ¢|y : Y — ®(Y) is given by fo(yv),x © 0 © fEo,v-
Since ¢g sends o > dgg(a) and at — dpg(at), the description above shows that
¢|y is an isometry. Therefore ¢ is an isometry, as required.

To see that v — ¢, is a homomorphism, note that by construction ®, is the
unique isometry of D for which 0®, = dv. Thus the chain rule implies ®,,, =
®, o &, is the unique isometry whose action on dD agrees with d(v o g) = dv o dg.
For any x € E we have m(¢4(x)) = ®4(m(x)) and hence by construction

0 Gg() = fa, (x(ay(2))) X0 OV © Jo(fa, ()X, © 9 © fo(2))
= [&,(@,(r(2))),Xo OV © [X0,8,(x) © [o,(2),X0 © 9 © fo(T))
= [0, (n(x)),X0 © (¥ 0 9) © fo(T) = Prog(w)
as needed. Finally, if ¢, = idg then clearly X = ®(Xy) = Xy. Since ¢o = ¢u |z,
by construction, we conclude that
idg, = ¢uvlE, = ¢0 = fxe.x, 0V = V.

Hence v is the identity affine map, showing that v — ¢, is injective. O

Lemma 5.15. The subgroup T' < Isomg,(E) has finite index.

Proof. By [DDLS21, Proposition 5.5], Isomg,(E) acts properly discontinuously on
E. Therefore E/Isomg,(F) is a topological orbifold with well-defined, positive
Riemannian volume. The index of T' in Isomgy(F) is the degree of the orbifold
cover E/T" — E/Isomgap(E) and equals the ratio of the respective volumes. As E/T
has finite volume, since the quotient D/G has finite area and the fibers Ex /715 all
have equal, finite area, we conclude that I" indeed has finite index. ([
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Lemma 5.16. There is an allowable truncation E that is Isomgy, (E)~invariant and
for which restricting to E induces an injection Isomg,(E) — Isomgy, (E).

Remark 5.17. Every fiber-preserving isometry of E uniquely extends to one of ¥
(e.g. by following the proof of Lemma 5.14) and thus Isomg,(F) — Isomgy, (F) is
in fact an isomorphism.

Proof. There is a natural map Isomg, (E) — Isom(D) that sends I' onto G. Hence,
by the previous lemma, the image G* of Isomg,(FE) under this map contains G
with finite index. Therefore G* acts properly discontinuously on D and we may
choose a collection { By }aep of 1-separated horoballs as in §2.1 that is G*~invariant.
If E denotes the corresponding truncation of E, it follows that every element of
Isomgp,(E) preserves E. The map Isomg,(E) — Isomgy(FE) given by restricting
¢ — ¢| 5 is injective by [DDLS21, Corollary 5.6] since if ¢|z is the identity, then ¢
must be the identity on each Teichmiiller disk D, and fiber Ex — E. O

Choosing such an allowable truncation E, Lgmmas 5.14 and 5.16 now give an
injective homomorphism ¥: Aff(Eq) — Isomg,(E) given by ¥(v) = ¢, |5.

Lemma 5.18. For any v € Aff(Ey), A(¥(v)) = v, where we have identified V(v)
with its image in QL(E) from the homomorphism Ibomﬁb( E) — QI(E).

Proof. The construction of A in Corollary 5.9 sends the (quasi-)isometry ¥(v) =
é,|5: E — E to the the unique affine homeomorphism of Fy that is uniformly close
to the map fo© ¢u|g,: Eo — Ep. But by the construction of ¢, in Lemma 5.14,
foodu| g, is affine itself and equal to v. Thus evidently A(¥(v)) = v as claimed. O

Lemma 5.19. For any ¢ € Isomgy,(E) = Isomgp(E), we have U(A(¢)) = ¢. In
particular, the natural maps Isomgy,(E) — Isom(E) — QI(E) are both injective.

Proof. By construction v = v = A(¢) is the unique affine homeomorphism bounded
distance from fo o @|g,. As this map is itself affine, we have v = fy o @|g,. The
isometry ®: D — D in the construction of ¥(v) is then just the descent of ¢ to D.
Further, for any X,Y € D we have ¢|x o fxy = fo(x),a(v) © ¢|Ey, since if X lies
at distance t > 0 from Y along the geodesic from o to «, then both maps send
(at,a) — (80®(at),0®(a)) while contracting the first by e~* and expanding the
second by e?, hence they are the same affine map Ey — Egx). It follows that the
restriction W(v)|p, : By — Eg(y) is then the composition

Y()|ey = fay),x, © (foo @lr,) © folmy = fav).e(xo) © @B, © fxov
= fa(v).a(x0) © fo(xo).a(v) © ¢lEy = ¢lEY -

Since this holds for each Y, we conclude ¥(v) = ¢ as claimed.

It follows that Isomgy,(E) — QI(E) is injective, since if [¢] is the identity in
QI(E), meaning ¢ is finite distance from the identity, then A(¢) = A([¢]) and
consequently ¢ = W(A(¢)) are both the identity. Finally, Isom(E) — QI(E) is
injective since we have Isomgy,(E) = Isom(E) by [DDLS21, Corollary 5.4]. O

5.6. Rigidity. We are now ready to complete the proof of Theorem 1.7:

Proof of Theorem 1.7. By Lemma 5.18, the composition
Aff(Eg) 5 Isomgy(E) — Isom(E) — QI(E) =~ QIT) 3 Aff(Eo)
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is the identity. Hence the first map W is injective, and the remaining maps are
injective by Lemma 5.19 and Proposition 5.13 . It follows that each map above is

an isomorphism, as claimed. The fact that I has finite index in Isom(FE) ~ QI(T")
thus follows from Lemma 5.15. O

Standard techniques (see, for example [Sch95, §10.4]) now imply the following:

Corollary 5.20. If H is any finitely generated group quasi-isometric to I, then H
and T' are weakly commensurable, meaning H has a finite normal subgroup N so
that H/N and T' contain finite index subgroups that are isomorphic.

This proof requires one more lemma.

Lemma 5.21. For every K there exists R' such that if ¢: E — E is a (K, K)-
quasi-isometry that lies within finite distance of the identity, then ¢ lies within
distance R’ of the identity, meaning d(z,¢(x)) < R’ for all x € E.

Proof. First define a map ¢: D — D by setting ¢(X) = Y, where Y is the point
provided by Proposition 5.4 such that dgaus(¢(Ex), Ey) < C. Since dp(X,Y) =
dg(Ex,Ey) for all X,Y in D, we see that ¢ is a quasi-isometry with constants
depending only on K. It also lies within finite distance of the identity, as it inherits
this property from ¢; thus applying Lemma 5.12 to Z = D implies that ¢ lies within
uniformly finite distance of the identity. That is, there exists R depending only on
K so that dyaus(Ex, ®(Ex)) < R for all X € D. Hence, Lemma 5.6 implies that
for each map z/jf = fx o ¢|gy is a (K', K')—quasi-isometry for some K’ depending
only on K. Again by Lemma 5.12, this time with Z = Ex, we see that each V(f
moves points uniformly bounded distance, and therefore ¢|g, lies within uniform
distance of the inclusion of Ex in E. Since this holds for all X, we have that ¢ lies
within uniform distance of the identity, as required. (Il

Proof of Corollary 5.20. If H is quasi-isometric to I', there is a quasi-isometry
p: H — E with a quasi-inverse p~!': E — H. Left multiplication by h € H
gives an isometry Lp: H — H. In this way, for each h € H we obtain a quasi-
isometry B(h) = po Ly o u~t of E with uniformly bounded constants. Let us also
set B'(h) = W(A(B(h))) € Isomg,(E) = Isom(E), which is the unique isometry
of E at finite distance from B(h). Since the quasi-isometry constants of B(h) are
uniform, depending only on p, it follows from Lemma 5.21 that there is a constant
R’ so that d(B(h)(z),B'(h)(z)) < R' for all z € E and h € H.

We now claim the homomorphism B': H — Isom(E) has finite kernel and cok-
ernel. Indeed, if B'(h) = Idj; the above implies B(h) moves p(e) (and in fact all
points) distance at most R’. But this means L; moves the identity e € H uni-
formly bounded distance, and there are only finitely many such elements of H.
To prove B’ has finite cokernel it suffices, as in Lemma 5.15, to show E/B'(H)
has finite volume or, better yet, finite diameter. For this, given z,y € F we must
find h so that d(B’(h)(x),y) is uniformly bounded. This is equivalent to bounding
d(B(h)(z),y) = d(u(h - p=1(x)),y), which is coarsely dg (h - pu=t(z), p~1(y)). Since
H acts transitively on itself, this is clearly possible.

We now see that H/ker(B') and I" are both realized as finite index subgroups of

Isom(FE) and hence that their intersection has finite index in both. (]
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