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ABSTRACT. This paper concerns the lattice counting problem for the mapping
class group of a surface S acting on Teichmiiller space with the Teichmiiller
metric. In that problem the goal is to count the number of mapping classes
that send a given point x into the ball of radius R centered about another point
y. For the action of the entire group, Athreya, Bufetov, Eskin and Mirzakhani
have shown this quantity is asymptotic to e"#, where h is the dimension of the
Teichmiiller space. We instead consider only the action of finite-order elements
of the group and show the associated count grows coarsely at the rate of e"?/2,
that is, with half the exponent. To obtain these quantitative estimates, we
introduce a new notion in Teichmiiller geometry, called complexity length,
which reflects some aspects of the negative curvature of curve complexes and
also has applications to counting problems.
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1.1. Lattice point counting. The goal of this paper is to count elements of the
mapping class group via its action on Teichmiiller space. When a group G acts on
a metric space X by isometries, counting the number of orbit or “lattice” points in
metric balls of increasing radius gives a measure of growth in the group as reflected
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in the geometry of X. For example, the number of lattice points Z" in a large metric
ball in Euclidean space R" is approximately the volume of the ball. Relatedly, in
his Ph.D. dissertation, Margulis [Mar] considered the case of a compact negatively
curved Riemannian manifold M and showed that for the isometric action of the
fundamental group m1 (M) on the universal cover M, the number of lattice points
in a ball of radius R is asymptotic to a constant times e"?, where h > 0 is the
topological entropy of the geodesic flow.

This paper concerns a refinement of this classical lattice point counting problem
in the setting of Teichmiiller geometry. Fix a connected, orientable surface S of
genus g with p punctures such that the £(S) = 3g — 3 + p, termed its complexity, is
positive. We consider the mapping class group Mod(S) = Homeo™ (S)/Homeog(S)
of isotopy classes of orientation-preserving homeomorphisms of S, which acts iso-
metrically and properly discontinuously on the Teichmiiller space T (S) of marked
hyperbolic metrics on S equipped with the Teichmiiller metric dr(g).

The geometric and dynamical theory of Teichmiiller space bears striking parallels
to that of negatively curved Riemannian manifolds. Motivated by this, Athreya,
Bufetov, Eskin, and Mirzakhani [ABEM] drew on ideas from Margulis [Mar] to
solve the analogous lattice point counting problem. For x,y € T(S), let us write s,
for the finite cardinality of the stabilizer of x in Mod(S) and

A(axy,R) = {qb € MOd(S) ‘ dT(S) (¢($),y) < R}

for the set of mapping classes that translate x to within distance R of y. The
cardinality |A(z,y, R)| then equals s, times the number of orbit points Mod(S) - x
in the ball of radius R centered at y. Their result may then be stated as:

Theorem 1.1 (Athreya—Bufetov—Eskin—Mirzakhani [ABEM]). There is a constant
A > 0 such that for all z,y € T(S) one has |A(z,y, R)| ~ Aspes®, where hg =
2£(S) = 6g—6+2p is the entropy of the Teichmiiller geodesic flow, and the notation
f(R) ~ g(R) means that f(R)/g(R) — 1 as R — .

While this completely answers the lattice point counting problem for the full
mapping class group, one might further refine it by considering the growth of certain
naturally distinguished subgroups or subsets. This is related to the question of
determining what a “typical” element of Mod(S) looks like.

The famous Nielsen-Thurston classification [Thu] states that every element of
the mapping class group is either finite-order, reducible, or pseudo-Anosov (see
Definition 3.6). Accordingly, we let

AfO('T7 Y, R)a Ared(.I‘, Y, R)a and ApA (ZC, Y, R)

denote the subsets of A(x,y, R) consisting of finite-order, reducible, and pseudo-
Anosov elements, respectively. Building on [ABEM], Maher [Mah1, Mah2] has used
ideas from random walks to show that typical mapping classes are pseudo-Anosov
in the sense that |Apa(z,y, R)| ~ |A(z,y, R)|. In particular, this shows that the
proportion of finite-order and reducible lattice points tends to zero as R — oo, but
it does not give any indication of the rate of convergence.

The purpose of this paper is to give quantitative estimates for the number of
finite order mapping classes by counting their lattice points. We show:
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Theorem 1.2. For any 6 > 0 and pair of points x,y € T(S), there are constants
K1, K5, Ry such that for all R = Ry one has

h h
KleTSR < |Afo(z,y, R)| < ng(TSM)R.

We remark that the exponents for the upper and lower bound do not quite
coincide because of the ¢ in the exponent for the upper bound; we do not know if
the 6 can be removed. Nonetheless our main theorem shows that the growth rate
of finite order elements is exponential with exponent essentially one half that of the
entire group. In future work, we will use the techniques developed in this paper to
additionally show the number |A.q(z,y, R)| of reducible elements grows coarsely
at the rate of e"s~DE_ with exponent one less than for the pseudo-Anosovs.

1.2. Heuristics and hazards. Let us describe a naive picture illustrating why one
might expect the finite-order elements to grow at half the exponential rate of the
whole group. The first observation is that there are only finitely many conjugacy
classes of finite-order elements; thus it suffices to count each conjugacy class [¢g]
separately. Since the points x,y may be adjusted at the cost of increasing the
constants K1, Ko, we might as well assume z = y is a fixed point x( for a given
finite-order element ¢y. Now, the result of [ABEM] (Theorem 1.1) says there are
approximately e"s%/2 mapping classes f € Mod(S) so that dr(s)(zo, f(z0)) < R/2.
Further, each of these produces a conjugate ¢y = f¢of~! for which the translate
f(zo) is a fixed point. The triangle inequality thus implies this finite-order element
satisfies dy(g)(xo, ¢5(20)) < R.

This observation suffices for the lower bound in Theorem 1.2, provided the assign-
ment f +— ¢ is uniformly finite-to-one, as is the case when ¢ has finite centralizer.
This argument is carried out in detail in §13.1, where we prove the lower bound by
constructing explicit examples.

For the upper bound, a hope might be that all (or at least most) elements
¢ € [¢o] satisfying dr(s)(zo, ¢(x0)) < R arise in this manner as f¢of ™' for some
element f with dy(g)(zo, f(20)) < R/2. While this is, of course, too naive, the
thrust of our argument is that the hope does hold in some moral sense, albeit in a
rather complicated way involving an alternative understanding of distance.

The given element ¢ € [¢g] can be expressed as a conjugate ¢ = foof~ ! in
possibly many ways, and choosing a conjugator f roughly corresponds to identify-
ing a fixed point f(zg) of ¢. The hope thus translates into finding a fixed point
ry with drg)(20,74) < R/2. This, however, need not be possible: In §2 we pro-
vide an example of a finite-order ¢ such that for every conjugate ¢ € [¢g] with
drs)(x0, #(w0)) < R, the closest fixed point x4 satisfies the dual properties that:
1) up to additive error we have d(s)(zo,74) = R, and 2) the geodesic from g to
x4 passes through the Teichmiiller space 7 (V) of some subsurface V' in such a way
that the geodesic from x4 on to ¢(zg) “backtracks” through the same Teichmiiller
space 7 (V'), undoing the progress made in going from x to z.

The reasons why such backtracking is problematic are perhaps too technical to
elaborate upon in this introduction. Suffice it to say that the theory of subsurface
projections developed in [MM1, Rafl] shows that Teichmiiller geodesics are gov-
erned by how they move through “thin regions” where the boundary curves oV of
subsurfaces V' become short. These regions behave like metric products, in which
the Teichmiiller space T (V) of the surface is one factor [Min], and are the main
source of non-negative curvature and many headaches in 7(5).
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These two issues—that the closest fixed point may be too far away and that the
piecewise geodesic path from ¢ to the fixed point and on to ¢(z¢) may backtrack in
subsurfaces—are the main obstacles. Our proof of the upper bound roughly divides
into two separate parts overcoming these issues. The first part (§5-6) constructs
good fixed points x4 that minimize backtracking and branch points ae,bs that
help mitigate it. The second, and much more elaborate, part (§7-12) ultimately
shows, provided backtracking is controlled, that while the Teichmiiller distance
dr(s)(70,74) may be much larger than R/2, there is a more apt measure of length
that is on the order of R/2. Developing the theory of this length is major component
of the paper, which introduces new ideas and techniques to Teichmiiller theory that
we hope may be of independent interest and lead to other applications.

1.3. A new complexity length for Teichmiiller space. The impetus for our
construction is the need to count points in a way that incorporates how geodesics
move through Teichmiiller spaces of subsurfaces.

For the purposes of counting, it is helpful to discretize T (S) by considering a net
N (S); this is a c-separated subset whose 2¢ balls cover T(S), for some constant ¢
(see §3.10). Eskin and Mirzakhani introduced nets in [EM] and showed there is a
uniform constant Cy such that a ball or radius R about any thick point x € T(5)
contains at most Coe”s net points. When the thickness condition is removed and
arbitrary centers are considered, they show that for any § > 0 there is some Cj
such that all balls of radius R contain at most Cse("st9)F net points. This is one
explanation of where the § comes from in our main theorem.

The key observation is as follows: If one fixes a thick center point x and moves
distance R to a net point y by only moving in the Teichmiiller space 7 (V) of
a subsurface and not moving in the complement, then Minsky’s product regions
theorem [Min] says this behaves like a Teichmiiller geodesic in 7 (V) and hence
[EM] implies there should only be CyeV such net points y. That is, imposing a
restriction that the geodesic passes through Teichmiiller spaces of subsurfaces cuts
down on the number of net points that can be reached in distance R.

Our complexity length £(x,y) (Definition 11.1) is designed to implement this
observation in a rigorous way that accounts for the fact that geodesics can move
through disjoint subsurfaces simultaneously. Although the construction is compli-
cated, the rough idea is to take all the subsurfaces Z for which the curve complex
projection (§3.11) dz(x,y) is large, determined by a parameter C, and partition
them by picking out a distinguished subfamily ), called a witness family (see §7),
with the property that each such Z is minimally contained in a unique element
V of Q. This family comes with additional combinatorial structure (a suborder-
ing; Definition 7.14) that allows one to take the curve complex data from all these
subsurfaces Z contributing to V' and reassemble it, via the concept of consistency
from [BKMM], into a pair of points Z$%, i} € T(V) in the Teichmiiller space of V
with the property that dz (23, 7i}) and dz(z,y) coarsely agree (up to only additive
error) for each Z. The complexity length is then defined as

Lx,y) = Y, hvdran (@0, 57).
VeQ

Since the distances are weighted by the exponents hy used for counting, and since
the pairs i’\g‘}, 518 encode the data of the original points, we are able to prove the
following analog of Eskin and Mirzakhani’s [EM] net point counting result:
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Theorem 1.3 (c.f. Theorem 12.1). For any sufficiently large parameter C, there ex-
ists k € N such that each x € T(S) has at most kr¥e” net points y within complexity
length r > 0. That is: #{y € N(Z) | L(z,y) <r} < krPe".

As explained in Remark 8.9, our complexity length is not dissimilar to Rafi’s
[Rafl] Distance Formula (Theorem 3.33), which roughly says the Teichmiiller dis-
tance dy(g)(x,y) is comparable, with multiplicative and additive error, to the sum
of all large curve complex projections dz(z,y). In fact, one finds that £(z,y) and
drs)(x,y) also agree up to bounded multiplicative and additive error, since they
both coarsely agree with the sum in the distance formula! However, there are two
key differences between these perspectives:

The first is that the distance formula concerns all subsurfaces with large pro-
jection. The sum may therefore have arbitrarily many terms, and this ultimately
contributes to a multiplicative error. But we cannot afford multiplicative error,
since the distance R appears in the exponent in our main theorem and the whole
point is to calculate the exponent. Throughout the construction we must therefore
be careful to utilize witness families €2 of uniformly bounded cardinality, so that our
sum has boundedly many terms and the various additive errors do not accumulate
into a multiplicative error. By arranging things with great care, we are able to
relate complexity length to Teichmiiller distance with only additive error.

The second is that we sum over Teichmiiller, rather than curve complex, dis-
tances, which facilitates the above application to counting. Nevertheless, we are
are still able to tap into the hyperbolic geometry of curve complexes in the following
sense. Let us say a triple (a,b,c) in T(S) is 6—aligned if for every subsurface Z the
three pairwise curve complex projections satisfy the reverse triangle inequality:

dz(a,b) + dz(b, C) < dz(a,c) + 0.

Since the curve complex C(Z) is hyperbolic, this is equivalent to saying the pro-
jection of b to C(Z) lies near the geodesic joining the projections of a and c¢. Be-
cause of the multiplicative error and arbitrary length of the sum, this inequality
in each term of the distance formula does not translate into a reverse triangle in-
equality for Teichmiiller distance: There are 6-aligned triples (a,b,c¢) for which
drs)(a,b) + dy(s)(b,c) — dr(s)(a,c) is arbitrarily large. Complexity length, how-
ever, does satisfy such a reverse triangle inequality. This requires the triple (a, b, ¢),
or more generally tuple (zo,...,z,), to be strongly 6—aligned (Definition 3.21),
which adds a condition on the lengths of curves at b so that its projection to the
Teichmiiller space T (A) of each annuls A lies near the geodesic joining the projec-
tions of a and b. We then have the following key result:

Theorem 1.4 (c.f. Theorem 11.2). For any n > 1 and sufficiently large parameter
C, there exists K such every strongly C—aligned n-tuple (xq,...,x,) satisfies

n
2(1160,301) 4ot S(xnflvxn) < (hS + E) dT(S)(fmxn) + K.

In particular £(z,y) < K + (hs + £)dr(s)(z,y) for any z,y € T(S).

1.4. Summary of proof. Theorems 1.3 and 1.4 are the key features that enable
complexity length to overcome the first main issue described in §1.2, namely of the
closest fixed point being too far away. Roughly, the argument is as follows: If we
were able to find a fixed point x4 for ¢ € [¢] so that the triple (xg, x4, d(x0)) were
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strongly aligned, then Theorem 1.4 would imply
(o, zp) + L(zg, d(20)) < (hs + 2)dr(s) (20, d(20)) + K < (hs + 6)R + K,

provided C is chosen sufficiently large. By symmetry, the two terms on the left are
equal and thus each at most (hs + §)R/2 + K. Theorem 1.3 thus implies that for
large R there are at most e("s+20)%/2 guch fixed points Ze. Since the multiplicity
of the assignment ¢ — x4 is bounded by the uniform finiteness of the stabilizer of
x4, this gives the desired upper bound on |Ag (2o, o, R)|.

Complexity length thus enables the heuristic argument of §1.2 to work regardless
of the distance to the closest fixed point, provided (zo, x4, ¢(20)) is strongly aligned.
While this last condition need not hold, we circumvent it by utilizing a sort of
barycenter for the triple (zo, x4, ®(z0)). In fact, for subtle technical considerations
we construct a pair ag, b, of points so that (zg, ag, by, d(x0)) is strongly aligned.
We then count the number of such pairs ag, b, by the argument above, and carry
out a reconstruction argument (Theorem 6.1) to show any pair arises as ag, by for at
most polynomially (in R) many elements ¢ € [¢o] satisfying d7(g)(zo, ¢(20)) < R.
Together, these ingredients yield the upper bound on |Ag,(zo, zo, R)|.

1.5. Questions. There are several natural questions prompted by this work. The
most obvious is whether the § in the upper bound of Theorem 1.2 can be removed.
It arises from various technical considerations that manifest in the additive ¢ term
in Theorem 1.4. This is the result of a phenomenon that we term “badness” (§10)
having to do with the fact that the witness family € may have pairs of nested
subsurfaces Vi = Vo with hy, + hy, > hg for which the distances dT(%)(./%'\%7g/j\%)
appearing in complexity length correspond to a region during which the main Te-
ichmiiller geodesic [xg, ©,] is simultaneously moving through the Teichmiiller spaces
T(V1) and T (V2). Our construction endeavors to minimizes badness (§10.1), but
it would be nice to find a solution eliminating it entirely. Even if the & term from
Theorem 1.4 could be removed, there are still two polynomial factors, coming from
Theorems 1.3 and 6.1, that enlarge the upper bound but are currently absorbed
into the e’® factor in the statement of Theorem 1.2.

A related question is whether complexity length itself satisfies a reverse triangle
inequality £(a,b) + £(b,¢) < £(a,c) + K for strongly aligned triples, rather than
the hybrid formulation concerning both £ and dr(gy in Theorem 1.4. While this
may likely be the case, proving such a statement appears to be quite difficult.

A third question concerns the fact that our main theorem only provides coarse
bounds with multiplicative error, rather than precise asymptotics as in Theo-
rem 1.1). One reason Theorem 1.2 is so difficult is because it concerns intrinsi-
cally nongeneric phenomenon. In contrast to [ABEM, Mahl], where dynamics and
ergodic theory are the main tools, our lattice points arise with vanishingly small
probability that is undetectable by these tools. We must instead rely on coarse geo-
metric arguments that lead to coarser bounds. Calculating the precise asymptotic
growth of |Ag (z,y, R)| will require completely different techniques.

Finally, as indicated in §1.2, we prove Theorem 1.2 by counting each conjugacy
class [¢o] of finite order elements separately, and one might wonder whether other
conjugacy classes exhibit similar behavior. That is, for any element ¢ € Mod(S)
and points z,y € T(S) one may consider the growth of the set

Ay(z,y, R) = {4 € [¢] | dys) (¢ (2),y) < R}.
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Recent work of Han [Han1, Han2] shows that for every Dehn twist ¢, as well as most
multitwists and most pseudo-Anosovs, the quantity |Ay (x,y, R)| grows coarsely like
esf/2 Tn light of this and Theorem 1.2, we propose the following:

Question 1.5. For any nontrivial element ¢ € Mod(S) and points z,y € T(S), do
there exist K, K> > 0 such that K;es%/2 < |Ay(z,y, R)| < Koe"sT/2 for all large
R? Furthermore, does |Ay(z,y, R)| /els T2 converge as R — oo and, if so, to what?

Just as Theorem 1.1 parallels Margulis’s result [Mar] that the fundamental group
71 (M) of a compact negatively curved manifold grows at the rate of e, a positive
answer to Question 1.5 would parallel work of Parkkonen—Paulin [PP] showing that
each nontrivial conjugacy class in 71 (M) essentially grows at the rate of e#/2,

1.6. Outline. The paper is organized as follows. In §2 we provide an example
of a finite-order element ¢, whose conjugates all have closest fixed points that
are both far away from xy and exhibit backtracking. In §3 we collect the needed
background material, surveying many of the ideas in the subject of the mapping
class group, Teichmiiller geometry, and the curve graph of a surface. Section 4
proves preliminary technical results that are needed in the sequel. This includes
bounds on antichains that are used repeatedly in the construction of complexity
length to control the size of witness families; an explanation of how alignment can
be promoted to strong alignment, and an application of Gromov hyperbolicity of
curve complexes to construct branch points with various properties.

The proof of the upper bound begins in §5, where we construct a good fixed point
x4 for each conjugate ¢ € [¢o] along with a pair of branch points ag, by for which
the tuple (2o, ag, by, ¢(z0)) is strongly aligned. The key properties enjoyed by these
points are collected in Proposition 5.5. Next, in §6, for each possible pair a, b, we
count the number of conjugates ¢ with d7(g)(wo,¢(z0)) < R whose branch points
ag,by are a,b. This count turns out to be polynomial in R; this is Theorem 6.1,
the main result of the first part of the paper.

The second part of the paper, spanning §57-12, is devoted to developing the
theory of complexity length. In §7 we introduce the notion of witness families
with additional structures (wideness, insulation, subordering, and completeness)
that will be needed in our constructions. Section 8 then defines the complexity
£(2) of a witness family, associated to a strongly aligned tuple (zo,...,z,), by
constructing resolution points £} in the Teichmiiller spaces T(V) of each sub-
surface V' e Q. Section 9 then bounds each summand hydy ) (E_\lﬁ,@ﬁ) of
complexity length in terms of the Lebesgue measure of a certain contribution set
AK‘} along the main Teichmiiller geodesic [zg, z,]. This is perhaps the most intri-
cate part of the argument and is accomplished by judicious use of Minsky’s product
regions (Theorem 3.11). Section 10 then introduces the notion of badness, which
can lead to complexity length being strictly larger than hgdy(g)(zo,2y), and ex-
plains an iterative procedure for refining witness families and minimizing badness.
It is here where we specify the various parameters of the definition and construct
(in Proposition 10.13) witness families that simultaneously have controlled badness
and uniformly bounded cardinality. In §11 we then define the complexity length
L(xg,...,x,) of a strongly aligned tuple as an infimum of complexities £(£2) of wit-
ness families satisfying certain properties. This culminates in Theorem 11.2 (c.f. 1.4
above) proving the key properties that complexity length satisfies a reverse triangle
inequality and is bounded in terms if Teichmiiller distance. Finally, in §12, we come
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back to the application of counting and bound, in Theorem 12.1 (c.f. 1.3 above)
the number of net points within a given complexity length of x.

The proof of the main Theorem 1.2 is finally given in §13. The lower bound is
handled by constructing an explicit example. At this point, with all the tools ready,
the argument for the upper bound is not too difficult and roughly follows the sketch
in §1.4 above. However, there are additional complications involving thin annuli
and a resulting savings in complexity length that is needed to avoid overcounting
the number of pairs ay, by of branch points.
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2. EXAMPLE

We begin with the example promised in the introduction of a finite order mapping
class ¢ with fixed point at some ¢, a conjugate ¢ = wo ¢gow ! with closest fixed
point w(xg) such that

e up to additive error dy(g)(zo, ¢(20)) = d7(s)(z0, w(x0))-
e there is backtracking in the Teichmiiller space of a subsurface

Let S be genus 7 surface cut into 7 disjoint 1-holed tori X1, ...,%7 and a 7 holed
sphere Z. The map ¢ is of order 7, rotating the tori sending ¥; to ;41 (X7 to
%), and fixes Z. Via the rotation we may identify points in 7(%;) and T (X;41).
These are copies of the hyperbolic plane H? with the hyperbolic metric. Let f be a
Anosov map on Y1, X3, X5 and X7. For positive integers j < n < m set w = (™)
on X1, w= f" on X3, w = f" on 5 and w = fU) on T7. Set w to be the
identity on X9 U X4 U XU Z. Then let ¢ = wo ¢pow™'. With the identification of
each 7 (3;) with the hyperbolic plane H? we assume f is of the form z — Az on the
copies of H? corresponding to 7 (1), 7T (23), T(X5), T(X7). Thus the imaginary
axis is fixed by w. We may also choose the fixed point zy so that the lengths of the
curves o = 0%; are moderate and 7 is the corresponding point in H?. Let u; the
corresponding markings in %;.

By the Minsky product formula [Min] it is easy to check that up to additive
constants independent of j,n, m

dr(s) (0, w(w0)) = dr(s) (w0, () = mlog .

We now sketch the argument that any other fixed point u of ¢, up to additive
constant, satisfies d7(g)y(u, o) = mlogA. Let v; the Bers marking at u projected
to X;. Since ¢p(u) = u we have vy = fC™(13), v5 = fF™) (1), where again
the rotation allows us to identify markings in different ;. Thus v5 = ™) (vs).
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This implies that the projection of u to the curve complex on Y3 and X5 differ by
2mlog A and so by the triangle inequality at least one of the two projections differs
from the projection of zy by at least log A. Without loss of generality assume it is
Y3. There must be interval an interval I (called an active interval in this paper)
along [u,xo] where the boundary loop a3 has length at most €y and outside I the
projections to the curve complex of Y3 only changes by an additive constant. This
means that along I, we can consider all the points to lie in H? x 7(S\X3). Again by
[Min] we have up to an additive constant |I| = mlog A. Therefore up to an additive
constant the distance between u and zp must be at least mlog A and so w(xg) is
the closest fixed point up to additive error.

Next we note that in the curve complex of ¥, that in going from zg to w(xg) we
travel distance nlog A and then from w(zg) to ¢(zo) we backtrack distance jlog .
We remark that the fixed point w(zg) will be called a good fixed point since there
is not backtracking in some subsurface. In general we will find a good fixed point
for any finite order ¢. A second observation is that if we let y be a point with the
same markings as w(xo) except in X where we set the marking to agree with that
of ¢(zg), then the three points xq,y, ¢(x¢) are aligned as moving from xg to y and
then to ¢(xzg) there is no backtracking in any domain. Another major goal will
be to produce such points in general which we call good branch points. We will
then do two major counts. In the first, given a good branch point, we will count
the number of maps that determine the same branch point. The second count will
be to determine the number of possible branch points. This is where we introduce
complexity functions.

3. BACKGROUND

Throughout, the term surface will indicate an oriented surface ¥ homeomorphic
to a closed surface minus a (possibly empty) finite set of points. The missing points
are called punctures and are in bijective correspondence with the ends of . We
write Sy, for the connected genus g > 0 surface with p > 0 punctures, and define
its complexity to be £(Sy ) := 39 — 3 + p. In general, the complexity of a surface
¥ is the sum &(X) := 3}, £(3;) over the connected components X; of X.

An annulus is a connected surface 3 of complexity —1 (i.e., ¥ = Sp2). Annuli
are exceptional in several respects, and must be handled with care throughout our
discussion.

The entropy of a connected surface ¥ is defined to be hy, := 2 |£(X)| provided that
&(X) = —1 and is defined to be zero otherwise, so that spheres, tori, once-punctured
spheres, and thrice-punctured spheres have entropy equal to 0, and annuli have
entropy 2. As for complexity, the entropy of a disconnected surface ¥ is defined as
the sum hy = ), hs, of the entropies of its connected components ¥;.

Convention 3.1. For the duration of this paper, we henceforth fix a connected
surface S with £(S) > 0.

Notation 3.2. We use the notation A £ B or B £ A to mean that there is a
universal constant ¢, depending only on the topology of S, such that A < B + c.
The notation A £ B means that A £ B and A £ B both hold. We instead use the
notation £,, £, or £, to indicate that the implied constant ¢ depends only on S
and the quantity x.
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3.1. Curves. The term “curve” will always refer to an isotopy class of essential
simple closed curves. More precisely, a curve in a non-annular surface ¥ is (the
orientation-reversing-and-isotopy class of) an embedding S' — ¥ of the circle that
is neither nullhomotopic nor homotopic into an end of . A curve in an annulus is
rather (the isotopy class of) an embedding of S' whose complement consists of two
annuli. Notice that each annulus Y has a unique curve; we call this the core of the
annulus and denote it by 0Y. The set of curves in ¥ will be denoted by I'(X).

The intersection number of a pair of curves a, § € I'(X) is the minimum i(«, )
of the quantity !a(Sl) N b(Sl)| over all representative embeddings a,b: S' — .
The curves «, 8 are disjoint, written a L (, if they admit disjoint representatives,
that is, if i(a, B) = 0. Otherwise the curves cut each other and we write ahg. A
curve system on ¥ is a nonempty set of pairwise disjoint curves in 3J; being a set of
curves, note that the elements of a curve system are necessarily distinct and thus
nonisotopic. Curve systems a and 3 cut each other, denoted ahg, if aghfy for
some o € a and By € S (that is, if their union is not a curve system). Otherwise
the curve systems are disjoint and we write o L 5.

3.2. Subsurfaces. Following [BKMM, §2.1], an (essential) subsurface of ¥ is a
subset Y < X that is itself a surface and has the following structure:

e Y is a union of (not necessarily all) complementary components of a (pos-
sibly empty) embedding C: (u¥_;S') — ¥ whose components C, ..., Cj
each define curves in ¥.. The components of C nY are then pairwise disjoint
or isotopic curves in ¥ and so determine a curve system 0Y on X; these are
the boundary curves of Y.

e No two components of Y are isotopic (equivalently, no two annuli compo-
nents are isotopic).

e No component of Y is a thrice-punctured sphere.

Subsurfaces of ¥ are identified when they are isotopic in X. We reserve the term
domain for a connected subsurface of ¥. Note that X is itself a subsurface of ¥ and
has trivial boundary 0% = &

Given a subsurface Y of ¥, the inclusion induces an injection I'(Y') < I'(X) that
allows us to identify I'(Y") with the set of curves in ¥ that are essential in Y. Note
that a curve of Y lies in T'(Y) < I'(¥) if and only if it is the core of an annulus
component of Y. For any subsurface Y of S we use the notation T'(Y) = Y UT'(Y)
for the set of curves that are essential in Y or homotopic to a boundary component.

On the set of subsurfaces of ¥, define a relation Z = Y to mean I'(Z) < T'(Y) as
subsets of I'(X). In this case, one may adjust Z by an isotopy so that it is a bona
fide subsurface of Y. The relation = may thus be safely read as “is an (essential)
subsurface of,” and we accordingly use the notation ¥ = ¥ to mean that Y is a
subsurface of ¥. We alsouse Z =Y tomean Z Y and Z # Y.

Lemma 3.3 (Behrstock—Kleiner—-Minsky—Mosher [BKMM, Lemma 2.1]). The set
of subsurfaces of ¥ (including &) is a lattice with partial order = and meet/join
operations (termed “essential union/intersection”) denoted by L and m:

o Subsurfaces Z and'Y are isotopic if and only if T'(Z) =T(Y).

o Y L Z is the unique =-minimal W so thatY =W and Z = W,

e Y 1 Z is the unique =—mazximal W so that W =Y and W = Z.

3.3. Cutting. We extend the binary relation M to the set of all curve systems and
subsurfaces of 3 as follows: We have already defined ahf when a, 5 are curves
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or curve systems on Y. A curve system « is said to be disjoint from a subsurface
Y © X, denoted by a L Y, if their isotopy classes have disjoint representatives;
otherwise they are said to cut and we write ahY .

Two subsurfaces Y and Z of X are said to be disjoint, denoted Y 1 Z, if they
have disjoint representatives. They are nested if Y = Z or Z = Y. Otherwise,
Y and Z are said to cut (or intersect transversely), denoted Y hZ. Observe that
Y AZ is equivalent to YhoZ and ZhoY. We say that Y and Z intersect if they
are not disjoint. We will also need a relative form of cutting:

Definition 3.4 (Relative cutting). Given a subsurface V = X, we say that two
subsurfaces Y1,Y2 of ¥ cut relative to V if Y{ Yy for all subsurfaces Y/ = Y; that
intersect V. In this case we write Y7 My Y5.

Remark 3.5. Note that Y7y Ys vacuously holds if either Y7 or Y5 is disjoint from
V; thus Y1hy Yo does not necessarily imply Y1 hY,. However, if Y7 and Ys both
intersect V, then Yihy Yy = YiYs.

Relative cutting has the useful property, over cutting, in that it passes to sub-
surfaces. That is, Y hy Z implies Y’/ iy Z' for all subsurfaces Y = Y and 7' = Z.

3.4. Mapping class group. The mapping class group of a surface ¥ is the quotient
Mod(¥) := Homeo™ (¥)/Homeog (%)

of the group of orientation-preserving homeomorphisms of ¥ by the normal sub-
group Homeog(X) of homeomorphisms that are isotopic to the identity. Observe
that Mod(X) acts on the sets of curves, curve systems, and subsurfaces of ¥ pre-
serving the relations d, L, and =. We write D, € Mod(X) for the (left) Dehn twist
about a curve « in X; see [FM, Chapter 3].

Definition/Theorem 3.6 (Nielsen—Thurston Classification [Thu]). Let ¥ be a
connected surface with x(X) < 0. An element ¢ € Mod(X) is said to be:

e finite-order if there is an integer k > 1 such that ¢* is trivial in Mod (%),

o reducible if it is not finite-order and there is a curve system C' on X such
that ¢(C) = C; any such C is called a reducing system for ¢, A canonical
reducing system has the property that for some integer k, for each comple-
mentary component of C, ¢* fixes the component and is either the identity
or pseudo-Anosov.

e pseudo-Anosov if the set {¢*(a) | k € Z} is infinite for each curve o in Y.

Moreover, each ¢ € Mod(X) falls into ezactly one of these categories.

3.5. Curve complexes. Let ¥ be a connected surface with £(X) > 1. The curve
graph (or curve complex) of ¥ is the simplicial graph C(X) with vertex set Co(X) =
I'(X) and edges defined as follows: If £(X) = 2, then two curves «, 8 in 3 are joined
by an edge in C(X) if they are disjoint. If £(X) = 1, then ¥ = S7; or ¥ = Sp 4 and
two curves «, 3 are joined by an edge if they intersect once in the case of Si; or
twice in the case of Sp4; in either case C(X) is the well-known Farey graph.

The curve graph C(Y) of an annular subsurface Y © ¥ is defined following
[MM1]: The annular cover Ay — ¥ to which Y lifts homeomorphically admits a
natural compactification Ay coming from the usual compactification of ¥ = H2.
An (essential) arc in Ay is an isotopy class, rel endpoints, of properly embedded
arcs whose endpoints lie on opposite components of 0Ay . Two such arcs are said to
be disjoint if they have representatives with disjoint interiors. We may then define
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the curve graph of Y to be the simplicial graph C(Y) whose vertices are arcs in Ay
with edges joining every pair of disjoint arcs.

Every curve graph is given the path metric in which each edge has length 1.
A geodesic metric space is said to be d—hyperbolic if each side of every geodesic
triangle is contained in the d—neighborhood of the union of the other two sides.

Theorem 3.7 (Masur-Minsky [MM2]). There is an integer 6 > 0 depending only
on S such that the curve graph C(X) of every domain ¥ = S is §—hyperbolic.

The number ¢ may in fact be chosen independently of S [Aou, Bow, CRS, HPW];
e.g., 6 = 17 works. We emphasize that by our convention § is an integer.

3.6. Markings. Following [MM1], a (clean) marking p on a connected surface ¥
with £(X) = k > 1 is a pair u = (base(u),t), where base(u) = (61,...,0k) is a
maximal curve system on ¥ (a so-called pants decomposition) and t = (t1,...,tx)
is a tuple of curves on ¥ such that §; and ¢; intersect minimally (either once or
twice) subject to the condition that 8; and t; are disjoint for all ¢ # j. A marking
on an annulus Y = X is a pair u = (base(u),t) where base(u) = S is the core of
Y and t € Co(Y) is a vertex of the curve complex of Y. The curve system base(u)
and tuple ¢ are respectively called the base and transversal of the marking p. (Our
definition of marking is more restrictive than that used in [MM1] but shall suffice
for our purposes).

A marking on a disconnected subsurface ¥ = S is simply a choice of marking for
each component of . The set of markings on a surface ¥ will be denoted M (2).

3.7. Subsurface projections. Let ¥ be a connected surface with £(X) > 1 and
Y = ¥ a domain. We define a map 7y : Co(X) — P(Co(Y)), with codomain the set
of subsets of Cy(Y), as follows. For concreteness, fix a complete hyperbolic metric
on ¥ and realize Y such that 0Y is a union of geodesics. First suppose £(Y) > 1 so
that Y is not an annulus. If o € Cp(X) = I'(2) is disjoint from Y we set my () = &
and if o € T'(Y') we set my () = a. Otherwise ahY and the geodesic representative
of « intersects Y in a collection of proper arcs. For each component a; of a n'Y,
the boundary of a regular neighborhood of a; U dY in Y determines one or two
curves in Y the set of all curves obtained in this way is 7wy («). For an annulus Y
and a curve a € Cyp(X) = I'(X), we still set 1y (a) = & when « is disjoint from Y.
Otherwise ahY and we let my (o) be the set of lifts of o that give essential arcs in
the compactified annular cover Ay .

We extend the domain of 7y to sets of curves by adopting the convention that
7y (A) = J,ea Ty (a) for any set A of curves on 3. We also define the notation

diamy(A) = diamc(y) (ﬂ'y(A)) and dy(A,B) = diamc(y) (ﬂ'y(A) U Ty (B))

for any sets or elements A and B in Cp(X). It is easy to see (e.g., [MM1, Lemma
2.3]) that diamy (a) < 2 for any curve system « on . In particular, if ag,...,ap,
is any path in C(X) such that a;hY for all 4, then dy (ap, ) < 2n. There is a
much stronger result for geodesics in C(X):

Theorem 3.8 (Bounded geodesic image [MM1]). There is a constant Q > 0 sat-
isfying the following: Let 3 be a domain in S with £(X) = 1 and let Y & X be a
proper subdomain. If g is a geodesic segment, ray, or biinfinite line in C(X) with
my () # & for all a € g, then diamy (g) < Q.
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If u = (base(u),t) is a marking in X, we define my (1) = 7y (base(u)) U 7y (¢);
that is, my (u) is obtained by viewing p as the set {81,..., Bk, t1,...,tr} of base
curves and transversals and projecting all these to Y. For any marking u € My (%)
and domain Y = 3, one easily finds that

my(p) # @ with  diamy (p) = diame(y)(my (1)) < 6.
We shall need the following elementary facts.

Lemma 3.9 ([BKMM, Lemma 2.12]). There is a constant k so that the following
holds for any nested domains V = W = X in S. Let « denote any curve system
or marking on . Then my («) is nonempty if and only if Ty (mw (@) is nonempty
and, moreover, diame v (mv (@) U Ty (7w (a))) < k.

Lemma 3.10. For each C = 1 there exists C' > 1 with the following property. If
e Mo(X) is a marking of a subsurface ¥ in S and « is a curve system on ¥ with
dy (u, ) < C for all domains V & X, then there is a marking ' € Mo(X) with
a < base(p') and dy (¢, 1) < C' for all domains V = X.

Proof. We follow the procedure, on page 798, of [BKMM, §2.2] to project the
marking p of ¥ to a new marking ' of ¥. Since my (u) and 7y («) coarsely agree
for all domains V' = X, we may choose the components of a to be base curves in
this inductive construction. This amounts to the following: For each curve a € a,
let A denote the annulus with 0A = a and choose a transversal ¢, € ma(u) < C(A).
Then for each complementary component V of ¥\«, project u to a marking py of
V as in [BKMM, §2.2]. These fit together to give a full marking (in the sense of
[BKMM]) 1/ of ¥ that we may straighten to be a (clean) marking in our sense. The
uniform bound on dy (i, ¢') is then a consequence of [BKMM, Lemma 2.10] O

3.8. Teichmiiller space. The Teichmiiller space T(X) of a connected surface X
with £(X) = 1 is the set of isotopy classes of marked hyperbolic structures on 3.
More precisely, T(X) is the space of pairs (X, f), where f: ¥ — X is a homeo-
morphism between Y and a complete, finite-area hyperbolic surface X, up to the
equivalence relation (X, f) ~ (Y, g) if there is an isometry ¥: X — Y with ¥ o f
isotopic to g. Observe that the mapping class group Mod(X) naturally acts on
T(X) by changing the marking: ¢ - (X, f) = (X, f o ¢~!). This action is properly
discontinuous and isometric with respect to the Teichmiiller metric given by

dr(s) (X, f), (Y, 9)) = inf {3 1og QC(®) | @ ~ go [},

where the infimum is over all quasiconformal maps homotopic to go f~! and QC(®)
denotes the maximum dilatation of ®. It is known that d7(x) is a complete metric
on 7(X) and that the induced topology is homeomorphic to R"= (e.g., see [FM]).
Moreover, T (X) is a unique geodesic metric space: every pair of points x,y € T (X)
are connected by a unique geodesic segment, which we denote by [z, y].

For a point x € T(X) and curve a € T'(X), we write £, («) for the length of the
geodesic representative of « in the hyperbolic metric . For any given ¢ > 0, the
e—thick part of Teichmiiller space is defined to be the subset

T(X) ={xeT(X) | ls(a) = eforall a e T'(X)}

consisting of those metrics for which all curves have length at least e. It is known
that Mod(X) acts cocompactly on 7¢(X) for every ¢ > 0.
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The conformal structure of an annulus is determined its modulus, and the usual
notion of the Teichmiiller space of the annulus is accordingly R, . In this paper we
also include curve complex distance and so formally define the Teichmiiller space
of an annulus A = S with core a = 0A to be the upper half plane

T(A) =T(a) =H? = {z+iy |y > 0}
equipped with the hyperbolic metric ds? = % of curvature —4. In this defi-
nition 1/y represents the hyperbolic length of the core dA and x measures twisting
about A; so the thick part in this case is Tc(A) = {z + iy | 0 < y < 1}. However,
due to their role in Minsky’s product regions (Theorem 3.11 below), for annuli we
are more concerned about the thin part T=(a) = {x +iy | y > 1}. Note that T(A)
is homeomorphic to R*4 = R2.

3.9. Product regions. Given any € > 0 and curve system « on 3, write H, o(X) =
{xeT(X) | ls(a) <e, Vae a} for the set of hyperbolic metrics in which the curves
in « are all shorter than e. Let P(X|a) denote the product space

PEla):= [ TOV) x [[T(a),

Vcl\a aEa

where the first product is over the connected components V' of ¥\«, equipped with
the sup metric dp(x|o) = maxv,o{dr vy, dra) }-

By using Fenchel-Nielsen coordinates adapted to the curve system « (see [Min]),
one obtains a natural homeomorphism

D, T(2) - P(E|a)

under which the T (a) component of ®,(w) is 7o (w) + m, where 7, is the FN
twist parameter of w for the curve a. The following foundational result of Minsky
says that, for sufficiently small ¢, the restriction of ®, to H. o(X) distorts distances
by a bounded additive amount:

Theorem 3.11 (Minsky, [Min]). There exists Do = 0, depending only on S, such
that the following holds for all sufficiently small € > 0: For any domain ¥ = S and
any curve system o on 3, all pairs of points x,y € He o(X) satisfy

|d7—(2)($,y) - d’P(E\(x)((ba(x)a (I)a(y))| < DO-

Moreover for every component V. Y\« and essential curve y € T'(V), the length
of v in x and in the T (V')-component of ®,(x) have ratio in [Dy*, Dy].

3.10. Volumes and nets. The Teichmiiller space 7 (X) admits a holonomy mea-
sure m defined as the push forward of the Masur—Veech measure on the space of
unit area quadratic differentials; see [Mas, Vee]. Let us write Ball(z,r) < T(X) for
the metric ball of radius r > 0 centered at x € 7(X). We shall need two facts about
m. Firstly, Eskin and Mirzakhani [EM, Lemma 3.1] have shown that there exists a
constant ¢ such all balls of radius ¢ < r < 2c have volume m(Ball(z, 7)) uniformly
bounded above and below. Secondly, Athreya, Bufetov, Eskin and Mirzakhani have
calculated the volumes of large balls centered in the thick part:

Theorem 3.12 ( [ABEM, Theorem 1.3]). There exists a constant C1 = 1 such
that for every domain ¥ = S, thick point © € Tc,(X) and radius r > 0, one has
m(Ball(z,r)) < Crel=".
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Note that these results in [ABEM)] and [EM] are stated for closed surfaces of genus
at least 2, but the proofs in fact hold for surfaces with £(3) = 2 (see, e.g., [Mahl]).
When £(X) = +1 and thus hy = 2, for ¥ = Sy 4 or S1,1 or Sp2, the Teichmiiller
space T (X) is isometric to the hyperbolic plane with constant curvature —4 and
these calculations are elementary. For annuli A = S we will primarily be concerned
with thin regions 7.5(A) consisting of points z with £,(0A) < €, whose volumes
may be estimated as follows:

Lemma 3.13. There exists Co so that if A is an annulus and x € T¢,(A) is thick,
then the € = e*eq thin region within T > 0 of x has m(Ball(z, r)m7§ceo (A)) < Cae”.

2
Proof. We use the disc model of hyperbolic space with the metric %.

We take the horocycle |z — %| = % centered at % of Euclidean radius % Its

interior is the horoball H. We want to bound the area of the intersection of H with
the disc of Euclidean radius r centered at 0.

For sake of simplicity assume r is of the form r = 1 — 5=

for some large n. For

211/
a fixed jp and j = jp,...,n — 1 consider the points in the horoball intersected with
annulus A; = {z:1— 2 < |z| <1 — 5% We want to find the set of § such that
11, 1
stze 21— —.
PR 2i

We find
cosf >2(1—1/2)* =1 >1-1/2"".

For j large enough, |0| <  and so
02 <1/(277%)

or § <6y = 2]/% Using the origin as base point we write the point 1/2 + 1/2¢%
as se' and we see that

9] < [6] < bo.

The total area of the annulus A; is of order 2/ and so the bound |¢| < 6 implies
the area of A; n H is at most C2/? for a constant C, and so is bounded by a
multiple of the square root of the total area of A;. We sum over j < n to get the
desired inequality. (I

Definition 3.14 (Fixed Nets). For each domain ¥ = 5, we henceforth fix a (c, 2c)—-
net A (2) in 7(X); this is a subset such that the c-balls centered on N (X) are all
disjoint but the 2c—balls cover T (X). We additionally write N, (X) = N (2)n T, (%)
for the set of thick net points and, for annuli A = S, write NS(A) = N(A)nTS(A)
for the set of thin net pints.

Since ¢ and 2c balls have uniformly controlled volumes, one finds, as in equation
(17) of [EM], that the volume of any ball is comparable to the number of net points
it contains. Thus Theorem 3.12 and Lemma 3.13 immediately give

Lemma 3.15. There is a uniform constant P > 0 such that for any domain ¥ = S,
thick point x € T.,(X), and radius v > 0, one has # |N(Z) n Ball(z,7)| < Pel=".

Furthermore, if ¥ is an annulus, then # ’ 54%0 (A) n Ball(z,r)| < Pe".
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3.11. Projecting to curve complexes. Every point x € T(X) admits a Bers
marking p, € Mo(2) constructed as follows: Greedily choose a shortest pants
decomposition base(g,) on the hyperbolic surface x, then choose a shortest-possible
transversal t; for each base curve S; € base(p,). There is a universal Bers constant
Lo > 0, depending only on S, such that any Bers marking 1, of any point x € 7 (%)
in the Teichmiiller space of any non-annular domain ¥ = S satisfies £,(3) < Lo for
all 8 € base(u,). For an annulus, the Bers marking of a point « € T(A) is just a
pair (0A,t) where the transversal ¢ € Cy(A) records the horizontal component of .
Given any domain V = X, the projection of x € T(X) to C(V) is defined as

my(x) = U {mv(z) | pe is a Bers marking on x}.
The projection distance in V of a pair of points z,y € T(2) is then defined to be

dy (z,y) = diamey) (mv (2) U TV (y)).

This projection is coarsely Lipschitz for nonannuli: There is a constant L > 1,
depending only on S, such that for all domains ¥ = S and x,y € T(X) one has

(3.16)  dy(z,y) < Ldy(x)(z,y) +L for all nonannular subdomains V' = X.

We caution that m4: 7(2) — C(A) is NOT coarsely Lipschitz for annuli A & X, as
is evident from the Distance Formula Theorem 3.33. However, we at least have the
following coarse continuity for every domain V = ¥ and point z € 7 (X):

(3.17) diamey) (U ﬂv(y)> < L for some neighborhood U < T(X) of =
yeU

In particular diame vy (my (7)) = dy (2, 2) < L for any = € T(X), meaning that all
potential Bers markings on x have coarsely the same projection to C(V'). For any
set F of curves on ¥ and any x € T(X), we also adopt the notation

dv(F, .T) = diamc(v) (’/Tv(F) % Wv(.’b)).

3.12. Alignment. We say that points in Teichmiiller space are aligned if they do
not backtrack when projected to curve complexes of subdomains. More precisely,
for 6 = 0 an n—tuple (xg, ..., 2,) in T(X) is said to be f—-aligned in a domain V = X
if for all indices 0 < i < j < k < n we have

dv(l‘i,l‘j) + dv(.ﬁj,l‘k) < dv(xi,xk) +6.

The tuple is moreover 8-aligned if it is #—aligned in every subdomain of 3. This
leads to the following easy consequence of hyperbolicity:

Lemma 3.18. For any domains V = X = S, if a triple (x,z,y) in T(X) is 60—
aligned in 'V, then my(z) is contained in the (0/2 + 49 + L)-neighborhood of any
C(V)—geodesic connecting wy (x) to wy(y).

Proof. Let g = (Y0,-..,7) be any geodesic with vy € my(z) and v € 7y (y). We
will show that my (2) lies within ¢ = 6/2 + 46 + L of g. To this end, choose any
B € my(z) and let « be a closest point to 8 along g. If dy (8, ) < 20 we are done.
Otherwise, we may choose o on a geodesic from S to « with dy (¢/, @) = 2§. Since
o' is not within ¢ of g, applying d—hyperbolicity to the geodesic triangles A (o, a, )



COUNTING FINITE-ORDER MAPPING CLASSES 17

and A(7yg, o, §) ensures there are points 8, and 3, on geodesics [y, 5] and [3, vk],
respectively, such that dy (8, '), dv (8y, ') < . Whence
dy (z,y) < 2L + dv (70, 1)
2L + dv (70, Bz) + dv (B, By) + dv (By, i)
2L + dv (70, 8) + dv (B, Vi) + 26 — (dv (Bz. B) + dv (B, By))
2L +dv(z,y) + 6 + 26 — (dv (B, B) + dv (B, By))
by (3.16) and alignment. Since dv (53, ) < dv (S, fz) + 39 and similarly for 3, the

claimed inequality now follows:

2dy (B, ) < dv(Bs, 8) + dv (B, By) + 65 < (2L + 6 + 26) + 65 = 26'. O

/

NN N

The following result of Rafi says that Teichmiiller geodesics are uniformly aligned:

Theorem 3.19 (Rafi, [Raf2]). There is a constant B such that for any domain
Y c S with £(X) = 1, any consecutive triple of points a,b,c along a geodesic in
T(X) is B-aligned, that is: dy(a,b) + dy(b,c) < dy(a,c) +B for all V = X.

This easily implies that Teichmiiller geodesics project to within bounded Haus-
dorff distance of geodesics in curve graphs:

Lemma 3.20. For any subdomains V = 3 = S and any geodesic [z,y] < T (%),
the projection vy ([z,y]) = C(V) has Hausdorff distance at most B + 85 + 3L from
any geodesic g connecting Ty (x) to wy (y).

Proof. Let g = (70, .- .,7%) be any geodesic in C(V') with v € 7y (z) and v, € Ty (y).
Theorem 3.19 and Lemma 3.18 show that 7y ([z,y]) lies within By = B/2+ 46 + L
of g. Conversely, the fact that my is coarsely continuous (3.17) implies there is a
subset {po,p1,-..,Pn} < v ([7,y]) with po = 70, pn = Y and dy (pi, pi+1) < 2L
for all 0 < i < n. Let g; € g be a closest point to p;. Then dy (p;,¢;) < Bg by the
above, and hence dy (¢;, gi+1) < 2B+ 2L. Since gy = 7o and g,, = v, we see that g
lies in the By + L neighborhood of the set {qo,...,qn}. The claim now follows. O

3.13. Strong alignment. While our above notion of alignment (§3.12) only con-
cerns curve complex data, the construction of complexity length in §8.2 will require
aligned tuples in which lengths of short curves vary roughly convexly. The precise
condition is as follows:

Definition 3.21. We say that a tuple (xq,...,x,) in T(X) is strongly 6—aligned,
where 6 > 1, if it is f—aligned and for every domain V = 3, there exist points
xy,...,xY appearing in order along [z¢,,] such that for each 0 < i < n we have
o dy(z;,x)) <0, and
e if V is an annulus then min{eg, £,, (0V)}/ min{eg, £,v (0V)} lies in [£,6].
This is in fact only a minor strengthening of alignment, in that any aligned tuple
may be superficially modified to achieve it:

Lemma 4.7. For any 0 > 1 there exists 8/ > 6 with the following property: For any
O—aligned tuple (xo, ..., x,) in T (), there is a strongly 6’ —aligned tuple (yo, - .., yn)
such that To = Yo, Tn, = Yn, and such that for all 0 < i < n we have

dv (zi,y:) 29 0 for every domain V = X.
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While the proof is not difficult, the formulation of strong alignment—involving
separate tuples for all domain—Ileads to a somewhat technical and involved argu-
ment. As such, we defer the proof until §4.2 below. We note that, along the way,
Corollary 4.4 will show the first bulleted condition of strong alignment is redundant,
in that any aligned tuple automatically satisfies it for some larger constant.

3.14. Active intervals. The subsurface projection values dy (x,y) are closely re-
lated to the manner in which the Teichmiiller geodesic [z, y] interacts with product
regions. This relationship is conveyed by the following results of Rafi.

In [Rafl, Theorem 3.1], Rafi proves that for all sufficiently small ¢ > 0 there
exists € > ¢ > 0 such that for any curve a € T'(X), every Teichmiiller geodesic [, y]
in 7(X) has a possibly empty subinterval I such that ¢,(«) < € for all z € I and
l,(a) = € for all z € [x,y]\I. For a subsurface Y = X, intersecting the intervals for
the components of 0Y (see [Rafl, Corollary 3.4]) produces a corresponding interval
for Y that enjoys the following property:

Theorem 3.22 (Rafi [Rafl, Proposition 3.7]). For each sufficiently small € > 0,
there exist constants 0 < ¢ < ¢ and M. = 0 such that for any domain X = S, any
Teichmiiller geodesic [z,y] € T(X), and any subdomain V = X, there is a (possibly
empty) connected interval IS, < [z,y] such that

(1) L.(a) < € for all z€ I and all a € OV
(2) for all z € [x,y|\Z{,, some component 3 of OV has £,(B) = €.
(3) dy(w,z) < Mc for every subinterval [w, z] < [x,y] with [w,z] "I, = &.

Remark 3.23. Notice that item (1) implies Z¢ lies in the thin region H. oy (%)
and hence, via Minsky’s theorem, projects to a path in the T (V)-factor of the
product region P(X|0V). In a later result [Raf2, Theorem 5.3], Rafi produces for
non-annular domains a related interval, defined in terms of expanding annuli, that
satisfies (1) and (3) and additionally fellow travels a unit-speed Teichmiiller geodesic
in T(V). Since we will not need this latter property and must deal with annuli, we
work the more rudimentary intervals from [Rafl] instead.

Recall that there is a universal Margulis constant such that on any complete
hyperbolic surface, every pair of curves with hyperbolic length at most this value are
disjoint. Hence, for small €, if domains U,V = ¥ have 0V hdU then Theorem 3.22(1)
implies 7:"6/ and f{, are disjoint. But it may be that ff, and ff] overlap when VAU.
To correct this, we will use a slight variation of Z¢.

Definition 3.24 (Uniform constants). Fix once and for all a constant ¢g > 0
smaller than the Margulis constant and small enough for Theorems 3.11 and 3.22
to hold for €y. Let €], < €y be the companion constant in Theorem 3.22. Define

M =100(M., +d + L+ B+ Q+k+K),

where M, is from Theorem 3.22, § is from Theorem 3.7, L is from (3.16), B is
from Theorem 3.19, Q is from the Bounded Geodesic Image Theorem 3.8, k is from
Lemma 3.9, and K is from the consistency Theorem 3.37 below.

Definition 3.25 (Active Intervals). For any geodesic [z,y] = T(X), where ¥ = S
is a domain, define the active interval of a subdomain V = ¥ along [z, y] as follows:

e For V is annular, Iy = Z7.
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e For V nonannular, Zy is the intersection of all subintervals [a,b] < [z, y]
satisfying both dy (x,a) < 2M, + 5L and dy (b,y) < 2M,, + 5L.

Our active intervals have the following properties:

Lemma 3.26. Let [x,y] be a geodesic in T(X) and V = X a subdomain. Then

(1) Ifdy(z,y) = M, then Iy is a nonempty, nondegenerate subinterval of [x,y].

(2) Ty < I, and for all z € Ty we have that £,(a) < ey for each component
a of OV and that 0V < base(u.) for every Bers marking u. of z.

(8) If [w, z] is a subinterval of [z, y\Zv, then dv(w,z) < M/3.

(4) If Y = ¥ is a domain with Y WV, then Iy nZy = . Moreover, if Iy # &,
then Iy n Iy = & for every subdomain U =Y with UMV

Proof. For (1), if V is annular then Zy = f‘e,” by definition; hence Zy is an interval,
and it being either empty or degenerate would imply dy (z,y) < 2M., + L < M by
Theorem 3.22(3) and (3.17). Next suppose V is nonannular. Since dy(x,y) = M
and projections change coarsely continuously (3.17), we may find a nondegenerate
subinterval [w,z] < [z,y] so that the distances dy (z,w) and dy(z,y) are both
within L of 2M,+7L+B. Then every point u € [w, z] satisfies dy (z,u) = dy (v, w)—
B > 2M,, + 6L by Theorem 3.19, and similarly dy (u,y) = 2M., + 6L. Thus each
subinterval [a,b] in Definition 3.25 contains [w, z]. As an intersection of intervals
that contain [w, z], Zy is thus indeed a nonempty, nondegenerate interval.

For (2), first observe that Zy < f‘ﬁ}); for annuli this is by definition, and for
nonannuli it holds since Theorem 3.22(3) implies f‘e}) qualifies as one of the intervals
in the intersection defining Zy,. Now for z € Zy, Theorem 3.22(1) ensures that
L, (o) < eg for each component « of V. If p, is a Bers marking at z whose pants
decomposition base(y,) fails to contain some component o € 0V, then we must
have a3 for some 3 € base(u,). Since base(yu,) is a shortest pants decomposition
on z, it must be that £,(8) < £,(a) < €. Since € is smaller than the Margulis
constant, this forces a and 3 to be disjoint; a contradiction. Therefore (2) holds.

For annuli, (3) follows immediately from Theorem 3.22(3). If V' is not an annulus,
then Zy n [w, z] = & can only occur if [w, z] is disjoint from some interval [a, b],
as in Definition 3.25, of the intersection yielding Zy . Without loss of generality, we
may assume [w, z] is contained in [z,a]. Two applications of Theorem 3.19 then
give dy (w, z) < dv(z,a) + 2B < M, + 5L + 2B < M/3.

For (4), we may assume Zy is nonempty, for else the needed conclusions are
immediate or vacuous. Thus it suffices to prove the ‘moreover’ conclusion for a
subdomain U = Y satisfying UMV (which could possibly be nested in V'), since
then we may apply it with Y = U. If V is an annulus, then the assumption oUhV
reduces to oUMOV. Similarly if Y is an annulus then necessarily U = Y and now
YtV reduces to oU MOV In either case, the needed conclusion Zyy nZy = & would
follow from (2) and ey being chosen smaller than the Margulis constant. Thus we
may assume that neither V nor Y is an annulus. Finally, we also assume Zy is
nonempty, for else there is nothing to prove, and write it as Zy = [a, b].

Since 0V projects to Y and all points of f‘e,‘) contain 0V in their Bers marking
by Theorem 3.22(1) (and the choice of €), we observe that

dy(w,z) <2L forall w,z e 7:"6/0

If Z3? were contained in Z{?, then Theorem 3.22(3), together with (3.17), would
evidently imply dy (z,y) < 2M,, + 4L. Thus [z, 2] and [y, y] would both be valid
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intervals in the intersection from Definition 3.25 that, since Y is nonannular, defines
Ty. As Iy is nonempty, ff/o therefore cannot be contained in ff,o Hence we may
choose some point w € f;o outside of ff/o and suppose, without loss of generality,
that w lies in the same component of [x,y]\Z{? as z, so that dy (z,w) < M, by
Theorem 3.22(3). The points b € Zy and w € ZE now respectively contain 0¥ and
OU in their Bers markings by (2) and Theorem 3.22(1). Since 0U, 0Y are disjoint
and both project to V, it follows using the triangle inequality that

dv(l‘,b) < dv(l‘ﬂﬂ) + dv(’w,b) < M60 + dv(a}/, &U) < MEO + 2.

By coarse continuity (3.17), this shows that dy (z,b") < M, + 3L for some point b’
immediately to the right of b. This means [b', y] qualifies for the intersection defining
Zy (recall that we have supposed V is nonannular). Therefore Zy is contained in
[0/, y] and hence disjoint from [a,b] = Zy, as desired. O

This also leads to the following analog of the bounded geodesic image theorem,
which roughly says that if Teichmiiller points z,y have a large projection to a
domain Z, then in any other domain V that cuts 0Z, the C(V)-geodesic from
7y () to 7y (y) must pass near 07:

Corollary 3.27 (BGIT for Teichmiiller space). For all domains Z,V =X = S, if
Z has a nonempty active interval Tz along a geodesic [x,y] in T (X), so in particular
if dz(z,y) = M, then dy(z,0Z) + dy(0Z,y) < dy(z,y) + M/3.

Proof. This is contentless when 07 is disjoint from V', since in that case dy (w, 0Z) =
diame vy (7 (w)) < L for all w. By Lemma 3.26(2), the hypothesis provides a point
z € Iz < [x,y] whose Bers markings all contains 0Z. Hence Theorem 3.19 gives

dy(x,02) + dyv(0Z,y) < dy(z,2) + dv(z,y) < dv(z,y) + B <dy(z,y) + M/3. O

3.15. Time order. The fact that cutting domains necessarily have disjoint active
intervals (Lemma 3.26(4)) allows for the following definition:

Definition 3.28 (Time order). Given a Teichmiiller geodesic [z,y] in 7 (X) and a
pair U,V = ¥ of domains, we write U < V or V > U, and say U is time-ordered
before V' along [x,y], to mean that UAV and that Zyy and Zy are nonempty along
[z, y] with Zy occurring before Zy when traveling from z to y.

While the geodesic in question and its orientation are both omitted from our
notation, we will strive to make these clear from context so that the meaning of U <
V' is unambiguous in our discussion of time-ordering. The following characterization
of time-ordering follows immediately from Lemma 3.26:

Lemma 3.29 (Characterizing time-order). Let [z,y] be a geodesic in T () and let
U,V = % be subdomains with UAV. Then U <V implies dy (z,0U) < M/3 and
dy(y,dV) < M/3. Accordingly, if dy(z,y) and dy(z,y) are at least M, then the
following are equivalent:
MU <V, (2)dy(z,0U)<M/3, (4) dy(z,0V)=2M/3,
(3) dv(dU,y) = 2M/3,  (5) du(dV,y) < M/3.

Corollary 3.30 (Triple time-order and relative cutting). If U, V,W = X are sub-
domains with dy (z,y) 2 M and U <V < W along [z,y], then UhyW.
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Proof. If the conclusion fails, we may find subdomains U’ = U and W' = W that
intersect V' but have U’ L 0W’. In particular, my (0U’) # & # my (0W’). Since
every curve system projects to a set of diameter at most 2 in C(V'), this implies

dy (OU, aW) < dy (8U, dU") + dy (3U", OW") + dy (aW', W) < 6 < M/3.
With Lemma 3.29, this gives dy (z,y) < 2M/3 + 6, contradicting dy (z,y) = M. O

Corollary 3.31 (Time-ordering subsurfaces). Suppose U,V © X satisfy U < V
along a geodesic [x,y] in T(X). If dy(z,y) = M, then U <V for oll U’ = U with
Ty # & and U'AV. Symmetrically, dy(z,y) = M implies U < V' for all V' =2V
with Ty # & and UAV'.

Proof. Let U’ = U be a subdomain with Zy» # @ and U'AV. If U < V < U’, then
Corollary 3.30 would give Uy U’. As this is clearly false, we must have U’ < V as
claimed. The proof for V' = V is similar. O

We also have the following basic observation.

Lemma 3.32. Let U,V © Y = X be domains with U < V along a geodesic
[z,y] € T(X). Then dy(z,0U) < dy(x,0V) + M/3.

Proof. Choose points u € Zyy and v € Zy and note these respectively contain oU,
OV in their Bers markings. Since U < V forces u € [z, v], Theorem 3.19 implies

dy (z,0U) < dy (z,u) < dy(z,v) + B < dy(z,0V)+ L+ B. O

3.16. Distance estimates. The following distance formula of Rafi [Raf1] says that
Teichmiiller distance can be estimated, with controlled multiplicative and additive
error, in terms of projection distances:

Theorem 3.33 (Distance Formula; [Rafl]). For each sufficiently large threshold
T, there exists K = 1 such that for every domain ¥ = S and all x,y € Tc,(X),

1
wdrem(@y) - K < Dl (z, )l + Y llogda(z, v)lp < Kdrs)(z,y) + K,
14 A

where the first summand is over all non-annular domains V = X, the second over
all annular domains A = S, and where [w], equals 0 when w < T and otherwise
equals w. Moreover, the rightmost inequality above holds for all x,y € T(X).

While the full strength of this result is generally off limits to us, as we cannot
afford multiplicative errors, we do make frequent use of the following consequence:

(3.34) z,y€ Ty (X),dv(z,y) < T for all domains V = S = drx)(z,y) <7 0.

In the case that x and y have short curves but are close in all curve complexes, we
have the following variation based on Minsky’s product regions.

Lemma 3.35. Given w,z € T(X), let oy (resp. o.) denote the multicurve con-
sisting of all curves on w (resp. z) of length at most €y. Partition o, = §y U Y
into those curves &, that are disjoint from o, and those 7y, that cut o,. Partition
0, =0, Uy, similarly. Set R = max{Ry, Ra} where

1 min{f,,(a), €0} 1 €0 €0
R, = = |log 2R w ), o) - - (1 1 .
LT e 2 [ il (), et | 2 aeﬁﬂ?éé% 2\ @) TR
ah

(1) If k = 1 is such that % < i;”((z)) <k foralla€ oy, uo,, then R <logk.
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(2) dres)(w,z) * R
(3) If dv(z,y) < T for all domains V = ¥ then drx)(w, 2)) X1 R.

Proof. Suppose the hypothesis of (1) holds. For every a € §,, U 0, we then have
min{l,(a), e} < min{kl,(a),e0} < kmin{l,(a), €}, so that the a—term in the
max defining R; is at most %log k. Hence Ry < logk. Now consider a € 7, and
B € 7, with ahf. Since o and § cannot both be short on z, we have £,(a) = ¢
and the hypothesis gives £, («) = €o/k. Similarly £,(8) = eo/k. Hence Ry < logk.

For (2), if z,y € T(X) are two points for which ¢, (), ¢, (a) < €, then Minsky’s
Product Regions Theorem 3.11 implies

1 L (a
dr(s)(2,y) + Do > 3 Eyga;
since @, (), 4 (y) € P(E|a) have at least this distance in the T («)—factor of the
product. Now let o € §,, U J, realize the max in Ry. If a € o, n o, then the
above inequality implies d(s)(w, z) = Ry —Do. If a € 0, but a ¢ o, then we may
choose a point y € [w, z] with £,(a) = € and apply the above to get dy (s (w,2) =
dr(z)(w,y) = R1—Do. The symmetric reasoning applies if a € o, \0,,. Now consider
any « € v, and g € v, with ahf. The geodesic [w, z] has to lengthen « to at least
€o before the intersecting curve S can become short; hence there are ordered points
w', 2" along [w, z] with £,/ () = £.,(8) = e9. Now the above observation bounds

€

dr(s)(w,w") + Dy below by 3 log 7.5y and symmetrically for dr(x)(#',2). Adding

log

these together and taking a max over all such a, 3 proves dr(x)(w, z) = Ry — 2Dq.

For (3), we first claim there is a constant k so that £,(a) < k for all a € §,,\0.
To see this, let z’ be the thick point obtained by lengthening every curve in o, to
have length €y (this can be done in Fenchel-Nielsen coordinates by, for example,
adjusting the vertical component of ®,_(z) in each H? factor of the product region
P(X|o.)). This adjustment changes neither subsurface projections nor the lengths
of curves in &,,\0, since any such « is disjoint from and unequal to the curves in
o, whose lengths are modified in the adjustment. Do the same to build w’. Then
dy(w',2') X T for all V so (3.34) implies dr)(w',2') 7 0. Now for a € §,\0-
we have £, (), £,/ (a), and £, (a) = €g coarsely agree by construction of 2’ and the
fact that w’, 2/ have bounded distance. Hence ¢, («) is bounded, proving the claim.

By moving w and z a bounded distance, we may now assume all curves a € §,,\0 -
have £, (a)) = €y and similarly that all 3 € §,\o,, have £,,(3) = €. Therefore, letting
Y be the multicurve §,, U J,, we have £, (), l.(a) < ¢ for all & € ). Hence by
Minsky’s theorem, d7 (s (w, 2) agrees up to additive error with the distance between
Dy (w), Py(2) in P(X]Y) = T(E\Y) x [ [}, T (). Since the projections d,(w, z) are
bounded, the distance in the Hy T («) factor is by definition coarsely given by R;.

We compute the distance in 7(X\)). Using the identification of this factor with
the product P(X\Y|vw), simultaneously lengthen all the curves in v, until they
achieve length €g; for each o € 7, this takes distance %1og ewé(()a). Parameterizing
this path as z(t) € P(X|Y) for t > 0, let us write v, < 7, for the curves that
are still shorter than ¢y at time ¢. The same argument as in the claim above
shows that if 8 € v, is disjoint from ~/,, then 8 has uniformly bounded length at
x(t). Hence as soon as (3 € v, becomes disjoint from ~% we may begin shortening

3 until it has length £.(3), which takes time 3 log ezt()g) % llog 7(57- In this

way we build a path of length, up to additive error, Ry from ®y(w) to a new
point 2’ so that £,.(8) = £,(B) for all § € «.. As this procedure does not change
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subsurface projections, we see that 2/, ®y(z) € P(X|Y) have bounded distance in
the T (X\Y)—factor. (To see this, look in the product P(X\Y|v.) and note that for
each component V' of ¥\() U 7,) these points are thick in 7(V') and hence close
by (3.34); further they are close in T(8) for 8 € «, by construction). Thus the
distance from ®y(w) to Py (z) in the T (X\Y)factor is equal up to additive error
to RQ. O

3.17. Consistency. By “undoing” the projection maps my, one may use curve
complex data of subsurfaces to build points in Teichmiiller space. This is accom-
plished by the work of Behrstock—Kleiner-Minsky—Mosher [BKMM] on consistency.

Definition 3.36 (Consistency). Given a number € > 1 and a connected surface %,
we say that a tuple (zv) € [ [, o5, C(V) is 6 —consistent if the following holds for all
pairs of domains U,V = X:

(1) UAV = min{dy(zv,0V), dv(zv,0U)} <0, and

(2) UcV = min{dU(ZU,ﬂ'U(Zv)),dv(Zv,aU)} <6.
(Observe that if 7y (zy) = & in (2), then zy is disjoint from U and 0U so that
dy(zy,0U) < 1 < 6 is automatic).

The following result says that, up to bounded error, the consistent tuples in
[Iyos C(V) are exactly those obtained by projecting points in the Teichmiiller
space T (X). It was proven for the case of markings as Lemmas 4.1-4.2 and Theorem
4.3 of [BKMM]. However, since every marking p € Mo(X) may be realized as the
Bers marking of some thick point, the result holds for Teichmiiller space as well:

Theorem 3.37 (Consistency and Realization [BKMM]). There is a constant K > 1
and function €: Ry — Ry so that the following holds for every domain ¥ = S':
o For every x € T(X), the projection tuple (my (x))ves is K—consistent.
o Conversely, every 0—consistent tuple (zv) € [ [,x, C(V) has a realization
point z € T(X) with dy (my (2), zv) < €(0) for all domains V = X. In fact
we may assume z € N, () is a thick net point.

Using consistency, one can easily see that the length of a curve a € I'(X) at a
point x € T(X) is related to the projection distances dy (z, «) for domains V = 3:

Lemma 3.38. For any non-annular domain ¥ = S, curve a € T'(X), and point
z e T, (D), if dy(z,a) <k for every domain V = X, then £,(a) ;. 0.

Proof. Let Y = X be a component of ¥\cv. Define a tuple (zv) € [ [~y C(V) by
zv = my(z) for each V = Y. This tuple (zy) is K—consistent by Theorem 3.37, and
hence is realized by a point zy € T¢,(Y"). Do this for each component of ¥\, and
choose a point z, € T («) on the horocycle y = /¢, and with twist parameter so that
To(Za) = Ta(x). These choices define a point in the product 2’ € P(X|«a), and we let
z = ®-1(2') € T(X) be the corresponding point under Minsky’s homeomorphism.
Note that z is thick by construction and has £, («) = €.

We claim dy (x, z) £ 0 for every domain V = X. Indeed, if V' L « then either
V is the annulus with core o or V = Y for some component Y of Y\q; in either
case Ty (z) = wy (zy) coarsely agrees with 7y (x) by construction. If instead Vrha,
then the fact that « is in every Bers marking at z implies dy (z,«) < L. Thus
dv(z,z) < dy(z,a) + dy(o,2z) < k+ L. This proves the claim and accordingly
bounds dr(x)(z, 2) by (3.34) since x and z are thick. Since a has length €q at z, it
follows that ¢, («) is bounded. O
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Corollary 3.39. For any k > 1, domain ¥ = S, and point x € T, (X), we have
#{Z =X | dv(2,0Z) < k for all domains V = £} £, 0

Proof. By Lemma 3.38, there is a number L such that if Z satisfies dy (z,07) < k
for all V = X, then each component « of dZ has ¢,(a) < L. On any hyperbolic
surface y, there are only finitely many curves of length at most L. Varying y over
a compact fundamental domain for the action of Mod(X) on 7¢,(X), we obtain a
number F' = F'(k, ) so that every point z € T, (X) has at most F' curves of length
at most L. Thus the number of subsurfaces Z = ¥ whose boundary curves have
length at most L on x is bounded in terms of F'. O

4. PRELIMINARIES — ANTICHAINS, STRONG ALIGNMENT, AND BRANCH POINTS

4.1. Antichains. If ¥ is a domain in S and €2 is a collection of subdomains of X,
we typically write Q for the set of topologically maximal domains in  (that is,
maximal with respect to the partial order = on ). Taking active intervals into
account, for each geodesic [z,y] in T(X) we may also consider the partial order

<[z,y] On domains in 3 defined by

V <[py) W <= VW and Iy < Iy along [z,y].

We then write QY for the set of domains in  that are maximal with respect to
<[z,y]- Since the order <[, 1 is more restrictive than =, we note that Q < QY.
For any collection €2 of domains and given integer i, we additionally write

9, = #{V e |&(V) =4}

for the number of domains in 2 with complexity i. The following is a variation of
Rafi and Schleimer’s bound on the cardinality of an antichain [RS, Lemma 5.1]. As
the statement we need does not follow directly from the result in [RS], we include
a proof in the same spirit as their argument.

Lemma 4.1. Consider a domain ¥ = S and a sequence of thresholds Tj, for
Jje{=1,..., &%) + 1}, satisfying M < Tesypq < Teny < --- < T-1. For any
geodesic [z,y] in T(X) and any domain W = X, the collections P(W) and PY% (W)
of topologically mazimal and <[, ,1-mazimal domains in the set

PW)={VeW|dy(ry) =Ty}
satisfy [P(W)|; < [PL(W)]; < (3T41)SMW)=7 for each j e {—1,...,£(2)}.

Proof. Fix some j € {—1,...,§(X)}. It suffices to prove the bound on [P} (W)|;.
Since P(W) contains at most one domain (namely W) of complexity &(W) or
greater, it is clear that [P (W)[; = 0 when j > {(W) and that [PL(W)[; < 1 =
(3Tj41)° when j = £(W). We may therefore assume j < £(¥) and restrict to
domains W = ¥ with (W) > j.

Given any domain W = X, write QY (W) for the set of <[, ,j~maximal domains
in the collection

QW) ={V e W [dv(z,y) = Tj4}.

We claim that QY(W) contains every domain of P¥(W) of complexity j. Indeed,
if Ve PY(W) has £(V) = j, then we must have V e Q(W) since V = W and
dv(z,y) = T; > Tj41 by definition of P(W). Thus if V' ¢ QY(W), it must be
that V <[, Z for some distinct Z € Q(WW). This implies V' = Z, and hence
§(Z) =z j+1and T¢(z) < Tj11 by monotonicity of the thresholds. Therefore, the fact
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Z e QW) gives Z = W and dz(x,y) = Tj11 = Te(z). But this implies Z € P(W),
contradicting the maximality of V' in P(W). This proves |P3(W)|; < [Q5(W)],.
It thus suffices to prove [Q(W)[; < (3T41)¢M)=7 for every geodesic [z,y] and
domain W = ¥ with (W) > j.

The proof of this proceeds by induction on the complexity k = £(W) of the do-
main W: For each each k = j,..., (), we will prove that [Q%(W)]; < (3Tj41)*7
for every domain W with £(W) < k. We have already seen that this bound is
immediate for k = j.

Let us therefore fix k > j and assume that [Q%(Z); < (3Tj41)*177 whenever
&(Z) < k. Let W = X be any domain with £(W) < k and choose curves a € my ()
and 8 € mw (y) realizing the distance dewy(a, ) = dw(z,y). Fix also a geodesic
O =",---,%n = B joining « to § in C(W).

We claim that every domain V € Q(W) with V # W is disjoint from one of the
curves ;. This is immediate if a or g is disjoint from V. Otherwise, letting u, be a
Bers marking on z with o € 7wy (), Lemma 3.9 implies that 7y () < my (mw (12))
lies within k of 7y (u1,). Hence dy (o, ) < k + 2L and similarly for dy (8, y). Thus

dy(a,B8) zdy(z,y) —2k—4L > T;11 > M -2k —4L > Q
by the specification of M in Definition 3.24. We may now invoke the Bounded

Geodesic Image Theorem 3.8 to conclude 7y (;) = & for some i, as claimed.
We moreover claim that if V € QY(W) < Q(W) is disjoint from ~;, then

i<iTjy1 o m—i< 3T
Indeed, if this is not the case then necessarily dw (x,y) = m = T;j11. Therefore
W e Q(W) by definition. For any point v € Zy, the Bers marking pu, contains oV,
which is disjoint from ;. Hence dw (v,v;) < L+ 2 < 3L. On the other hand
dw(z,vi) = dw(e,vi) =i and  dw(y,v) = dw(B,7) =m —i.
As these quantities are both at least %Tjﬂ, we therefore see that
dw (z,v),dw (y,v) = 3Tj11 — 3L > IM— 1M > IM.

But by Lemma 3.26, this is only possible if v € Zy,. Thus we evidently have
Iy < Ty, contradicting the <[, ,-maximality of V" in Q(W).

Therefore every V e QY (W) satisfies V.= W or else V = Z for some Z in the set

Z ={Z | Z is a component of W\y; for some i with max{i,m — i} < £Tj41}.

Further, since Q(Z) c Q(W), every V & Z that is <[, ,j-maximal in Q(W) is also
<[zy] maximal in Q(Z). Thus we have

QW) < {(who [ 2U2).
ZeZ
In particular, [Q5(W)[; < X4z [Q(Z)]; < | 2] (3Tj41)* 179 < (3Tj11)* by our
induction hypothesis and the fact that |Z| < 4(1+ 37}41) < 3T;41. This concludes
the induction and the proof of the lemma. O

AN

4.2. Promoting alignment to strong alignment. Here we prove Lemma 4.7
and show that aligned tuples may be transformed into a strongly aligned ones by
merely adjusting the lengths of certain curves while not affecting curve complex
projections. We first show how to find, for each domain V, the ordered points z)}
along the geodesic [zg, x,] required in the Definition 3.21 of strong alignment.
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Lemma 4.2. If (xq,...,x,) is O—aligned in T(X), then for each domain V = X
and 0 < i < n there is a point w; € [z, Tn] so that dy (x;, w;) < (0 +M)/2. Clearly
we may take wy = xg and w, = Tp.

Proof. Let g be any C(V') geodesic from 7y (xg) to my (2, ). Lemmas 3.18 and 3.20
show that 7y (z;) lies within 0/2 + 49 + L of g and that g lies within B 4+ 85 + 3L of
v ([0, zn]). Whence there is a point w; € [zg, x,] so that dy (z;,w;) < 6/2+ B+

126 + 4L < (6 + M) /2. O
Lemma 4.3. Let (xq,...,x,) be O—aligned in T(X), let V = X be a domain, and
let wo, ..., wy € [To, Xy be points such that dy (z;,w;) < T for each0 < i< n. Ifo
is a permutation of {0,...,n} such that the points wy gy, . . ., Wy(n) appear in order

along [wo, z,], then dy (2, we(;)) < 4T + w for each 0 <i < n.

Proof. Set y; = wy(;) for each i. We fix 0 < j < n and bound dy (v;,y;). By the
pigeonhole principle, we may pick some i < j so that j < o~!(i). Similarly, there is
some k > j so that 0~ 1(k) < j. Thus the points wy, = Yo—1(k)» Yj> A0d Yg-1(4) = W;
appear in order along [z, x,]. Since wy appears before w; when traveling from z
to z,, two applications of Theorem 3.19 then give

dy (zg, wy) + 3dy (Wi, w;) + dy (w;, Tp)
< dy(xo,w;) + dy (wg, w;) + dy (wg, ) + 2B
< dv(xo, ;) + dy(zi, xx) + dv (g, x,) + 4T + 2B,
where for the last inequality we have used the assumption that dy (z;,w;) and

dy (xg,wy) are both at most T. By f-alignment and the triangle inequality, the
right hand side above at most

dv (xo,xpn) + 20 + 4T + 2B
< dy (xo, wy) + dy (wg, w;) + dy (ws, ©,) + 260 + 4T + 2B.
Subtracting the beginning and end of this string of inequalities now gives
dy (wg,w;) <0+ B+ 2T.
On the other hand, using f—alignment and Theorem 3.19, we have that
2dv (yj,7;) < (dv(y;, wi) + dv (wi, 2;) + dv (i, 2;))
+ (dv (), wk) + dv (wg, zi) + dy (zk, ;)
< (dv(wk, yj) + dv(yj,wi)) + 27T + (dv(xi,xj) + dv(xﬁxk))
< dy (wg,w;) + B+ 2T + dy (x;, xx) + 0
< 2dy (wg, w;) + B+4T + 6

Combining this with the previous inequality proves dv (y;,z;) < 4T + w. O

Corollary 4.4. If (zg,...,xz,) is O—aligned in T(X) and V © X is a domain, then
there are ordered points yo, . ..,yn along [xo,x,] so that dy(z;,y;) < 4(0 + M).

We next determine which curves require adjusted lengths. To this end, given a
tuple (xq,...,x,) in T(X), let us say an annulus A = ¥ length-constrains x; if the
following holds for both y = g and y = x,:

da(zi,y) =50 +M) or £,(0A) < e.
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Observe that in this case A has a nonempty active interval Zy = Z% along [zq, 2]
(c.f. Theorem 3.22 and Definition 3.25). Indeed, if ¢,,(0A) or ¢, (0A) is less than
€y this is obvious. Otherwise d4(x;,20),da(z:, xn) = 5(6 + M) so that alignment
implies d (2o, x,) = 10M + 96, showing that Z, is nonempty by Lemma 3.26.

Lemma 4.5. Let (xq,...,x,) be O—aligned. If annuli A, B = X both length con-
strain x;, then the curves 0A,0B are disjoint.

Proof. By contradiction, suppose 0AhdB. Since A and B both have active inter-
vals along [z, x,], they are time-ordered and without loss of generality we may
assume A < B. Thus ds(0B,z,),dp(xo,0A) < M/3 by Lemma 3.29. Evidently
ly, (0A) = €, since @, ¢ I = Ta; hence the definition of length constraining gives
da(zi,xn) = 5(0 + M). Similarly dp(zo,x;) = 5(0 + M). It follows that

da(z;,0B) = da(zi,xy) — da(0B, zp)
dB(éA,xl) = dB(l'o,.’Ei) — dB(aA,J?o)

But this contradicts Theorem 3.37. O

}25(0+M)M/3>3M>K.

Lemma 4.5 implies that the core curves of the annuli that length constrain z;
form a (possibly empty) multicurve. The next lemma says this multicurve is close
to the Bers marking pu,, in all subsurfaces.

Lemma 4.6. Let (xg,...,x,) be O—aligned. If A © X length constrains x;, then
dy (z;,0A) Z4 0 for every domain V = X.

Proof. Let V = X be arbitrary. It suffices to suppose 0A projects to V', for else
dy (x4, 0A) = diame(y)(my (2;)) £ 0. Since A has a nonempty thin interval along,
we may choose a point y € [xg, z,] such that ¢,(0A) < €. Thus A is contained in
every Bers marking at y. If dy (zg,x,) < M, then two applications of the triangle
inequality followed by #—alignment and Theorem 3.19 imply

2dy (0A, x;) < 2dv (y, z;) < dv (w0, y) + dv (y, 2n) + dv (zo, 7i) + dv (@i, 20)
< 2dy(xo,2n) + B+ 0 <2M + B + 6,

as desired. Hence it remains to suppose dy (zo,x,) > M, which ensures V has a
nonempty active interval Zy along [xg, z,].

First suppose AhV and, by symmetry, that A < V along [z¢,2,]. Then evi-
dently =, ¢ Z4 and so (as in Lemma 4.5) the length constraint hypothesis implies
da(x;, xy) = 5(6+M). Time order also gives da(0V, x,) < M/3. Therefore we have
da(z;, V) = 5(0+M) —M/3 > K. Consistency of the point z; (Theorem 3.37) now
implies the desired bound dy (z;,0A) < K.

Otherwise we necessarily have A = V. Since 0A € my(w) for all w € Ty, the
entire interval projects to a set of diameter at most 2L in C(V'). In particular, we
cannot have T4 = [zg, %], as that would put us in the case dy (g, z,) < 2L <M
dispensed with above. By Lemma 4.2, we may choose a point 2z’ € [z, z,] with
dy(x;,2") < 64+ M. Since Ty # [z, 2] and T4 projects to a set of diameter at
most 2L, we may by (3.17) choose some z € [zg,2,]\Za with dy(z,2") < 3L. The
point z either lies before or after T4, let us suppose it is the former (the opposite
possibility being symmetric). Then Lemma 3.26 gives d4(zo, 2) < M/3. This also
implies xo ¢ Z9 = Za (since Za connected) and hence da(;,z0) = 5(6 + M) since
A length constrains x;. Combining these we find da(z;, 2) = 4(0 + M) > M. By
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the bounded geodesic image theorem (specifically Corollary 3.27), we now conclude
the desired bound

dv(ﬂ?“aA) < dv(.’lﬁi,z) + M/3 < dv(l‘i,z/) + 3L + M/3 <60+ 2M + 3L. O

Using these results, we can now transform any aligned tuple into a strongly
aligned one by modifying the lengths of core curves of length constraining annuli.

Lemma 4.7. For any 0 > 1 there exists 8/ > 6 with the following property: For any
O-aligned tuple (xo, ..., x,) in T (), there is a strongly 6’ —aligned tuple (yo, - .., yn)
in N(X) such that xo = yo, Tn, = Yn, and such that for all 0 < i < n we have

dv (i, yi) %90 for every domain V c 3.

Moreover, for every annulus A = S and 0 < i < n, we have £,,(0A) = € unless
each y € {xg,x,} satisfies da(z;,y) = 5(0 + M) or £,(0A) < €.

Proof. We may assume that # > M. Let A = ¥ be any annulus. Let u? € [z, z,,] be
the rightmost point satisfying d 4 (zo, uA) < 186 and let v4 € [z0, 2,] the leftmost
point satisfying da(v4,z,) < 180. Define a (possibly empty) subinterval J4 —
[zo, Tn] as follows:

If £,,(0A), Ly, (0A) < €, set Jy = [zq, Tn].

If £,,(0A) < € and £, (0A) = €}, set J4 = [z¢,v"]

If £,,(0A) =€) and £, (0A) < €, set J4 = [u?, x,].

If £,,(0A), €y, (0A) = €), then set J4 = [u?,v?] provided that u occurs
before v4 along [z¢, z,], and otherwise set J4 = .

It is easy to see that J4 < I, = i’jf: This is immediate in the first case above.
In the second case, if v4 = x( it is immediate, and if v4 # z then necessarily
da(v?, z,) = 180 — L > 17M showing that Z4 intersects [v4, x,] so that indeed
[20,v] © Ta. The third case is similar. In the final case, if J4 # & one similarly
finds that Z4 intersects both [z, u”] and [v#,z,] so that again J4 < Z4.

Notice that if w ¢ Ja, then either w € [z¢,u”] and we necessarily have both
Ly (0A) = €y and da(wo,w) < da(wo,u?) + B < 190, or else w € [v4, x,] and we
similarly have both ¢, (0A) = €, and ds(w,x,) < 196. On the other hand, if
w € J4 (which recall is contained in Z4), then for both z = zy and z = z,, we have

(4.8) 0u(0A) < ¢ and [dA(z,w) >180 or (,(0A) < eg].
Let 29 = xf', 27, ..., 22 = z,, be the ordered sequence of points along [z¢, ]

provided by Corollary 4.4 satisfying da(z;,z) < 80 for each i. Next define new
points y;* as follows: If 2! € Ja, then set y* = z/. If instead 2 ¢ J4, then define
y# = z provided z* € [z¢,u?]; if this fails, then necessarily z* € [v4,z,] and
we set yf‘ = x,. With these definitions, we note that zo = yé‘,y{‘, . ,y;:‘ =z,
appear in order along [xg, 2,,]. Furthermore, if y* # 2, then either y* = xq with

r{ € [wg,u?] or y = x, with 28! € [v4,z,,]. Hence the previous paragraph implies

da(z,y) <190 for all 0 < i < n.
Claim 4.9. If y € Ja then A length constrains x;.

Proof. If y{* € Ja, then by definition y* = z#* and hence da(x;,y) < 80. Since
(4.8) holds for w = y, for both z = 29 and z = z,, we conclude that either
da(z,x;) =180 — 80 = 5(0 + M) or £,(0A) < €). Thus A length constrains z;. O
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For 0 < i < n, fix a Bers marking u; at x;, and let a; be the set of core
curves of annuli A — ¥ that length constrain x;. Lemma 4.5 implies that «a; is a
multicurve in ¥, and Lemma 4.6 implies that dy (u;, «;) %y 0 for every V c X.
Lemma 3.10 therefore provides a new marking v; of ¥ such that «; < base(v;) and
dy (i, v;) %4 0 for every domain V — X.

We now construct points in 7 (X) by picking lengths for the curves of base(v;).
Specifically, use Fenchel-Nielsen coordinates to build a point y; € 7(X2) such that
v; is a Bers marking at y; and such that for each curve v € base(v;): if v = 0A
for an annulus A = ¥ with y € J4 then declare £,,(y) = £,a(0A), and if not
then declare £,, () = €. Notice that every curve « € base(v;) satisfies £,, () < €o;
thus by the Margulis lemma, every v ¢ base(v;) satisfies ¢,,(y) = €. Note that
Y1, - -+, Yn_1 immediately satisfy the final “moreover” conclusion of the lemma since
the only potentially short curves on y; are cores of annuli that length-constrain x;.
To complete the notation, also set yg = zg and y, = x,.

Notice that every annulus A = ¥ now satisfies

€ - min{eg, £y, (0A)} _©
€0 min{eg, ya(0A)} Ty

Indeed, the claim is immediate for ¢ € {0,n}, and for 0 < i < n we consider two
cases: First suppose yi! ¢ J4. Then by construction El/f‘ (0A) = ¢ and regardless
of whether or not 0A € base(r;) we also have £,,(0A) > €. Next suppose y € J4.
Then A constrains x; by Claim 4.9; hence dA € «; < base(y;) by construction and
consequently £y, (0A) = £, (0A) by fiat.

It remains to show the new tuple (yo,...,yn) satisfies the conclusion of the
lemma. For every domain V = ¥ we have

dv (zi,yi) < dv (i, 1) + dy (i, vi) + dv (vi, i) Lo L+ 0+ L

as required. Since (zg, . ..,z,) is f—aligned, this also proves (yo, . . ., yn) is '—aligned
for some 6’ depending only on 6. Furthermore, for every annulus A — ¥ we have

da(yi,yi') < da(yi, o) + da(zi, o) + da(zd, y) Lo 0+ 80 + 190.

This, together with the previous paragraph, shows that, after increasing 6’ if nec-
essary, both bullets of Definition 3.21 are satisfied for annuli. Finally, Corollary 4.4
ensures the first bullet also holds for nonannuli. O

4.3. Branch points. Fix some domain ¥ = S. For any triple of points y,z,z €
T(X) and domain V = X, hyperbolicity of C(V) implies that geodesics from my (z)
to my (y) and my (2) fellow travel for distance roughly equal to the Gromov product

(410)  (yl2)y = %(dv(%y) +dy(z,2) = dv(y, 2)) < min{dy (z,y), dv (z, 2)}.

More precisely, since 7y () always has diameter at most L, it is a basic exercise in
hyperbolic geometry (using, e.g. [ABC™, Proposition 2.1]) to prove the following;:

Lemma 4.11. If v, and 7. are any C(V)-geodesics from my(x) to my(y) and
my (2), then each p € v, with dy (my(z),p) < (y|2)Y + c lies within 86 + 4L + ¢ of
Ve O

Hyperbolicity of C(V) (again, see [ABC™T]) additionally implies that
(4.12) (y]2)Y = min{(y|w)Y, (w|2)¥} =55 —3L for all x,y,z,we T(X),V = .
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These observations allows us to perform the following construction to any collection
of geodesics in T (X) with a common endpoint:

Lemma 4.13. Consider any points x,yi,...,yn € T(X). For each domain V = S,
there is a “branch point” v € C(V') so that (v lies within 8(6 + L) of any geodesic
from wy(z) to my(yi). Further, if (yjlyr)y < ming,(wilym)Y + ¢, then (v lies
within 24(8 + L) + ¢ of any geodesic from my (y;) to my (y).

Proof. For 3,7, e C(V) let us write 2(5|v), = dv(u, B) +dv (p,v) —dv(B,7). Fix
curves a € my (z) and «a; € 7y (y;) for each i = 1,...n. Now let G = min(y|y,m)Y
and fix indices I, m achieving this minimum. Let {y € C(V) be the point on a
geodesic from « to o with

d(aaCV) = (al|am)a < (yl|ym)¥ +L=G+L.

Therefore dy (z,(y) — 2L < G is smaller than any Gromov product (y;|y;)Y and so
Lemma 4.11 implies ¢y lies within 86 + 6L of any geodesic from 7y (z) to my (y;).

Now suppose (y;j|yx)Y < G + c and, by the above, pick a point 3 on a geodesic
from « to a; with dy (v, 3) < 8 + 6L. Then

dy(z,8) + 85 + 7L = dy (o, (v) = (u|am)a = G — 2L = (y;lyr)y — 2L —c.

Since dv (z,y;) = (y;|yx)y + (m\yk)?‘; and 3 lies on a geodesic from 7y () to my (y;),
the above implies that

dv (yj, 8) < dv (z,y;) — dv (z, 8) + 2L < (z[yx),, + 85 + 11L + c.

Thus Lemma 4.11 implies § lies within 166 + 15L + ¢ of any geodesic from my (y;)
to my (y). Since dy (Cv, 8) < 83 + 6L, the claim follows. O

The next step is to show that the tuple (¢y/) of branch points is consistent:
Lemma 4.14. The tuple (Cv) € [ [,o5 C(V') is TM—consistent.

Proof. Let us call V' “large” if dy (z,y;) = M for alli =1,...,n and call V “small”
otherwise. Note that dy (z,(y) < 2M whenever V' is small; this is because (y lies
within 8(6+L) < M of any geodesic from 7y (x) to any 7y (y;) and therefore satisfies
dy (z,¢v) < dv(x,y;) + M for some i = 1,...,n.

Fix two domains V, W = 3. We must establish the inequalities in Definition 3.36
for the constant 7M. If V' and W are both small, then dy (z, (v), dw (z, (w) < 2M
and the claim follows from the fact that (7z(x))zcx is K-consistent (Theorem 3.37).
Hence we may assume one of V, W is large.

First suppose WAV with V and W both large, then they are time-ordered along
each geodesic [z, y;]. The characterization (Lemma 3.29) implies that W < V along
[z,y;] iff dy(z,0W) < M/3. Hence we may suppose W < V along each geodesic
[z,y;] (the alternate possibility V' < W along each [x,y;] being symmetric). Now
time-ordering implies dy (y;, 0V) < M/3 for each i. The fact that (v lies within M
of some geodesic from 7y (y;) to mw (yx), which evidently has length at most 2M/3,
thus implies dw (Cw,y;) < 2M for some j. Therefore dy ((w, 0V) < dw (Cw,y;) +
dw (y;,0V) < 3M and we are done in this case.

Next suppose that V is small and W large with 0W projecting to C(V'). In this
case dy (z, () < 2M and we may pick 7 so that dy (z,y;) < M. Since dy (x,y;) = M
mean, Corollary 3.27 implies that

dy (Cy, W) < 2M + dy (z, 0W) + dy (oW, y;) < dy (z,y;) + 3M < 4M.
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This establishes consistency when W = V with V small and W large, and (by
symmetry) when WAV with at least one domain large.

Finally suppose W = V with V large. If dy (W, (v ) < 7M we satisfy consistency,
so it suffices to assume dy (OW, (y) > 7M. Fix curves a € 7y (z) and «; € my (y;)
that each project to W (which we can do by Lemma 3.9). For each i, additionally
fix a geodesic g; in C(V) from « to «; and a point §; € g; with dy(Cv, 8;) < M.
Fixing indices j, k realizing min(y;|yx)y , we also take a geodesic g from a; to ay
that contains a curve § with dy ({v,8) < M. Note that every curve within 6M of
Cv cuts W (since 0W is too far away); hence all curves within 5M of 8 or any f3;
also cut W. In particular, Theorem 3.8 gives dw (Cv, 5;), dw (Cv, 8) < Q.

We consider two subcases: Firstly suppose dw ({v,«) > 2Q. Then for each i
we have dw (5;, ) > Q, which by Theorem 3.8 implies that some curve along g;
between « and f; is disjoint from W. This means every curve along g; from S; to
a; cuts W indeed, the curves missing W have diameter 2 in in C(V) and all lie
distance at least 5M from ;, thus such curves cannot occur along g; both between
«a and (; and between [; and «;. Therefore the Bounded Geodesic Image Theorem
gives dw (8i, ;) < Q. Since dw (;,y;) < k + L by Lemma 3.9, we conclude

dw (Yi, ¢v) < dw (Yi, 0q) + dw (04, 8;) + dw (Bi, (v) <2Q+k+L <M

for each i. The fact that (y lies within M of some geodesic from mw (y,,) to mw (yi),
and that this geodesic evidently has length at most 2M, implies dyw (Cw, Ym) < 3M.
Therefore the triangle inequality gives dw (Cw, (v) < 4M as needed.

The final subcase is dw (¢v, o) < 2Q. First observe that either dw (a;, 5) < Q
or dw(ax, ) < Q, since otherwise the Bounded Geodesic Image Theorem would
imply that g has curves missing W both between «; and 3 and between 8 and
ag. By symmetry let us suppose dw(a;,5) < Q so that the triangle inequality
gives dw (o, aj) < 4Q. Since dw (o, z), dw (o, y;) < k+L by Lemma 3.9, this gives
dw (z,y;) < M and implies dw ((w, ) < min; dw (x,y;) + M < 2M. Therefore

dw (Cw,¢v) < dw (Cw, ) + dw(z,a) + dw(a,(v) < 2M + k + L +2Q < 3M,

which concludes the proof of the Lemma. (I

Lemma 4.15 (Barycenters). There is a constant B > 2M such that for any do-
main ¥ = S, every ordered triple y,x,z € T(X) has a barycenter b € N, (X) so
that (z,b,y), (y,b,2), (2,b,z) are each B-aligned. Additionally, for any 6 = 2M
there exist annular-split barycenter ', 2’ € N () such that (y,y',x), (z, 7, 2), and
(y,v', 7, z) are each B—aligned, and so that for every domain V = X:

o IfV is an annulus and (y|z)Y > 0, then
dy(y,y) <B and dy(Z,z) <B.

o Otherwise diame(yy my ({0, 7', 2'}) < B with both (y,2',x) and (z,y’, z) B
aligned in V.

Thus y' and 2’ coarsely agree with the branch point b in all domains, except for
certain annuli for which 3" and 2’ instead agree with y and z.

Proof. Let (Bv) € []yo5C(V) be the 7TM-consistent branch tuple from Lem-
mas 4.13-4.14. Theorem 3.37 then gives b € N, (X) so that dy (b, fyv) < €(TM)
for every V = 3. Since (y|2)Y < min{(y|y)Y, (2|2)Y} + M/2 by (4.12), Lemma 4.13
ensures that Sy lies within M of any geodesic joining a pair of 7y (z), 7y (y) and
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my (2). These observations imply the triples (x,b,y), (z,b, z), and (y, b, 2) are, for
example, each 2(€(7M) + M)-aligned.

Now define (&v), (¢v) € [ [ ex C(V) so that & = (v = Py except for annuli A
with (y|2)4 > 6, in which case instead set £4 = 74 (y) and (4 = 7a(2).

Claim 4.16. ({v) and (Cv) are R—consistent, for R = 2€(7TM) + 11M.

Proof. We prove the claim for (£y/), as the proof for (¢y) is symmetric. Since (By)
is TM—consistent, it suffices to check consistency for pairs A,V involving a domain
A with da(€a,B4) > 4M. In this case A must be an annulus with (y|z)2 > 6. Since
Ba lies within M of any geodesic from 74 (y) to m4(2), we note that

da(€a,Ba) = da(y,Ba) < da(y,Ba) +da(Ba,z) <daly,z)+2M.

Thus da(y,z) > 2M, and additionally min{da(y,),da(z,2)} > (y|2)2 > 6 = 2M
by (4.10). It follows that at least two of the quantities da(y,b), da(x,b), da(z,b)
must be larger than M, since otherwise the triangle inequality would bound the
minimum of da(y,x), da(x,z), da(y,z) by 2M. Without loss of generality, let
suppose da(y,b),da(z,b) > M, in which case Corollary 3.27 implies

dv(y, Z) + 2dv(b, aA) < dv(y7 6A) + dv((?A, b) + dv(b, (9A) + dv(aA, Z)
<dv(y,b) + dy (b, z) + 2M/3
< dy(y, z) + 2(€(7TM) + M) + 2M/3.

Thus dy (By, 0A) < dy (b,0A) + €(TM) < 2(€(TM) + M). If dy (&v, By) < 4M, this
bounds dy (§v,0A) and proves the claimed consistency. Otherwise dy ({v, By) >
4M which again means V is an annulus with £y = 7y (y). Therefore

min{d(§a,0V), dv (§v, 0A)} = min{da(ma(y), V), dv (v (y), 0A)} <K <M
by Theorem 3.37, and the required inequality is satisfied. (|

Let 3/, 2’ € N, (2) be the thick net points provided by Theorem 3.37 realizing the
R-consistent tuples (&), (¢v). Then for annuli A with (y|2)2 > 0 the claim implies
da(y,y'),da(z,2") < €(R) which immediately gives 2¢€(R)-alignment of (y,y’, 2’, z),
(y,v/,x) and (x, 2, z) in A. For all other domains V', dy (v', By) and dy (Bv, 2’) are
at most €(R), which gives dy (v/,2) < 2€(R). Since By is a M—-barycenter of
{mv(x),mv(y), v (2)}, it also implies the three tuples above and (y, 2/, ), (z,v', 2)
are all 4(€(R) + M)-aligned in V, as desired. O

Lemma 4.17. The constant B and net points y',z' € N(X) from Lemma 4.15
can moreover be chosen so that (y,y', 2, z) is strongly B-aligned. Further, if y,z €
Teo (), then any annulus A with da(y', 2') > B satisfies £, (0A), L./ (0A) = €.

Proof. Let B and yo, 29 € N(S) be provided by Corollary 4.15 so that (y, 4o, 20, 2)
is B-aligned. Next apply Lemma 4.7 to obtain a new constant B’ > 98 and net
points yp, 2y € N(S) such that (y,yq,2h,2) is strongly 9B’-aligned and so that
max{dy (yo, ¥,), dv (20, 24)} < B’ for all domains V' = S. This latter property
implies these points y, 2{, additionally satisfy all the conclusions of Lemma 4.15
with the bound B replaced by (8 + 2%’).

If a domain V = S now satisfies dy (y(, z) > (B + 298’), then it must be that V'
is an annulus with (y|z)Y > 6 and, consequently,

max{dy (y,40), dv (20, 2)} < B < 5(B + M)
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by construction in Lemma 4.15. Hence, if y,z are thick, the construction in
Lemma 4.7 ensures we necessarily have £, (0V) > o and £, (0A) > €. O

5. FINDING GOOD POINTS

We now commence with the proof of the upper bound in Theorem 1.2. Since
there are only finitely many conjugacy classes of finite-order elements in Mod(S),
it suffices to perform the count for each conjugacy class separately:

Convention 5.1. We henceforth fix a finite-order element ¢o € Mod(S) and a
point xg € T(S) such that ¢g(xg) = xo; the existence of such a point was proven
by Nielsen [Nie]. Let mg = 2 be the order of ¢g. Since there are only finitely many
conjugacy classes of finite-order elements, we note that mg is universally bounded
depending only on S and may furthermore suppose € is chosen so that g € T, (S)

Our first objective is to find fixed points for elements of the conjugacy class [¢g]
that enjoy certain nice properties. To begin, let x; be any fixed point for ¢ € [¢o];
for example, if ¢ = foof~' we may take 1:;5 = f(zp). Now apply Lemmas 4.13-4.14
to the points 1:;5, d(xo), ..., 0™ (20) to get a TM—consistent branch tuple (¢y) and
corresponding thick point w € 7¢, (S) provided by Theorem 3.37. Since ¢ fixes z
and the set {¢(zp), ..., d™(x0)}, it follows that ¢(w) and w both coarsely satisfy the

branch condition of Lemma 4.13 for the list i, ¢(z), ..., 9™ (x0). In particular,
%

/0
T
4

for any domain V = S, if indices j, k are chosen to achieve min; (¢’ (zo)|¢* (z0))

then for y = w and y = ¢(w) the triples

(‘r:ﬁay7¢j(gj0))7 (¢j(x0)7ya¢k(z0))’ and ((;Sk(azo),y,:c;Q
are each (2€(7M) + M)-aligned in V. By Lemma 3.18 it follows that if A is a
C(V) geodesic triangle with vertices in my (), my (¢ (x0)) and v (¥ (z0)), then
7y (w) and 7y (¢(w)) both lie within €(7M) + M of each side of A. The set of such
points has uniformly bounded diameter, hence we conclude dy (w, ¢(w)) < 0. Since
w, ¢(w) are thick, the distance formula (3.34) now implies that d(s)(w, ¢(w)) Z0.

Definition 5.2 (Good fixed point). Apply Durham’s result [Dur, Theorem 1.3] to
the point w to obtain a fixed point x4 for ¢ with dy(s)(w,zg) £ 0. Since w is
uniformly thick, we may again adjust €y if necessary so that x4 € T¢, (.5).

By definition of the Gromov product, for each domain V' = S we have
dy (20, 74) + dv (x4, $(x0)) = dv (0, d(20)) + 2(z0|¢(20))y, -

We thus view V as “backtracking” for ¢ if (1‘0|¢5(x0))¥¢ is large, since in this case
(20, ¢, P(20)) is poorly aligned in V, and the C(V')-geodesics from xg to z4 and
then to ¢(z) fellow travel for a large distance. While in general it may be impossible
to eliminate backtracking entirely, as in the example described in §2, our good fixed
point x4 minimizes it in the sense that there cannot be backtracking in the full orbit

{¢*(V) | i € Z} of any domain.

Lemma 5.3. There exists A = 2M, depending only on S, such that for every

domain V = S we have that (x0|q$(a:o))$;(v) < A for some i € Z.

Proof. Let G = min; ; (¢ (20)|¢"(20))Y, and choose 1 < j,k < mq realizing this

%

minimum. Observe that if (qﬁi(a:o)|c;$”1(1:0))3‘c/,q> > @' for all i € Z, then |k — j| < my
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applications of (4.12) would imply (¢j(mo)|¢k(sc0))¥,¢ > G' — mo(50 + 3L); hence
there exists ¢ so that (¢'(z¢)|¢""!(20))Y, < G + mgM/2. By its construction in
Lemma 4.13, the branch point - thus lies within 24(6 + L) +moM/2 < moM of any
geodesic from my (¢ (z0)) to my (¢t (zg)). Since dy(w,y) < €(TM), it follows
that (¢%(zo), w, d* 1 (x0)) is 2(€(TM) + moM)-aligned in V, which is equivalent to
saying (¢'(z0)|¢* T (z0))y, < €(7M) + moM. Since z4 is fixed, the uniform bound

dy (w,z4) % 0 now implies (zo|¢(z0))7, ) = (¢ (w0)|¢"+ (20))Y, 0. O

Next apply Lemma 4.17 with constant § = A to obtain the annular-split barycen-
ters ag, by € N(S) for the ordered triple (xq,z¢, d(20)). We summarize the key
features of this construction as follows. To streamline notation, we define

(5.4) Ry = dy(z4,bs) for each domain V = S and element ¢ € [¢g].

Proposition 5.5 (Good point properties). There is a constant © > 9IM, depending
only on S, such that for each ¢ € [¢o] there exist points x4, ae,by € T(S) such that
(1) zy € Teo(S) is fized by ¢, and ay, by € N(S) are net points;
(2) the tuple (xo,ag, by, P(x0)) is strongly ©—aligned;
(3) each tuple (xo, a4, x4) and (z4,by, d(x0)) is O-aligned;
(4) unless V = S is an annulus with (x0|¢(xo))¥¢ > A, we have dv (ag,by) < ©
and (z9,bg, xg), (Te,as, P(x0)) are O-aligned in V;
(5) if dv(ag,bg) > ©, then V is an annulus and Ly, (0V'), by, (OV) = €o;

(6) for each V = S there exists j € Z so that Rij(v) <0;
(7) if Ry ) = TRY + 70, then dy (wo,by) = 60 > M;
(8) for any annulus V = S with R@ > 0, we have dy (bg, d(x0)) < O;

(9) for any nonannular V = S, we have R€ %o moldr(s)(zo, ¢(70))-

Proof. We take © = 4A + 48 + 9M. Then items (1)—(5) are immediate from
Definition 5.2 and the construction of ag, by in Lemmas 4.15-4.17.

For (6), Lemma 5.3 provides some j € Z so that (a:0|¢(x0))f;(v) < A. Therefore

the construction in Lemmas 4.15-4.17 implies that (x4, by, o), (24, b, #(x0)) and
(w0, by, ¢(x0)) are all B-aligned in the domain V' = ¢/ (V). Thus

2R, = (dvi(wg,bp) + dve (bg, 0)) + (dve (@4, bg) + dy (b, d(o)))
— (dv+ (20, bg) + dv(bg, ¢(x0)))
< dyi (g, 20) +B + dyi (g, ¢(20)) + B — dy (w0, P(20))
= 2(o|d(0))y, +2%B < 2A + 2B < 20.

For (7), since (24, by, ¢(20)) is O-aligned and z, is fixed, the hypothesis implies

dv(a?o, :E¢) = d¢(v)(¢(ﬂso),ﬂﬁ¢) > d¢(v) (b¢,ﬂj¢) -0 > 7dv(1'¢, b¢) + 60.
Thus by the triangle inequality we have

dv($0,b¢) = dv(l’o,l’¢) - dv(b¢,$¢) = 66 > M.
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For (8), we consider an annulus V with dy (4, by) = R?} > 0. Ifdy(ag, by) < B,
then B-alignment of (x4, ag, o) and (x4, by, ¢(xp)) implies

2(zold(x0))y, = dv(x0,34) + dy (4, p(x0)) — dv (0, $(z0))
= dy (zg,a¢) + dv(ag, xe) + dy (e, by) + dy (bg, p(x0)) — 2B
= (dv (z0,ap) + dv (ag, bs) + dv (bs, #(x0)))
=dy(ag,xe) +dv(ze,by) — dv(ag, by) — 2B
> 2dy (by, xg) — 2dy (ag, by) — 2B > 2(0© — 2B) > 2A.
Otherwise we evidently have dy (ag,bs) > B. In either case, the construction in
Lemmas 4.15-4.17 implies that dy (by, ¢(20)) < B < O.

Finally for (9), recall that by construction (zo, bg, ¢(x0)), (¢, bs, o) and (¢, bs, #(xo))
are each B-aligned in all nonannular domains. Hence for all nonannular Y we have

Ri(y) = d¢(y)($¢, b¢) < d¢(y)($¢, ¢(£U0)) + B = dy(l’o,.%’¢) + B
< dy(zo,be) + dy (bg, zy) +B
< dy (zo, ¢(x0)) + RY + 2%B.

Now fix a nonannulus V' and let 0 < j < mg be the smallest integer so that
dg—i(v)(zg,bg) < O, which necessarily exists by (6). Applying the above estimate
recursively with Y = ¢=1(V),...,¢77(V) we find

J mo
R < (2 dg-n (v (To, d(20)) + 2‘B> +0 %o 2 dgi(vy (70, 9(20))-
n=1 i=1

Since V' is nonannular, the Lipschitz bound (3.16) implies each term dy: (v (w0, ¢(20))
is at most Ld(s)(zo0, #(w0)) + L. Thus this estimate gives the desired bound. [

We remark that the failure of the Lipschitz estimate (3.16) for annuli in (9) is
the entire reason we have utilized the adjusted barycenters ag, by from Lemma 4.15
and the alternate conclusion (8).

6. BOUNDING THE MULTIPLICITY OF BRANCH POINTS

Recall that we have fixed an order my < o0 element ¢y € Mod(S) and point z €
Teo (S) with ¢g(z9) = xo. For each ¢ € [¢g], we have produced in Proposition 5.5 a
fixed point x4 for ¢ along with net points ay, by satisfying various properties.

In this section we bound the multiplicity of any given pair (a,b) € N (59):

Theorem 6.1. There is a polynomial p such that that for any ordered pair (a,b) €
N(S) and r = 0, there are at most p(r) finite order elements ¢ of [¢o] for which

dr(s) (2o, ¢(x0)) <7 and (ag,by) = (a,b).

6.1. Agreement. We shall prove this by using curve complex data to effectively
build-up a map ¢ on larger and larger subsurfaces. More precisely, we will bound
the indicated subset of [¢g] by partitioning into smaller and smaller subfamilies
that agree on larger and larger subsurfaces.

We begin by establishing some general topological statements that will be useful.

Definition 6.2. We say ¢,1 € Mod(S) agree in a subsurface A = S if for each
component Y of A we have ¢(Y) = ¢(Y) and ¢|y = |y up to isotopy. So in
particular ¢(A) = (A) as subsurfaces and, after adjusting say 1 by an isotopy,
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1~ 1¢ pointwise fixes A and its boundary dA. In the case of an annular component
Y, we additionally require

Remark 6.3. When Y is an annulus with ¢|y = 1y up to isotopy, we may always
precompose with Dehn twists T35, in ¥ so that ¢ and ¢ o T3, agree in Y. The
key point is that given any two curves «, 3 cutting Y we can choose n € N so
that dy (o, Ty¥(8)) < 1. Now, fix some curve a with ahY and choose n so that
dy (o, TPy~ p(a)) < 1. We claim that dy (8,9 '¢T3(8)) < 3 for every curve 3. ,
so that ¢ and ¢T¥ agree on Y. Indeed, choose k € N so that dy (T%(8), ) < 1.
Then, since Ty and ¥ ~'¢ commute, we have

dy (T(B), T T (B)) = dy (TE(B), Ty~ ¢(TE(B)))
< dy (TE(B), ap) + dy (an, TP ()
+dy (TP~ d(ao), TPy o(TE(B)) < 1+ 1+ 1 =3,

dy (8,9~ 9TH())

Annular components in A will be used to ensure mapping classes do not differ by
Dehn twists about boundary components. For example, if Y = S is a torus with one
boundary component, then agreement on Y conveys no information about twisting
in Y’; indeed the maps ¢oT3, for n € Z all agree on Y. If we let A be be the union of
Y with a disjoint annulus parallel to 0Y, then agreement on A additionally concerns
Dehn twists about JdY so that the maps ¢ o T2, n € Z, no longer all agree in A.

Lemma 6.4. For each k > 0 there exists a constant k' with the following property:
For a given point w € T(S) and pair of subsurfaces A,B = S, let F < Mod(S)
be a set of mapping classes such that for all ¢, € F we have ¢(A) = B and
dw (d(w),¥(w)) < k for each domain W = B. Then, up to agreement on A, the
collection {¢|la: A — B | ¢ € F} has cardinality at most k'. That is, F may be
partitioned into at most k' subfamilies in which all maps agree on A.

Proof. There is a universal bound, depending on £(.5), on the number of components
of A and the number of boundary components of each component. Hence, after
partitioning F into boundedly many subfamilies, we may assume !¢ fixes up to
isotopy each component and boundary component of A for all ¢, € F. To prove
the lemma, we must partition F to achieve agreement in each component Y of A.

First suppose Y is non-annular. Fix some ¢ € F. Then for all ¢y € F, the
projections my (¥ "1¢(w)) and 7y (w) coarsely agree in C(V) for each domain V = Y.
If w' € T, (Y) is a thick point realizing the consistent tuple (7y (w))vey, it follows
that dy (1 ~1e(w’),w’) X4, 0 for all such V and hence that dry) (Y ~1¢(w’), w') is
bounded by the distance formula. By proper discontinuity of the action on T (Y),
there are boundedly many mapping classes Y — Y that coarsely fix w’'.

Now suppose Y is an annulus. Fix ¢ € F, set V = ¢(Y), and let 8 € p, be a
curve in the short marking with ShY. The assumption implies that each ¥ € F
satisfies dy (¢(8),%(8)) < k and hence that there exists n € Z with |n| < k so
that dv (TV9(8),¢(8)) < 1. Letting F,, < F denote those ¢ that work with a
given power n, we thus get a decomposition F = F_j U --- U Fi into at most
2k + 1 subsets. By the triangle inequality, all ¥, " € F,, satisty dy (¢(58),4'(8)) =
dy (T3 (B), Ty (8)) < 2. Now, for any other curve a, we may pick j so that
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dy (T} (@), B) < 1. Note that ¢'T}. = T ¢’ for all ¢/ € F. Then all ¢, v’ € F,, have
dy ((a), ¢ (@) = dy (THb(a), TH (@) = dy (GTY (), %' T} (ar))

= dy (YTL (), ¥(B)) + dv ($(B), ¢ (B)) + dv (&' (B), ¥'Ti ()
<1+2+1=4.

Hence we have partitioned into boundedly many subsets that each agree on Y. [

6.2. Backtracking domains. Recall the streamlined notation R@ = dy(zg,bs)

from (5.4). We view R‘é as a measure of backtracking in V since, aside from the
exceptional annuli in Proposition 5.5(4), it coarsely agrees with the Gromov product
($0|¢(x0))¥¢ and measures alignment of the triple (xo, 24, #(20)) in V.

Let f: Ry — R, be the function defined by

Ft) =Tt +70

where © > 9M is from Proposition 5.5. We say that a sequence V,¢(V),..., ¢ (V)
Jumps for ¢ € [¢o] if for all 0 <@ < j

Rfuyy > (Rifl(VQ :

Remark 6.5. If 0 < i < j are such that V,...,¢*(V) and ¢*1(V),..., ¢/ (V) are
both jump sequences, then the concatenation V..., ¢7(V) is also a jump sequence
since for all i + 1 < k < j the monotonicity of f evidently implies

Rivy 2 F(RGi) 2 (R0

Definition 6.6. The set of backtracking domains D(¢) for ¢ € [¢po] is the union
of all jump sequences for ¢, that is, the set of domains ¢*(V) for which there
is a sequence {V,¢(V),...,¢'(V),...,#"(V)} that jumps for ¢. Remark 6.5 and
Proposition 5.5(6) imply that for every Z € D(¢) there exists 0 < i < myq such that
{¢p=(Z),...,Z} is a jump sequence contained in D(¢) and ¢p~*~1(Z) ¢ D(¢). We
call this 4 the backtracking index of Z in D(¢).

While each Y € D(¢) satisfies R;ﬁ > 70 by definition, the converse need not hold

since there may exist domains Y with R > 76 but whose orbit {¢/(Y) | i € Z}
does not contain a jump sequence. Nevertheless, we have:

Lemma 6.7. Every domain Z € D(¢) satisfies Rﬁ = dz(xe,by) > 7O. Dually,
the collection D(¢) contains every domain Z = S with R% > fmo=1(@).

Proof. The first claim follows immediately from the definition of jumping. We now
suppose Z ¢ D(¢) and show RZ < fmol(e). If Rﬁ < O there is nothing to prove,
SO we assume Rﬁ > 0. Let us write Z, = ¢*(Z) for k € Z. We may choose an
integer —mg < k < 0 so that ng < O and Rﬁj >0 forall k<j<O0.

For any k < j < 0, the sequence {Z;1,...,Z} evidently does not jump for ¢;
hence there is some j < j' < 0 so that R%, < f(Rﬁj). Starting with kg = k and
recursively using this observation to set k;H = Kk} produces a sequence integers
k=ky <--- <k, =0such that R%kHl < f(RdZ’kj) for each j. Since RZO <0
and n < k < mg, applying these inequalities inductively implies that

Ry = Ry, < [™(R}, )< fm™'(6). O
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For each Y € D(¢), let i = 0 be the index of Y and define a constant Cy by
o ¢
Cy == 6RS__,(y, +30 +2M.
Also set Cy = f™0(0). Since ¢~ ~1(Y) ¢ D(¢) by definition of the index, we note
that 9M < © < Cy < Cy—2M by Lemma 6.7 and the definition of f. In particular,
Cy is uniformly bounded.

Definition 6.8 (Orders on D(¢)). For ¢ € [¢g] we define four asymmetric relations
<; on the set D(¢) of backtracking domains as follows. For V,Y € D(¢),
V <o Y if there exists j > 1 so that {V,¢(V),...,¢'(V) =Y} < D(¢).
Va1 YifEVAY and V < Y along [bg, z4).
V<V if VY with dy (b, 0V) < Cy.
V<Y if VoY with dy(bg,0V) < Cy + M.
V<Y if VY with dv(b¢,aY) = Cy + 2M.
Thus <5 is a weaker version of <Ip; it will serve a minor technical role. Notice that
<lp and <; are non-reflexive partial orders; in particular they are transitive.

In general, for any subcollection W < D(¢) and i € {0,1,2,2,3}, we write W’
for the set of domains in VW that are minimal with respect to the order <;, that is:

Wi={ZeW |}V e W with Y «; Z}.
We also write W = W1 A W2 A W3 and W* = W9 ~n WT.

Lemma 6.9. Let W be any subcollection of D(¢). If U € W' is such that the
subcollection U = {Z e W | Z = U} is nonempty, then W' o U* # .

Proof. Since U is nonempty and finite and <1; is transitive, ! is nonempty. Now
consider some Y € U and take any Z € W with ZAY. Then either Z = U and we
have Y < Z by virtue of Y € U, or else ZhU and hence U < Z, since U € W1,
and consequently Y < Z by Corollary 3.31. Thus Y € W' as claimed. O

Lemma 6.10. Let W be a subcollection of D(¢). If V.e WHY\W3, then there exists
someY e W withY 2V,

Proof. The assumption V ¢ W3 implies that
Q= {ZGW|Z;Vanddz(bd,,aV)ZCo-i-M}

is nonempty. Hence we may choose a domain Y € Q@ maximizing the quantity £(Y).
We note that dy (by,dV) = Co + M. We claim Y € WT. To see this, we consider
any Z € VW and show that Z <; Y fails for each of ¢ = 1,2, 3.

First consider the cases ZAY and Z = Y. Then the the multicurve 0Z projects
to C(Y). If 0Z is disjoint from 0V, then we have dy(0Z,0V) < 2 and hence
dy (by,0Z) = dy (bg,0V)—2 > Cy+M—2 > Cy. When ZAY, this ensures Y < Z,
and when Z & Y it precludes Z <5 Y. If, instead, 0Z and 0V are not disjoint,
then ZhV and hence V < Z by the assumption that V e W!. If ZAY this implies
Y < Z by Corollary 3.31, and if Z = Y it implies via Corollary 3.32 that

dy(b¢,aZ) = dy(b¢,8V) — M/3 > Cy+ 2M/3 > Cy.
In either case, we may conclude that Y € W! n W2,

It remains to suppose Z 2 Y. Since by construction Y is the largest complexity
surface in 2, we must have Z ¢ Q. Hence dz(bs,dV) < Cp + M. On the other
hand, the containment V = Y gives dz(bgs, 0Y) < dz(bg, V) +1 < Cp + 2M which
precludes Z <i3 Y and consequently shows Y € W3, O
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Lemma 6.11. Let W < D(¢). If V € W', then there exists Y € W' such that
eitherY OV orelseY TV withY <5 V.

Proof. If V ¢ W3, then Lemma 6.10 provides a domain satisfying the conclusion.
We may henceforth assume V e W3. If V e W2, then V € W' and the claim holds.
Otherwise V ¢ W? and we have V' <l V for some V'’ € W. In particular,

V={ZeW|ZcV}

is nonempty. The subcollection V! is then nonempty, and we may choose a domain
Y’ € V! minimizing the quantity £(Y”). Firstly observe that Y’ € W by Lemma 6.9.
Secondly, observe that Y’ € W2. Indeed, otherwise

V={ZeW|ZcY}={ZeV|ZcY"}

is nonempty and hence contains some element Z € Y'. But then Z € Y' < V! by
Lemma 6.9 with £(Z) < £(Y”), contradicting the choice of Y.

Next observe that some Y = Y’ satisfies Y € WT. Indeed, if Y/ € W3 we take
Y =Y’ and if not then Lemma 6.10 provides such a Y. The domains Y and V
cannot be disjoint, since they both contain Y”’, and nor can we have YAV, as then
they could not both be minimal with respect to time order. If Y satisfies Y 2V,
then the lemma is verified. The only remaining possibility is Y & V| in which case
we must show Y <15 V. To see this, recall that we have V' <13 V. If the multicurves
0Y and 0V’ are disjoint, it follows that dy (by, 0Y) < dy (b, dV’) + 1. Otherwise
YAV’ and we must have Y < V' along [by, x4], by virtue of Y lying in W'; thus
dy (bg, 0Y') < dvy (bg, 0V') + M/3 by Corollary 3.32. In either case, we conclude

dv(b¢, 8Y) < dv(b¢,6V’) + M/3 < Cy + M,
which shows that Y <15 V, as desired. O
We also have the following observation relating <i; and <15 to <lg:

Lemma 6.12. Suppose Y,Z € D(¢p) and that Y <4 Z or'Y <5 Z. If a chain
¢~I(Y),...,Y is contained in D(p), then the corresponding chain ¢=3(Z), ..., Z is
also contained in D(¢). That is, p~7(Y) <o Y implies =7 (Z) <o Z.
Proof. Suppose not. Let i > 0 be the index of Z, so that {¢~(Z),...,Z} = D(¢)
is a jump sequence but ¢="1(Z) ¢ D(¢). Set Y' = ¢~ 1(Y) and Z' = ¢~71(2).
The assumption implies ¢ < j, so we have Y’ € D(¢) but Z’ ¢ D(¢).

We know that 0Y projects to C(Z) and hence that

dz(bg, xg) < dz(by,0Y) + dz(0Y, z4).

Now if Y <1 Z, then Y < Z along [bg, 24| and hence dz(by,0Y) < M/3 by
Lemma 3.29. If instead Y <15 Z then dz(bs,0Y) < Cz + M by assumption. In
either case we have
(6.13) RS = dy(bg,x4) < dz(3Y,24) + Cz + M.

We similarly know that 0Y’ projects to C(Z’). Since Y’ € D(¢), by Lemma 6.7,
dy/(z4,by) = 70 = M and so Y’ has an active interval along [z4,bs]. Thus we
may choose a point ¢ € [z4,bs] containing 0Y” in its Bers makings and apply
Theorem 3.19 to conclude that

dz(aY, $¢) = dZ/(6Y/,$¢) < dZ/(JCqs, aY’) + dZ/(aY/, b¢)
< dzl(x¢,t) + dZ/(t,b¢) < dzl($¢,b¢) + B = Rqu/ + B.
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Combining with (6.13) and using Z’' = ¢="1(Z) ¢ D(¢), we now conclude
Ry < dz(0Y,z4) + Cz + M < RS, +2M + Cy
= R, +2M + 6R}, + 30 + 2M

<f (Rg,,.,l(z)) .
But this exactly means {¢~*(Z),..., Z} does NOT jump for ¢, a contradiction. [J

6.3. Initial domains for compatible subsurfaces. In the spirit of “building
up” our maps on larger and larger subsurfaces, for ¢ € [¢] and a possibly empty
subsurface A = S, we write

Da(¢) ={Y € D(¢) | Y & ¢(A)}
for the backtracking domains whose preimages do not land in A. We emphasize
that if Y € D(¢) is an annulus, then Y = ¢(A) if and only if either Y is isotopic
to an annular component of ¢(A) or else Y & V for some component V of ¢(A).
Notice that for the empty subsurface we have Dg(¢) = D(¢) and for the whole
surface A = S we have Dg(¢) = . We view Da(¢) as the backtracking domains

that we still need to account for once we “know” ¢ on A.
We use the notation DY (¢) = (Da(¢))? for minimal elements as in Definition 6.8.

Definition 6.14 (Initial domains). Given ¢ € [¢g], we say a domain V = S is
¢—initial for a subsurface A = S if V e D% (¢) = ﬂf:o D' (¢). Note that we do not
require minimality with respect to <s.

We will consider subsurfaces A that are constructed by successively adding initial
domains, as follows:

Definition 6.15 (Compatible). A subsurface A = S is compatible with ¢ € [¢o] if
either A = Sorelse A= ¢ (Zyu---1Zy,) for some sequence &5 = Zo, Z1, ..., Zm
in which each Z; 1, with 0 < i < m, is a ¢-initial domain for A; = ¢~ (Zou-- -1 Z;)
(Recall from Lemma 3.3 that Zy u --- 1 Z; is the subsurface filled by Zy, ..., Z;).

The next two lemmas explain how subsets D 4(¢) and relations <; interact:

Lemma 6.16. If A — S is compatible with ¢ € [¢o] and domains Y,Z € D(¢)
satisfy Y <1 Z and'Y € D4(¢), then Z € Da(¢) as well.

Proof. If A = S then D(¢) is empty and the statement is vacuous. So assume
AcC Sandlet @ = Zy,...,Z, be the sequence of domains witnessing compatibility
of A, so that ¢(A) = Zou--- 1 Zy, and set B = ¢(A). We must prove Z € D 4(9),
which is equivalent to saying Z ¢- B. By means of contradiction, let us suppose
Z © B. Since YAZ but Y & B, we must have Y'hB. Since the Z; fill B, it must be
that YW Z; for some j (otherwise the subsurface B would be contained in S\0Y).

By definition of compatibility, Z; is ¢-initial for A;_1 = ¢ (Zo ... U Z;_1).
Since Y € Da(¢) € D4, ,(¢), the Definition 6.14 of initial ensures Z; < Y along
[by,xzg]. Since Y < Z along [by, x| by assumption, it follows that dy (0Z;,07) =
dy (bg,4) —2M/3. However, as 0Z and 0Z; are both disjoint from 0B, we also
have dy (0Z,0Z;) < 4. But this contradicts the estimate dy (by,z4) = 70 from
Lemma 6.7. O

Lemma 6.17. Let A = S be compatible for ¢ € [¢o] and let Y,Z € Da(¢). If
ZeDY(¢) andY <1; Z fori =1 ori=2, then Y € DY () as well.
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Proof. By means of contradiction, suppose Y ¢ DY (), meaning that there exists
some Y’ € Da(¢) with Y’ <g Y. Hence by definition Y’ = ¢/ (Y) for some j > 1
with {¢p=7(Y),..., Y} < D(¢). By Lemma 6.12 it follows that {¢p=7(Z),...,Z} <
D(¢) as well and therefore that Z' = ¢=7(Z) <o Z.

To obtain a contradiction, it suffices to show Z' € D4(¢). Since Y', Z’ € D(¢),
we know that Y/ and Z’ both determine active intervals on [by, z4]. First suppose
Y <1 Z. Then Y'hZ' and dy/(0Z',z4) = dy(0Z,z4) < M/3. By Lemma 3.29
this forces Y’/ < Z’ along [by, 4] and hence implies Y’ <11 Z'. Since Y’ € Da(¢),
Lemma 6.16 therefore implies Z’ € D 4(¢) as well. If instead Y <5 Z, then Y’ & Z.
Since Y’ € D4(¢), we have Y’ = ¢(A) and consequently Z’ ¢ ¢(A) as well. Thus
7' € D4(¢) as required. O

The next lemma ensures ¢—initial domains exists whenever D 4(¢) is nonempty.

Lemma 6.18 (Initial domains exist). Let A = S be a compatible subsurface for
@ € [do]- If Da(¢) is nonempty, then D% (¢) is nonempty as well.

Proof. Choose a domain Z’ € D4(¢) maximizing the quantity £(Z’). Since <
restricts to a partial order on the finite set D4(¢), there exists Z € DY(¢) with
Z = Z'"or Z <y Z'. By definition of <y, we have Z = ¢~/ (Z’) for some j > 0.

Case 1: Z € DY(¢): Let Y € DL(gb) be the domain provided by Lemma 6.11.
If Y = Z then we must have Y = Z € D% (¢) by the maximality of £(Z). Hence
Y € D%(¢) and we are done. Otherwise Y & Z with Y <15 Z. Since Z € DY%(¢),
Lemma 6.17 now implies Y € DY%(¢) and we again conclude Y € D% ().

Case 2: Z ¢ D4(¢): Since <; is a partial order on D4(¢), there necessarily
exists some V € DL (¢) with V <11 Z. Notice that V € DY (¢) by Lemma 6.17. Since
V € DY (¢), we may invoke Lemma 6.11 to obtain a domain Y € DL (). Y =V
with Y <15 V, then the fact V € DY(¢) with Lemma 6.17 implies that Y € DY (¢)
and hence Y € D% (¢). If instead Y 2 V, then the fact VhZ ensures we cannot
have Y L Zor Y = Z. But Z = Y is also ruled out by the maximality of £(Z).
The only remaining possibility is YhAZ. Since V' < Z, Corollary 3.31 implies that
Y < Z, which is to say Y <1y Z. Therefore Y € DY (¢) by Lemma 6.17 and we have
found the desired domain in D% (¢). O

The next lemma says, in light of Corollary 3.39, that there are uniformly bound-
edly many options for the image ¢(A) of a compatible subsurface.

Lemma 6.19 (Bounded compatibility). If A = S is a compatible subsurface for
b € [po], then B = (A) satisfies dy (by, 0B) e 0 for every domain V = S.

Proof. If A = S then 0S5 is empty and there is nothing to prove. So suppose
A Sandlet g = Zy,...,Z, be the domains witnessing the compatibility of
A. f V = Bor V 1 B there is nothing to prove, since then dy (by, 0B) is just
diame(yy Ty (by) < L. Hence we assume 0B projects to V. Since B is filled by the
Z;, we may choose 1 < j < m such that 0Z; projects to V. As the multicurves
0Z; and 0B are evidently disjoint, it thus suffices to bound dy (b, 0Z;). Setting
Bj = Zyu--- 1 Zj_4, by definition of compatibility we then know that Z; € D(¢)
is initial for A; = ¢~1(B;).

Let us first suppose V € D(¢). Then it must be that V € D 4(¢) since V = ¢(A)
was excluded above. Since A; = A, we also have V € D4(¢) = Da,(¢). As Z; is
initial for A;, if VAZ;, then the failure of V <1y Z; implies Z; < V along [bg, z4]
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and hence dy (by,0Z;) < M. If instead Z; & V, the failure of V <13 Z; implies
dy (by,0Z;) < Cy + M. We are thus done in this case, as V L Z; and V = Z; are
precluded by 0Z; projecting to V.

Next suppose V' ¢ D(¢) so that dy(zg,bs) = R?} < f™(0O) by Lemma 6.7.
Since Z; € D(¢) ensures Z; has an active interval along [z4,bs], there is a point
t € [bg, x] with 0Z; < base(u:) and consequently (by Theorem 3.19)

dv(b@&Zj) < dv(bd),t) < dv(b¢,t) + dv(t,.’b¢) i dv(b¢,$¢) i 0. ]

6.4. Coherence. Recall that our goal in Theorem 6.1 is to bound the number
elements ¢ € [¢o] producing a common pair of points (ag, be).

Definition 6.20 (Coherence). Given a subsurface A = S, we say a family F < [¢g]
is A—coherent if for all pairs ¢, 9 € F

e A is compatible with ¢ and 1,

e ¢ and v agree on A, and

® Ap = Qo) and b¢ = b¢.
The displacement of the family is 7(F) = max{dr(s)(wo, ¢(x0)) | ¢ € F}.

Definition 6.21 (Pre-initial). Let F < [¢o] an A-—coherent family. We say a
domain Y = S is pre-initial for F if it is the preimage of some initial domain, that
is, if Y = ¢~1(Z) some element ¢ € F and domain Z € D(¢) that is ¢—initial for A.

Lemma 6.22 (Boundedly many pre-initial domains). There is a degree 1 polyno-
mial g1 such that for any subsurface A = S and A—coherent family F < [¢o], the
cardinality of the set of pre-initial domains for F is at most g1 (r(F)).

Proof. Let P = {Y1,Y5,...} be the set of pre-initial domains, and for each i choose
¢; € F such that Y; = qﬁ;l(Zi) for some ¢;—initial domain Z; € D(¢;). Let k; < mq
be the index of Z;, that is, the minimal k; > 0 so that ¢; "~ '(Z;) ¢ D(¢;). For
each, k let Py be the subset of pre-initial domains Y; for which k; = k—1. This gives
a partition P = P; u --- u Pp,,. Restricting to one subcollection P, we henceforth
assume k = k; + 1 for all 4.

Let us write V; = ¢;%(Z;) so that V; ¢ D(¢;). Then for each i we have
(Vi) ..., 08 (Vi) € D(¢;), with Z; = ¢¥(V;) being ¢;—initial. The <lg—minimality of
Z; in D (¢;) implies that ¢;(V;), ..., ¢F (Vi) ¢ Da(¢i). Thus for all 0 < n < k—2
we have ¢71 (Vi) € D(¢;)\Da(¢i), meaning ¢! (V;) = ¢(A) or equivalently
¢ (V;) = A. By assumption, all the maps ¢ € F agree on A; let us write ¢p: A — B
for this common restriction to A. With this notation we conclude that

Yi= ¢ (Zi) =" (Vi)
for all 7. Since the domains Y; are all distinct by assumption, it follows that the
domains V; and V; are distinct whenever i # j.

By coherence, the points ag, by for ¢ € F all agree; let us call these common
points a, b. By Definition 6.6 of backtracking, having V; ¢ D(¢;) and ¢;(V;) € D(¢;)
means that

Ry v,y = [(RY:) = TRY: + 76,
which by Proposition 5.5(7) implies dy; (x,b) = 60. Fixing ¢ = 1 and considering
the element ¢;, we know the triple (xg,b, ¢1(z0)) is O-aligned in all domains.
Therefore, for all 7 > 1 we have

dvj (3507 ¢1($0)) = dV] (x07 b) —© > 50.
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We note that we may choose © large enough so that log(©) is a valid threshold
in the distance formula (Theorem 3.33). From this the number of domains U = S
with dy (2o, ¢1(20)) = © is bounded linearly in terms of dr(s)(zo, $1(20)) < r(F),
which finishes the proof of the lemma. O

6.5. Supercoherence. We next consider coherent families with additional data:

Definition 6.23 (Supercoherence). A family F < [¢g] will be called supercoherent
for a subsurface A = S and domain Y = S if F is A—coherent and for all ¢, € F:
Zy = ¢(Y) is ¢-initial for A,

@(A") = (A") where A’ is the subsurface filled by A and Y,

if Y is nonannular, then dz, (by, 24) = dz, (by, Ty),

if Y is annular, then dz, (bg, ¢(x0)) = dz, (by, ¥(x0)).

Note that Zy being initial implies Zy &= ¢(A) and thus Y - A. Also note that the
subsurfaces B = ¢(A) and B’ = ¢(A’) (filled by B and Z,;) are independent of ¢.

We also allow Y to denote the empty domain and say F is (A, &)-supercoherent
to mean that it is A—coherent but that D 4(¢) is empty for each ¢ € F.

Lemmas 6.19 and 6.22 allow us to easily partition coherent families into bound-
edly many supercoherent ones:

Lemma 6.24. There is a degree 2 polynomial qo such that for any subsurface
A= S, any A—coherent family F < [¢o] may be partitioned into at most ga(r(F))
subfamilies F' that are each (A,Y')-supercoherent for some domain Y'.

Proof. The elements ¢ € F for which D 4(¢) is empty comprise a subset of F that
is (A, &)—supercoherent. Excising these, we henceforth suppose each ¢ € F has
D 4(¢) nonempty and, in particular, that A # S. Accordingly, for each ¢ € F
we may use Lemma 6.18 to choose some initial domain Z, € D% (¢). We then set
Yy = ¢~ (Zy) and let B)j denote the subsurface filled by Z, and B = ¢(A). As
¢t (By) is clearly compatible for ¢ by construction, Lemma 6.19 and Corollary 3.39
provide a uniform bound ko (depending only on ©) on the number of domains
Bj, produced in this way. Similarly Lemma 6.22 says there are at most g1(r(F))
possibilities for the domain Y,,. Hence after partitioning into kog: (r(F)) subfamilies
we may assume Y =Y, and B’ = By are independent of ¢.

Now, if ¥ (and thus each Z,) is nonannular, then Proposition 5.5(9) pro-
vides a uniform constant k; so that each integer dz,(bg,zy) = RZ is at most
krdrsy(xo, ¢(x0)) 4 k1. Thus we may further partition into at most k17 (F) + ki
subfamilies so that dz, (by,z¢) is independent of ¢. If instead Y is annular, then
for all ¢ € F we have R% > 7O by Lemma 6.7 since Z, € D(¢). Therefore Propo-
sition 5.5(8) says dz, (bg, #(70)) < © and we may further partition into at most ©
subfamilies so that dz, (b, ¢(0)) is independent of ¢. Each subfamily 7’ produced
in this way is then (A, Y )-supercoherent, where Y = Yy for any ¢ € F'. O

6.6. Extending supercoherence. The previous section shows that A—coherent
families can be refined into (A,Y)-supercoherent ones. The remaining ingredient
is to show that each (A,Y)-supercoherent family can be further refined into A’-
coherent families for the enlarged subsurface A’ filled by Y and A, or A’ = S in the
case Y = . This is the heart of our reconstructive argument.
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Proposition 6.25. There is a constant q3 such that every (A,Y)-supercoherent
family F < [¢o] can be partitioned into at most qs subfamilies F' that are each
A’—coherent, where A’ = S when Y is the empty domain and otherwise A’ is the
subsurface filled by A and Y. In particular, in the latter case £(A") > £(A).

Proof. Since F is A-coherent, we know ag = ay and by = by, for all ¢, € F; let
us write a = ag and b = by for these common points. The definition of superco-
herence ensures A’ is compatible with each ¢ € F; indeed, if Y = @ and A’ = S
compatibility is automatic, and otherwise it follows from the compatibility of A
(Definition 6.15) and fact that Z, = ¢(Y) is ¢—initial for A. Supercoherence also
gives ¢(A’) = y(A’) for all ¢, € F; let us call this common subsurface B’. Hence
proving A’—coherence amounts to establishing agreement on A’. This is equivalent
to showing the subset {(¢~1)|5 | ¢,% € F} of Mod(B’) has uniformly bounded
cardinality. By Lemma 6.4, for this it suffices to prove that

(6.26) dw (¢~ (b),b) Ze 0 for all ¢,v € F and all domains W = B'.

To set notation, for W = B’ and ¢,v € F we will write V = ¢=3(W) = A’ and
W' =(V) c B’. Note that then

(6.27) dw (9~ (b),b) = dv (¢~ (b), 7" (b)) = dw (b, e~ (b));

hence we are free to bound either of these three quantities. We first dispense with
the case that Y is empty and, accordingly B’ = S = A"

Claim 6.28. If Y = &, then dw (¢ ~1(b),b) Ze 0 for all W = B’ and ¢, € F.

Proof. First suppose W € D(¢). Since D 4(¢) = & by definition of supercoherence,
evidently W ¢ D 4(¢) which means W = ¢(A) and hence V = A. Since ¢ and ¢
agree on A, we may apply the equal isometries ¢ = ¢: C(V) — C(W) to conclude

dy (¢71(b), 071 (b)) = dg(vy (097" (b), 0™ (b)) = dw (b, b) < L.

If W' e D(¢) we similarly conclude dy (¢~1(b),~1(b)) < L.
It remains to suppose W ¢ D(¢) and W’ ¢ D(¢). By Lemma 6.7, this gives

dv(¢71(b),$¢) = dw(b, 1’¢) 2@ 0 and dv(wil(b),xqb) = dW/(b, x¢) 2@ 0.

Hence by the triangle inequality it suffices to bound dy (4, zy). Observe that there
exists n = 0 so that ¢~"(V) ¢ D(¢) and ¢p~"(V) ¢ D(¢); if n+1 = my is the order
of ¢o (and thus of ¢ and v as well), then the condition is satisfied for ¢=™(V) = W
and ¥~ "(V) = W’'. Thus we may let n > 0 be the smallest integer so that both
6"(V) ¢ D() and 6"(V) ¢ D(¥).

We claim that ¢~*(V) = ¢p~*(V) for each 0 < 7 < n. Indeed, when 0 < i < n
either ¢~ (V) € D(¢) and hence ¢~ (V) = ¢(A) = B, or else p~4(V) € D(¢)) and
hence 9 ~4(V) = 9 (A) = B. In either case, inductively assuming ¢~*(V) = ¢ ~¢(V),
the fact that the maps ¢~1,9 ! agree on B implies that ¢—*~1(V) = o=~ 1(V).

Let us write V; = ¢=4(V) = ¢~ 4(V) for 0 < i < n. The facts that V,, ¢ D(¢)
and V,, ¢ D(v¢) now, by Lemma 6.7, give

dv, (4, 24) < dv, (24,b) + dv, (b,zy) = Ry, + R}, <2f™(0) %e 0.

As we have seen, the maps ¢, agree on each domain V,,,...,V;, V. Successively
applying the isometries ¢ = ¢: C(V;11) — C(V;) therefore gives the desired bound

dy (xg,2y) = dv, (xg,24) = -+ = dy, (24, ) X6 0. O
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We henceforth assume that Y is nonempty and thus, by supercoherence, that
Zy = 6(Y) = B’ is initial in D 4(6) for each 6. After partitioning into at most mg
subfamilies, we may additionally assume each of these initial domains Zy has the
same index k in D(#). By definition, this means {#7%(Zy),... Zg} = D(f) but that
07%=1(Zy) ¢ D(0). Recalling that 0=(Zy) = Y, the fact that Zy is initial now
forces 0=**1(Y),...,Y ¢ D4(6), which means 0 "(Y) = A for each 1 < n < k.
Since the elements 6 € F all agree on A, it follows that for each 1 < n < k the

common domain Y,, = 67"(Y) and map 6: Y,, — Y,,_1 are independent of 6 € F.
The fact that Y3, = 07%(Y) = 07%71(Zy) ¢ D(6) implies by Lemma 6.7 that

(6.29) dy, (z9,b) < f™°(©) forall § e F.

Since the numbers dy, (zg,b) are discrete and uniformly bounded, after further
partitioning into at most f°(©) subfamilies we may assume these distances all
agree and hence that R}, = dy, (zg,b) is independent of 6. By definition, the

constants Cz, = GR% + 30 + 2M are therefore also independent of 0 € F.
For any elements ¢, € F, by (6.29) and the triangle inequality we have

dy, (xg,2y) < dy, (29, b) + dy; (b, 2y) < 2f™(O).
Successively applying the isometries ¢|4 = 1|a: C(Yy) — -+ — C(Y) thus gives
(6.30) dy (x4, 2y) = - = dy, (x4, 2y) <2f™°(©) for all ¢, € F.
Using this, we next establish (6.26) for the domain W = Zj:
Claim 6.31. dz¢(¢w’1(b), b) < 3dy (x4, xy) + 30 260 forall g, € F.
Proof. We know from Proposition 5.5(3) that (zy, b, (z0)) is ©-aligned; hence:
dz, (2y,b) +dz,(b,¥(x0)) < dz, (2y,(z0)) +©
Applying the isometry ¢~1: C(Zy) — C(Y) thus gives
dy (2,71 (D)) + dy (™1 (b), 20) < dy (24, w0) + O,
We may swap x,; for x4 at the cost of dy (2, z4) and then apply ¢: C(Y) — C(Z,)
to conclude (4, ptp~1(b), d(x0)) is (2dy (x4, zy) + O)-aligned in Zy:
dZ¢ ([L’¢, ¢>¢_l(b)) + dZ(;) (st_l (b)v ¢($0)) < dZ¢ (:L’¢7 ¢($0)) + 2dy (xwv 1'4)) +©.
Since (z4,b, ¢(z0)) is O-aligned (Proposition 5.5(3)), Lemma 3.18 now implies that
mz,(b) and ﬂz¢(¢¢_1(b)) respectively lie within % + 46 + L and dy (x4, zy) + % +
46 + L of any geodesic from 7z, (¢(x0)) to 7z, ().
If Y is nonannular, then supercoherence implies the distances

dZ¢ (¢¢71(b)5 :L'¢) =dy (1/}71(1))3 Id>)7 and
dz,(b,x4) = dz,(b,xy) = dy (P (b), zy)
differ by at most dy (4, ). Otherwise Y is annular and the distances
dz,(b,¢(x0)) and dz,(¢v~'(b), d(x0)) = dy (v~ (b), o) = dz,, (b, 1b(x0))

agree by supercoherence. In either case, these estimates and the fact that 7wz4(b)
and 7z, (¢~ (b)) both lie within controlled distance of a C(Z,) geodesic from z4
to ¢(z¢) now imply the desired bound

dz, (1 (b),b) < 3dy (g, z4) + 20 + 160 + 5L < 3dy (24, 2y) + 36. O
This finishes the proof of Claim 6.31.
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We continue with the proof of (6.26). Now let Ag = A’/A and By = B’/B. Since
all maps in F send A to B and A’ to B’, it follows that 0(Ag) = By for all § € F.
After partitioning into boundedly many subfamilies, we additionally assume, for all
0,0’ € F, that 8’01 preserves each component and boundary component of B, B’,
and By. Note that if A L Y then A’ is just the union of A and Y so that 4g =Y
and By = 0(Y) = Z for each € F.

Since we already know all ¢, 1) agree on A, to prove agreement on A’ it suffices to
establish agreement on Ay and on the boundary components of A that are essential
in A’. The next claim essentially provides agreement on these boundary components

Claim 6.32. dg(0Z,,0Zy) Ze 0 for each boundary component 3 of B.

Proof. Let U be the annulus with core U = 3. By assumption ¢1»~1(3) = 8 and
¢y 1(0Zy) = 0Z4. If 0Z4 is disjoint from B there is nothing to prove, so we assume
0Z4Mp, in which case 0Z, M3 as well. Thus ZyhU and Z,hU.

If U = B (that is, if B has an annular component isotopic to U) then agreement
on A (coming from A—coherence) immediately implies the claim. So we suppose
U is not a component of B. We claim that dy(b,0Z4) Lo 0 and, symmetrically,
dy(b,0Zy) %6 0. The claim will then follow from the triangle inequality.

By means of contradiction, suppose dy (b, 0Zy) > f™°(©) + M. Since Z4 € D(¢)
satisfies dz, (b, 4) = M, Corollary 3.27 implies that dy (b, 0Zy) < dy (b, x¢) + M/3.
Therefore dy (b, zg) > f™°(©) and consequently U € D(¢) by Lemma 6.7. Since
U & B = ¢(A), it follows that U € D4(¢). Now the fact that Z, is initial in D 4(¢)
forces Zy <11 U in D(¢), meaning that Z, is time ordered before U along [b, z4].
But this implies dy (b, 0Z4) < M/3 contradicting our above assumption. O

Now consider an arbitrary domain W = By. Since B’ is filled by B and Zg4, and
W is disjoint from B, it cannot be that Z4; and W are disjoint. Further, Z4 = W
occurs only in the case W = Z,, which has been dealt with in Claim 6.31 above.
Thus we may assume W = Zg or WhZ,. Let us deal with these two possibilities
separately.

Claim 6.33. If W & Z, (and hence W' & Z,), then dw (¢~ (b),b) Lo 0.

Proof. First suppose W € D(¢). Since W = By, we have W ¢ B = ¢(A) and
consequently W e D 4(¢) as well. Since Z, is initial in D4(¢), it cannot be that
W <o Zg. Thus by definition of <3 it must be that
dz¢(b, 6W) = CZ¢ = Gdyk(b,:L‘¢) + 30 + 2M.
Since dy, (z4,b) = dy, (zy,b) by our assumption, the triangle inequality implies
dy, (z, Ty) < 2dy, (24,b). From Claim 6.31 we also know that
dz, (¢ (b),b) < 3dy, (zg, zy) + 36.

Combining these yields dz, (b,0W) > dz,(¢¢~"(b),b) + M. The BGIT (Corol-
lary 3.27) therefore implies the bound dy (b, g~ (b)) < M X 0. If W’ € D()) the
same reasoning bounds dy (¢ ~1(b), b).

It remains to suppose W ¢ D(¢) and W’ ¢ D(v) which, by Lemma 6.7, implies

dy (¢7(b),2g) = dw (b,z) < f™0(©),  dy (¥ (b),zy) = dwr (b, zy) < f7°(O).
Hence in order to bound dy (¢~1(b),%~1(b)) it suffices to bound dy (z4,z,). For
each 1 < j < k, we have that ¢~/ (W) = Y;_1 2 ¢=7(W’). Since ¢~ (W) =
V = ¢~ Y(W’) by construction and ¢! agrees with ¢»=! on Y;_; = B, it follows
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by induction that ¢—7=1(W) = ¢p=3=L(W’) for each 1 < j < k and that ¢ agrees
with ¢ on this domain, which for brevity we denote V; = ¢ (V) = ¢~ 1(W).
Applying the equal maps ¢ = v to Vj for 1 < j < k thus gives

dv, (zg,0p) = -+ = dy (24, 7y).

Hence it suffices to bound dy, (¢, Typ).

If dv, (z4,b),dv, (b,zy) < M we are done by the triangle inequality. Supposing
instead dy, (x¢,b) > M, then Corollary 3.27 implies dy, (x4, 0Vi) < dy, (z4,b) + M.
As dy, (z4,24) < 2dy, (b, z4), we thus also have dy, (x4, 0Vi) < 3dy, (b,z4) + M.
Similar reasoning applies if dy, (zy,b) > M, so that in either case we may assume

dy, (29, 0Vi) < 3Ry +M and dy, (z4,0Vi) < 3Ry + M.
As the leftmost quantity above is invariant under applying ¢, this gives
(6.34) dg(vy) (26, 00(V;)) = dy, (x, Vi) < 3Ry +M forall 0<j <k,
On the other hand, the fact that {¢(Yx),...,¢(Y)} is a jump sequence for ¢ ensures
dy(vy) () = f(RY) = TRy + 76 forall 0<j <k

Since (z¢,b,z0) and (z4,b, ¢(x0)) are ©-aligned in Y; by Proposition 5.5(4) (as
V; © Y, ensures Y; is nonannular), we claim this implies

dgv,)(b,%0),dg(v,) (b, ¢(w0)) <M for all 0 < j < k.

Indeed if, say, dy(v;)(b,z0) > M then we may choose u € [b, zo] containing d¢p(V;)
in is Bers marking and use alignment to conclude

do(v;) (T, 00(V;)) + L = do(v;) (T, 1) = dyy;) (T4, T0) — d(v;) (20, u)
> dy(v;) (€4, 0) + dy(y;) (b, 20) = dy(v;) (w0, u) — O
> dy(y,)(24,b) + dy(y,) (b, u) —© — B = TRy, + 56,

contradicting (6.34). A similar contradiction arises if dgv,)(b, ¢(z0)) > M. By the
triangle inequality, for each 0 < j < k we now deduce

dv; (xg,70) = dyv;) (Tg, d(w0)) < dg(v;) (@4, T0) + 2M.
Applying this inductively for j = k, ..., 1 therefore gives
dv, (T, T0) — 2kM < dv (74, 20) = dw (4, d(20)) < dw (z4,0) + M.
Since k < mg and dw (z4,b) < f°(©) by virtue of W ¢ D(¢), we conclude that
dy, (xg,z0) < f°(O) + 2moM.

A symmetric argument yields dy, (24, o) < f°(©)+2moM. The triangle inequal-
ity therefore gives dy, (xy, Ty) %6 0 and completes the proof of the claim. O

Claim 6.35. If WhZy (and hence W' hZ,) then dw (¢~ (b),b) Ze 0.

Proof. Observe first that dw(zg,0Z4) = dyv(xe,0Y). If this quantity is larger
than M then, since dz,(b,z4) = M, Corollary 3.27 implies that dy (z4,b) >
dw (zg,0Zy) —M/3 > M. Therefore W has an active interval and is time-ordered
before Zy along [x4,b]. In this case dz,(xg, 0W) < M/3 and so

dZ¢ (bv aW) = dZ¢ (b’ $¢) - dZ¢ (aVVa $¢) = f(R%c) - %
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by the fact that Z, satisfies the jumping criterion to be in D(¢). Recalling Claim 6.31,
the assumption dy, (b, ) = dy, (b, z4) = R?ﬂk, and the definition of f, we also have

dz, (¢~ (b),b) < 3dy, (v4,7¢) + 30 < 6R}. + 30 < f(R},) — 2M.

Therefore applying ¢! to the left side of the previous two displayed inequalities
gives
dy (¢ (b),0V) = dy (™1 (0), 67" (b)) + M.

By Corollary 3.27, it follows that we must have dy (¢~(b),9 "1 (b)) < M Zg 0.
This proves the claim in the case that dw (z4,0Z4) = dv(x¢, oY) = 31 The same
reasoning applies when dy(zy, 0Zy) = dv (x4, 0Y) =

Now suppose W € D(¢). Since W is disjoint from B = ¢(A), we necessarily
have W € Da(¢). The fact that Z, is initial in D4(¢) thus implies Z, <3 W
in D(¢). That is, W is time-ordered before Z; along [z4,b] and so dw (z4,02) =
dw (zg,b)—dw (0Z,b) = 7T©—M/3 > 6M and we are done by the previous paragraph.
The same conclusion holds if W’ e D(3).

It remains to suppose dy (4, 0Y ), dy (z,,0Y) < 34 M and W ¢ D(¢p), W' ¢ D(z)).
In particular dy (z¢, zy) < dv(2g,0Y) + dv (zy, 8Y) < 3M. Furthermore,

dy (4,97 (b)) = dw(x4,0) and  dy (xy, ™" (b)) = dwr(2y,b)
are both bounded by f°(©). Hence by the triangle inequality, dy (¢~1(b),v~1(b))
is bounded by 2f™°(©) plus dy (4, 2,) and therefore by 2f7°(0) +3M g 0. O

With these claims in hand, we may now complete the proof of the proposition.
When Y is empty and B’ = S, Claim 6.28 shows dw (¢y~1(b),b)) %e 0 for all
¢, € F. Thus by Lemma 6.4 we may partition into boundedly many subcollections
to achieve agreement on A’ = S. When Y is nonempty, we as above set Ag = A’/A
and By = B’\B and partition so that all maps send A to B and Ay to By inducing
the same bijection of boundary components. By assumption we know all maps
agree on A. Claims 6.31, 6.33 and 6.35 together with Lemma 6.4 imply that up to
partitioning into boundedly many subfamilies we may assume all maps Ay — By
agree as well. If Y is disjoint from A, then A’ is the disjoint union of A and Ag
and agreement on A’ definitionally follows from agreement on A and Ag. Otherwise
Y hA and B’ is obtained by gluing B and By along certain boundary components 3
of 0B that are essential in B’. All of our maps ¢p~!: B’ — B’ preserve these curves
and are the identity on the complement B'\0B = B u By. These compositions
¢p~1 thus lie in the kernel of Mod(B’) — Mod(B'\0B) = Mod(B) x Mod(Bjy)
and therefore consist of Dehn twists about these curves 5. Finally, Claim 6.32
dg(¢p=Y(0Zy),0Zy) = ds(0Z4,0Zy) Lo 0 shows that only boundedly many Dehn
twists about g arise among these compositions. Therefore pairs ¢, € F produce
only boundedly many maps ¢y ~!: B’ — B’ and we may again partition so that all
pairs agree as maps A’ — B’. a

We can now prove the main theorem of this section

Proof of Theorem 6.1. Given a pair points a, b, we consider the family Fy < [¢o]
consisting of those ¢ for which ag = a and by = b with dy(g)(zo, ¢(z0)) < 7. Let
Ag = . The family Fy is trivially Ag—coherent with displacement r(Fp) < r.

By induction, suppose we are given a subsurface Ay and subcollection Fj < Fy
that is Ap—coherent. If A, = S, then all elements of F; agree on S. Otherwise
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we apply Lemma 6.24 and subdivide Fy into at most ¢o(7(F)) < g2(r) subfamilies
Fi. < Fi that are each (Ayg,Y))-supercoherent for some domain Y). Now apply
Proposition 6.25 to further partition each Fj, into g3 subfamilies F1 that are each
Ay 1—coherent, where A, is S when Y} is empty and is otherwise the subsurface
filled by Ax and Y.

Since each iteration Fj v~ Fjy1 yields coherence on a strictly larger subsurface
A1 2 Ag, any chain Fy © F; D ... produced in this way must terminate at
A = S within & < £(S) steps. Since at each step each Fj is partitioned into
at most g3go2(r) subfamilies, this iterative procedure ultimately produces at most
(g3q2(r))¢) subfamilies F that are each S-coherent. By definition of coherence,
all elements ¢, € F agree on S and thus in fact are equal. Hence in total there
are at most (gzqa(r))¢5) elements ¢ in the original collection Fy O

7. WITNESS FAMILIES

We now lay the foundation for our main technical construction of the “complexity
length” between points of 7(X). This notion of length is defined in terms of curve
complex data of subsurfaces of ¥ and relies on building and manipulating collections
of subsurfaces with certain properties. In this section we introduce our terminology
and establish basic operations and results about such families. The definition of
complexity length will then be given in §8.2.

Given any parameter C > 2M, we once and for all fix a sequence of constants

€
(7.1) &(S) + 30(:67(())’ = Ng(sy+1 < Ngs) < Nggy—1 <... < Ng<N_; =N,

where M and ¢y > ¢’ are from Definition 3.24. Note that 1 = {(Sp4) and —1 =
&(annulus). The exact value of these constants (along with other related constants)
will be specified later in a recursive manner (Proposition 10.13), but we stress that
they depend only on C and S. By abuse of notation, for any domain V' of S we set
Ny := N¢(vy and emphasize that these depend only on the integer £(V') and not on
the domain V.

Definition 7.2. For ¥ a domain in S and z,y € 7(X) we consider the following
collections of subdomains:

Te(z,y) ={V = ¥ |dy(z,y) =Ny}, and

Y (z,y) = {A = % | A an annulus with min{¢,(0A), £,(0A)} < eo/Na < €'}.
Thus Y¢ consists of those domains with big curve complex distance, and YT¢(x, )
consists of those curves (really annuli) with drastic length difference at = and y.

Note that |Y*(z,y)| < 2¢(2), since  and y each have at most £(3) curves of length
smaller than ¢;. We then define

Y(z,y) = T(x,y) v T (z,y)
and, when the points z,y are understood, abbreviate these simply as T, T¢, T*.

Remark 7.3. Observe that every V € T has a nonempty active interval Zy along
[z,y]. If V € Y€ this follows form Lemma 3.26(1). If instead V € T* then V is an
annulus with at least one of ¢,(0V) or £,(0V) smaller than ﬁeo < ﬁﬁo < e

Hence Zy = i’f}’ is nonempty by Definition 3.25 and Theorem 3.22(2).
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The distance formula (Theorem 3.33) basically says the domains V' of Y(x,y)
(along with the projections 7y (%) and lengths £, (0V) when V is an annulus) ac-
count for all of the data needed to estimate dr(x)(z,y). However, the multiplicative
error in the distance formula is unacceptable in our application because d7 (5 (,y)
goes into the exponent and the whole point is to calculate its coefficient.

Morally, this multiplicative error stems from the fact that the collection Y(z,y)
can be arbitrarily large. The point of witness families, defined next, is to partition
Y (z,y) into uniformly boundedly many subcollections (Definition 8.2). The data
for each subcollection will then be recombined into a Teichmiiller distance (Defini-
tion 8.7). If everything is done carefully, the weighted sum of these distances may
be related to dr(x)(x,y) with only additive error (Theorem 11.2).

Definition 7.4 (Witness family). Let ¥ be a domain in S. A collection €2 of
domains of ¥ is called a witness family for a geodesic segment [x,y] in T(X) if:

(WF1) Every V € Q satisfies V € Y(z,y); that is Q < Y(z,y).

(WF2) Every Z = X with Z € Y(x,y) satisfies Z = V for some V € Q.

(WF3) If Z = W are such that Z € Q and W € T(xz,y), then either W € Q or else
WhZ' for some Z' € Q with Z = 7.

7.1. Supremums for witness families. We will have need to discuss the minimal
subsurfaces in a collection that contain a given subsurface:

Definition 7.5 (Minimal containment). If  is a collection of subsurfaces of ¥ and
Z is an arbitrary subsurface of ¥, we use the notation Z < W to mean that W
is a minimal (with respect to inclusion) subsurface of ¥ satisfying the conditions
Z =W and W e Q. If W is moreover the unique element of Q such that Z <@ W,
we write W = Z? and call W the Q-supremum of Z.

Lemma 7.6. Let 2 be a witness family for [z,y] and suppose that W = ¥ has an
Q-supremum W% e Q. Then WL =V for every V € Q with W = V.

Proof. Let V € Q be such that W = V. Then the family {V' e Q | W = V' =V}
is nonempty and so contains a topologically minimal element V. By minimality, it
must be that W < V;. The assumed uniqueness of the Q-supremum now implies
that W% =V, = V, as claimed. O

7.2. Complete witness families. In general, a domain Z could satisfy Z < W
for multiple elements W of a witness family 2. Our construction of Teichmiiller res-
olutions below will utilize witness families for which every large-projection domain
has a Q—supremum:

Definition 7.7 (Completeness). A witness family  for a geodesic segment [, y]
in T(X) is said to be complete if every domain Z = ¥ with Z € Y(x,y) has an
Q-supremum Z € Q.

We next describe a criterion for completeness. Suppose that A, B = X are two
domains with AhB. Define F(A4, B) to be the collection

F(A,B):={ZcX|Zc A, Zc Band Z € Y(z,y)}
and let (A, B) be the subcollection of topologically maximal surfaces in F(A, B).

Lemma 7.8. For every geodesic [x,y] in T(X) and pair of domains A, B = 3 with
AMB, one has |FE(A, B)|; < (2N;41)53)¥2 for every —1 < j < £(%).
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Proof. Consider F¢(A,B) ={ZcX|Zc A,Z = Band Z € Y¢x,y)}. Applying
Lemma 4.1 to the essential intersection A m B (Lemma 3.3) immediately yields
(A, B)|; < (2N;41)¢)* for every —1 < j < £(X). Since F(A, B) < F¢(A, B)u
Y(z,y) and Y¢(x,y) consists of annuli, we see that F(A, B) = F°(A, B)u T (x,y)
and that the claimed bound follows for all 0 < j < £(X). For j = —1, the fact
1T (2, y)| < 2¢(X) < No now gives |[F(A, B)|_; < (2Ng)¢()+2, O

Let © be a witness family for [z,y] in T(X). A cutting pair in Q is a pair of
subsurfaces A, B € Q such that AdB. We say that the cutting pair (A, B) is filled
in Qif (A, B) c Q and that the pair is unfilled otherwise.

Lemma 7.9 (Filled to completeness). A witness family Q for [z,y] in T(X) is
complete if and only if every cutting pair (A, B) in Q is filled.

Proof. First suppose every cutting pair in € is filled. Let Z = ¥ be any domain
with Z € Y(z,y). Condition (WF2) ensures there exists some A € ) with Z <% A.
Thus if Z fails to have an Q-supremum, there is a second domain B € ) with
B # A and Z < B. By minimality, A and B cannot be nested and so we have
AmB. Tt follows that (A, B) is a cutting pair and that Z € F(A, B). Therefore, by
definition of F(A, B), we have Z = Z; for some Z, € F(A, B). The hypothesis that
(A, B) is filled now implies that Zy € Q. But since Z = Zy = A, B, this contradicts
the minimality of Z 2 A and Z 2 B. Therefore Z% exists.

Next suppose (2 is complete. Let (A, B) be a cutting pair in Q and choose any
Z € F(A,B). We must show Z € Q. Since Z = A, the Q—supremum necessarily
satisfies Z = A by Lemma 7.6. Similarly Z = B. Therefore Z € F(A, B) by
definition. Since Z is a topologically maximal element of F(A, B) and Z = Z** by
definition, it follows that Z = Z% € Q. O

7.3. Insulation. Let [z, y] be a Teichmdiiller geodesic in 7(X). If Z,V = ¥ are two
domains with Z = V and Z # V, define

C(V|z) ={aeC(V) | ais essential or peripheral in Z} =T'(Z) u dZ.
Observe that C(V|z) has diameter at most 2 in C(V'). For any domain E = ¥ and

parameter 0 < ¢t < dg(z,y), we then define £,(E) and R,(F) to be the topologically
maximal domains in the respective collections

L{(E):={Z% E|ZeY(z,y) and Ja € C(E|z) : dp(o, x) € [t — 9C,t + 9C]}
Ry(E):={Z = E|ZeY(z,y) and Ja € C(E|z) : dg(a,y) € [t —9C, ¢ + 9C]},
where here dg (o, z) = diame(g)(7(z) U{a}) and similarly for dg (o, y). Note that

by construction £:(A) = & = R+(A) for any annulus A.

Lemma 7.10. For every geodesic [x,y] in T(X), domain E = X, and parameter t
with 0 <t < dg(z,y) = Ng, one has |L,(E)|;, |Ry(E)|; < (2N;11)E3H3 for every
1<)

Proof. We give the proof for £,(E): As in the proof of Lemma 7.8, let
L{(E)={Z% E|ZeY,y) and Ja € C(E|z) : dg(a,z) € [t —9C,t + 9C]}
and observe that £,(E) < L{(E) u T (z,y). Since |T%(z,y)| < 26(X) < Nj4q, it

therefore suffices to prove that |£{(E)|; < (2N;41)¢)+2 for all -1 < j < &(%).

Choose a € mg(x) and § € mp(y) realizing the distance dg(z,y) = de(g) (o, B)
and fix a geodesic & = 7g,...,%m = f in C(E). As in the proof of Lemma 4.1,
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we claim that every Z = F with dz(x,y) = Nz is disjoint from some curve =;.
Indeed, this is immediate if a or [ misses Z, and otherwise Lemma 3.9 ensures
de(z)(mz(a),m2(B)) = dz(x,y) — 2k = M — 2k so that the Bounded Geodesic Image
Theorem implies 7z (7y;) = & for some .

Thus every Z € L§(E) is disjoint from some ;. Further, from the definition of
LS(E), we see that this curve ~; must satisfy dg(y;,z) € [t —9C — 1,t + 9C + 1].
Since diame gy (me(2)) < L, this implies de(g) (o, vi) € [t —9C — 2L, ¢ 4+ 9C + 2L].
Letting VW denote the set of all components of E\7; obtained as ¢ ranges between
max{0,¢t — 9C — 2L} and min{m, ¢ + 9C + 2L}, it follows that

cE e | P,
Wew
where P(W) is as in Lemma 4.1. Now let Z € L{(E) be a topologically maximal
element of £{(F) and choose W € W such that Z € P(W). If Z = V for some
V e P(W), then the facts dy(z,y) = Ny and Z = V © E with Z € L{(E)
imply that V € L§(E) as well. But this contradicts the maximality of Z in L{(E).
Therefore Z is maximal in P(W) as well. This proves L{(F) < |y, P(W). We
may now invoke Lemma 4.1 to conclude

ILEE)|; < Y5 [PW)]; < W] (2N;41)B)F! < 2(18C + 5L) (2N41 )+
wew
for every j. Since 18C 4 5L < 23C < N; 1, the lemma follows. O

Definition 7.11 (Insulation). If Q is a witness family for [z,y] in T(X), we say
that £ € Q is insulated in Q if Ly(E) U Ry(E) = Q. The witness family 2 is said
to be insulated if every E € ) is insulated in .

The terminology stems from the observation that if E' is insulated in 2, then for
every domain Z € Y (z,y) with Z 2% E, 0Z occurs towards the middle or “interior”
of the geodesic [mg(x), 7g(y)] in C(E), rather than near the endpoints. This has
the following useful consequence:

Lemma 7.12. Let Q be witness family for [z,y] in T ().

(1) Suppose V € Q is insulated in Q. If Z = ¥ is such that Z <V with
Z € Y(x,y), then the active intervals of Z and V satisfy Ly < Ty .

(2) Suppose V € Q is insulated in Q. If Z,W © X are such that Z <* V with
Z € Y(x,y) and W,V time-ordered along [z,y], then WhZ.

(8) Suppose Q is insulated. If Vi,Vo € Q are such that VihVa and Z1,Z5 = &
are such that Z; € Y(x,y) and Z; 2% V; fori=1,2, then ZyhZ,.

Proof. Suppose, contrary to (1), that z ¢ Zy for some point z € Zz. Then z lies in
the same component of [z, y]\Zy as either = or y. Without loss of generality, say x
an z lie in the same component. Then dy (z, z) < M/3 by Lemma 3.26(3). Since the
Bers marking at z contains 0Z by Lemma 3.26(2), it follows that dy (z,0Z) < M/3
and thus that Z € Lo(V') by definition. Hence Z = Z' & V for some Z' € L,(V).
But then Z’ € Q by the insulation of V, contradicting Z < V.

We next prove (2): If W and Z do not cut, then dW and 07 are disjoint so
that dy(C(V]z),0W) < 2 + dy(0W,0Z) < 3 < M/2. The fact that W and V are
time-ordered implies min{dy (W, ), dy (0W,y)} < M/3 by Lemma 3.29. Therefore
Z € Lo(V) uRo(V) and hence Z = Z’ for some Z' € Ly(V) v Ry(V). Since V is
insulated in Q, it follows that Z’ € Q, contradicting Z < V.
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Conclusion (3) now follows easily. Since V; is insulated in © by hypothesis, (2)
implies Z1 V5. Applying (2) again to the insulated V5 € €2, we conclude Z1hZy. O

We also note the following useful observation:
Lemma 7.13. If Q is an insulated witness family for [z,y], then Y*(z,y) < Q.

Proof. Consider any annulus A € T*(z,y). Then either £,(0A) < €y or £,(0A) < €o;
by symmetry, let us suppose it is the former. By (WF2), there exists some Z € {2
with A 2@ Z. If A = Z we are done. Otherwise 0A is an essential curve in Z, and
the fact £;(0A) < ey implies that dz(x,0A) < L < M. Thus A € £Ly(Z) and hence
A = Z' for some Z' € Ly(Z). Since 2 is insulated, we have Z’' € Q. But now the
containments A = Z' = Z contradict A <9 Z. O

7.4. Subordered witness families. To construct our complexity length, we will
work with witness families that come equipped with the following structure:

Definition 7.14 (Subordering). Let Q be a witness family for the segment [, y]
in T(X). A subordering on ) is an ordering designation Z ' V exclusive or V \| Z
for every Z,V € Q with Z £ V. This ordering data must satisfy:

(SO1) If Z, W,V € Q are such that Z = W £ V then
ZJ/V = W /V (andso V\|Z < V \| W also).

(SO2) If Z, W,V € Q are such that Z ,/ V \, W, then ZyW and Z < W.

(SO3) If Z,V € Q and W = ¥ with W € T(x,y) are such that Z ,/ V < W or
W <V N\, Z, then ZhyW.

(SO4) If Z,V € Q are such that Z ,/ V (resp. V \{ Z), then there does not exist
any domain W e Y(z,y) with W® =V, and W < Z (resp. Z < W).

Remark 7.15. Condition (SO2) in fact implies condition (SO1), as can be seen by
noting that if Z = W = V, then Zhy W clearly fails so that Z ,/ V N\, W and
W /' V \\ Z must both fail as well.

If Q@ and Q' are two subordered witness families with Q < ', we say that the
subordering on ' extends the subordering on € if the ordering designations coming
from £ and Q' agree on each pair Z,V € Q with Z = V. Subordered witness families
enjoy the following property:

Lemma 7.16. Let Q be a subordered witness family for a geodesic [z,y] in T (X).
Fiz a domain V € Q and let W &V be a domain with W € Y(x,y) and W = V.
Then for any Z € Q with Z /' V (resp. V \( Z) we have that either Z and W are
disjoint, or Tz occurs before (resp. after) Ty .

Proof. We only consider the case Z /' V. If Z and W are disjoint, the lemma is
satisfied. If ZhW, then (SO4) ensures we have the time ordering Z < W so that
T occurs before Ty as required. The possibility W © Z is ruled out by W =V,
so it remains to consider the case Z — W.

Here, since W ¢ Q, (WF3) provides Z’' € Q so that Z = Z’ and Z'AW. Either
Z'AV, in which case (SO3) (applied to Z /' V and Z = Z’) forces Z' < V and
hence Z' < W by Corollary 3.31. Otherwise Z' = V and (SO1) gives Z' /' V so
that we may invoke (SO4) (using Z’'hW) to again conclude Z’ < W.

Since Zz: is nonempty with Z’AW, Lemma 3.26(4) now implies Zy n Iy = .
In fact, since Z’ < W it must be that Z, occurs before Zy, along [z, y]. a
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Definition 7.17 (Encroachment). Let Q be a subordered witness family for [z, y]
in 7(X). For V € Q, the left and right encroachments of V in {2 are defined as

EE(V) = sup  dy(z,C(V]z)) and &E4(V):= sup dyv(y,C(V]z)),
ZeQ,Z2,V ZeQ,V\Z

respectively (where here dy (w,C(V|z)) = diamey)(my(w) u C(V|Z))). The en-

croachment of V is then defined as q(V) = max{&4(V),EL(V)}. To streamline

notation, for each W ¢ Q these encroachments are set to zero:

EEW) = EL(W) = Eq(W) =0 when W ¢ Q.

Definition 7.18 (Wide). A subordered witness family  is wide if Eo(V) < Ny//3
for all V e Q.

We next describe two operations—refinement and augmentation—that may be
used to enlarge a witness family and ultimately produce one that is both complete
and insulated. For each operation, we must work to show that suborderings may
be naturally extended to the new family.

7.5. Refinement. Lemma 7.9 suggests a means of making any witness family com-
plete: simply add collections of the form F(A, B) until every cutting pair is filled.
This motivates the following operation:

Definition 7.19 (Refinement). Let Q be a witness family for [z,y] and let (A, B)
be a cutting pair in Q. The refinement of Q along (A, B) is the collection

Q(A,B) := QU F(A, B).

Thus Q(A, B) = Q if and only if (A4, B) is a filled cutting pair in Q. Fortunately
refinement always produces a new witness family.

Lemma 7.20. Let Q) be a witness family for [x,y] in T(S) and let (A, B) be a
cutting pair in Q). Then the refinement Q(A, B) is a witness family for [z,y] and
the pair (A, B) is filled in Q(A, B).

Proof. 1t is obvious that (A, B) is filled in Q(A, B), provided that Q(A, B) is a
witness family. For this, conditions (WF1) and (WF2) are immediate; we verify
(WF3). Let Z = W be such that Z € Q(A,B) and W € Y(x,y). If Z € , then
W satisfies condition (WF3) because 2 < Q(A, B) is a witness family. Therefore
we may suppose Z ¢ ) so that Z € F(A,B). If W = A and W © B, then the fact
W e Y(x,y) implies W € F(A, B) so that W = Z € Q(A, B) by maximality of Z.
If W cuts A or B, then we have verified (WF3) since A and B lie in Q(A4, B) and
contain Z. Therefore, let us suppose W cuts neither A nor B and that [W = A
and W = B] fails. In this case we must have A, B = W. But now (WF3), applied
to A € Q, implies that either W € Q < Q(A, B) or else that WhZ’ for some
Z'e Qc Q(A,B) with Z/ 2 A o Z. This proves that Q(A, B) satisfies condition
(WEF3) and establishes the lemma. O

Furthermore, suborderings always extend to refinements:

Lemma 7.21 (Subordering refinements). If Q is a subordered witness family for
[z,y] in T(X) and (A, B) is a cutting pair in §2, then there is a unique subordering
on the refinement Q(A, B) that extends the subordering on Q.
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Proof. To simplify notation, write @ = Q(A, B) and without loss of generality
suppose A < B. We first show that conditions (SO1)-(SO4) uniquely determine a
well-defined ordering designation ./ or *\, for each pair Z,V € Q with Z ¢ V:

(1) If Z,V €  we must use the ordering designation from Q: Z Vit Z / V.
(2) f Ve Qand Z ¢ Q, then Z € F(A, B) so that (SO3) forces us to set
ANZ /B (since Zhy B and AhpZ both fail). We claim that exactly one
of the following hold: (i) A,B=V, (ii)) A < V, or (ili) V < B. Firstly, it is
impossible to have V = A, B, as that would contradict the maximality of
Z in F(A, B). Triple nesting A=V = Bor BV © A is also ruled out
by AhB. Thus if (i) fails, then V necessarily cuts A or B. If AWV then
we must have A < V along [z,y], for otherwise we have V < A < B and
(by Corollary 3.30) Vh 4B, contradicting Z = V, A, B. Similarly, if VAB
then V' < B and we are in case (iii). To prove the claim, it remains to show
(ii) and (iii) are mutually exclusive; but this is clear: since Ahy B fails (as
Z = A,V,B), Corollary 3.30 precludes A < V < B. We now suborder Z
and V in each case:
(i) If A, B =V, then (SO2) implies A /' V <= B V. In accordance
with (SO1), we thus set Z .V in the case that A /' V and B ,/ V
and set V\\ Z in the case that V \{ A and V \| B.
(ii) If A <V we declare Z ./ V in accordance with (SO3), since —=(Adhy 7).
(iii) If V < B we similarly declare V\, Z.
(3) IfZeQand V ¢ Q, then V € F(A, B). Here (WF3) implies that VhZ’
for some Z' € Q with Z = Z'. Since —(Z'hy Z), we thus declare Z /' V if
7' <V and VN Z if V < Z' in accordance with (SO3). Note that this is
well-defined: If Zj) € Q is any other such domain, Z’ <V < Zj is ruled out
by Corollary 3.30 and the fact —(Z'hy Z}).
(4) If Z,V ¢ Q then Z,V € F(A, B), contradicting the fact that no two surfaces
in F(A, B) can be properly nested. Therefore this case does not occur.

We have now established ordering designations on 2 that extend those of 2. We
henceforth use ,/ and \ for these orderings in both 2 and 2, as the meaning is
unambiguous. It remains to show these in fact give a subordering on Q:

Condition (SO2): Let Z, W,V € Q be such that Z ,/ V \, W. If all three
domains are in € the condition is clear. Suppose V ¢ ). Then Z, W € Q since
no pair of domains in F(A, B) are nested. By case (3) above, there must exist
Z' W' e Qsuch that Z = Z/, W e W, and Z' <V < W’. Corollaries 3.30-3.31
now imply Z’'dy W’ and consequently Zhy W and Z < W.

Next suppose V € Q. Observe that if Z, W ¢ (2, then case (2) above dictates that
orderings for Z = V and W & V are both determined solely by the relationship of
V to A and B so that in fact Z /' V < W V. As this is not the case, we
see that at most one of Z, W can lie outside of 2. By symmetry, let us suppose
that Z ¢ Q (so that Z € F(A,B)) and W € Q. Since Z  V, the definition in
(2) dictates that either A,B ,/ V, orelse A < V. If A/B / V, then we have
B/ VN, W with B,W,V € Q so that (SO2) for  implies B < W with By W.
If A, B / V fails, then we have A <V N\ W so that (SO3) for € implies Ay W.
Since Z = A, B, either of these outcomes implies Zhy W. Using Corollary 3.31, we
may further conclude Z < W. Thus condition (SO2) is satisfied in this case.

Condition (SO1): This follows from the above and Remark 7.15.
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Condition (SO3): Let Z,V € Q and W € Y(z,y) be such that Z ,/ V < W
(the case W < V' \| Z is similar). We must show ZhyW. As above, this is clear if
Z,V € Q, and at most one of Z or V can lie outside of 2. Suppose first that Z ¢ Q,
so that Z € F(A, B), and Q2 € V. Let us first consider the case (2i) above in which
A, B V. Since Z ' V, the definition dictates that A ,/ V as well. Therefore we
may apply (SO3) for Q to A /' V < W and conclude that AhyW. If we are not in
case (2i), then (since Z / V') we must be in case (2ii) with A < V. Therefore we
have A < V < W and Corollary 3.30 gives Ay W. In either case, since relative
cutting descends to the subsurface Z = A, we may conclude Zhy W as desired.

It remains to suppose that Z € Q and V ¢ ). Now case (3) dictates that there
is a domain Z’ € Q with Z = Z’ and Z’ < V. Therefore we have Z = 7/ <V < W
and may again conclude Z'y W and consequently ZhyW. This proves that Q
satisfies condition (SO3).

Condition (SO4): Let Z,V € Q be such that Z ,/ V and suppose that W €
Y (z,y) satisfies W = V. We show that W 4 Z. (The case V \, Z is similar).
This is clear if Z and W are disjoint or nested, so we may assume ZhW. Note that
this gives W # V and, consequently W ¢ Q. As before, it suffices to suppose that
exactly one of Z or V lies in ().

First suppose V € Q and Z ¢ Q. We claim that the facts V = W< and Q c Q
imply V = W as well. Indeed, if V; € Q is any domain with W = Vj, then V; € Q
so that V' = Vj by Lemma 7.6. Whence V = W as claimed. Since Z ¢ €, we have
Z € F(A,B) with Z / V so that, by the definition in (2), either A, B = V with
B/ V, orelse A < V. First consider the former case A, B — V with B /' V. Since
W <2V and Be Q with B V, it cannot be that W = B. Also we cannot have
B = W or B disjoint from W because WhZ. Therefore WhB. Since B,V € )
with B /' V and W = V, we can now invoke (SO4) for € to conclude B < W.
The desired time-ordering Z < W now follows from Corollary 3.31. Next consider
the latter case A < V. Now, A and W cannot be disjoint nor can A = W because
ZAW. If WhA, then A <V implies A < W and Z < W by Corollary 3.31. So
it remains to suppose W = A € Q; but here Lemma 7.6 implies V = W% = A
contradicting AhV. This proves that (SO4) holds when V € Q and Z ¢ Q.

Next suppose V ¢ Q and Z € Q. Since Z / V, the definition in (3) provides
some Z' € Q such that Z = Z' and Z/ < V. If W = Z’, then since Z’' € Q) < Q,
Lemma 7.6 implies that V = W% = Z’ contradicting Z’hV. Therefore W o Z'.
Neither can we have Z' = W or Z' and W disjoint (since ZhW). Therefore Z' hW
and we may invoke Corollary 3.31 to conclude Z’ < W and subsequently Z < W,
as desired. This proves that (SO4) holds when V ¢ Q and Z € Q and completes the
proof of Lemma 7.21. O

One may now ask how encroachments in Q and Q(A, B) are related:

Lemma 7.22 (Refined encroachments). Let Q2 be a subordered witness family for
[z,y] in T(X) and let Q = Q(A, B) be the subordered refinement along the the
cutting pair (A, B). Then every domain V = X satisfies

EH(V) < max{EH(V),M}  and EL(V) < max{EH(V),M}.
Proof. First suppose V ¢ Q. As the claim is immediate for V ¢ ), we assume
V e Q\Q so that £q(V) = 0. An examination of the proof of Lemma 7.21 shows

that any Z € Q with Z & V falls under case (3) and thus satisfies Z = Z’ for some
Z' € Q with Z'aV. If Z' <V, so that Z /' V, it follows that dy (z,C(V]z)) <
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1+dy(x,0Z") < M by Lemma 3.29. If instead V' < Z'; so that V \ Z, we similarly
have dy (y,C(V|z)) < M. Thus £q(V) < M and the claim follows.

Next suppose V € Q. Now the proof of Lemma 7.21 shows that every Z € Q
with Z /' V either satisfies Z € 2, or else falls under case (2i) with Z = A / V
or case (2ii) with Z = A < V. In the former case we have dy (x,C(V|z)) < E5(V)
by definition, and in the latter case we have dy (z,C(V]z)) < M as in the previous
paragraph. For the middle case, we simply note that C(V|z) < C(V|4) and thus
that dy (2,C(V|z)) < dy(z,C(V]a)) < EL(V) by definition. This proves £5(V) <
max{EL(V), M}; the proof for £ (V) is similar. O

7.6. Augmentation. We will repeatedly need to enlarge witness families ) by
adding sets of the form L£,(E) or R,(E) (see §7.3) for E €

Definition 7.23 (Augmentation). Let Q be a witness family for [z,y] € T(X). For
any F € Q and 0 < t < dg(z,y), the collections Q U L,(F) and Q U R,(E) are
termed the left and right augmentations of () along E with parameter ¢.

Lemma 7.24. If Q is a witness family for [z,y] in T(X) and E € Q, then QUL,(E)
and QU R, (E) are witness families for each 0 <t < dg(z,y).

Proof. We prove the claim for ' = Qu L, (E); the proof for Q@ UR,(F) is identical.
Conditions (WF1) and (WF2) are clear because Q@ < ' and each Z € L,(F)
satisfies Z € Y (z,y) by definition. For condition (WF3), suppose Z = W are such
that Z € @ and W € Y(z,y); we must show W € Q' or else WhZ’ for some
7' e Q) with Z = Z'. If Z € Q, this follows from the fact that Q is a witness family.
Otherwise we have Z € L,(FE) so that Z = E. If EAW we have satisfied (WF3).
If E = W, then we may apply (WF3) to E € Q to obtain our conclusion. It thus
remains to suppose Z — W & E. But now W € Y(z,y), C(E|z) < C(E|w) and
Z € Li(F) together imply that W e £;(E). By maximality of Z, it follows that
W = Z € Q. This establishes (WF3) for Q u L,(F) and proves the lemma. O

Extending suborderings to augmentations will require the following fact.

Lemma 7.25. Let [z,y] be a geodesic in T(X) and let Z,W = E = ¥ be domains
such that {Z, W, E} < T(x,y).

o IfW < Z along [z,y], then dis(z,C(Elw) < dp(z,C(E|)).

o Ifdg(x,C(Elw)) <dg(z,C(E|z)) — 3, then W < Z along [z,y].

The same conclusions of course hold with the roles of x,y and W, Z swapped.

Proof. Consider the first claim. If W e Y*(x,y), then W is an annulus and oW
is short at either = or y. The time ordering W < Z implies it must be that
0,(0W) < €. Hence C(E|w) consists of the single curve 0W, which is an element
of any Bers marking p, at x. Thus

dp(z,C(Elw)) = diame(g)(7e(z)) < dp(x,C(E|z)

and the first claim holds when W e Y*(z, y).

If W ¢ Y*(z,y), then necessarily dy (z,y) = Ny . Let usset kyy = dp(z,C(E|w))
and suppose on the contrary that ky > dg(x,C(E|z)). Since E contains two sub-
domains that cut each other, E cannot be an annulus. Recalling that 7g(x) is the
set of all essential simple closed curves in C(E) achieved by projecting the curves
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of the Bers marking p, to FE, it follows that mg(z) contains at least two distinct
curves in C(E). In particular

kw > dp(x,C(E|z)) = diame(g) (7 (1) © C(Elz)) = diameg) 75 (1) > 1,
which gives ky = 2.

Choose curves v € mg(z) and v € C(E|w) such that dg(v,v) = k. Choose also
a curve ( € 0Z that cuts W, and a geodesic (ayg,...,qn) in C(E) from oy = 7 to
ap = (. The curve «,, cuts W by construction. Thus if m = 0, we trivially have

mw(a;) # & for each 0 < i < m. Otherwise m > 1 and for each 0 < i < m < ky
the curve a; necessarily intersects v (and consequently cuts W) by the fact that

dp(v,a;) =2 dg(v,y) —dg(y, a) = kw —i > 2.

In any case we find that my (o) # & for all 0 <4 < m. It follows from the Bounded
Geodesic Image Theorem (Theorem 3.8), that dw (v,¢) < Q. Using dw (0Z,() <2
and Lemma 3.9 and recalling that M > 100(k+Q+1) (Definition 3.24), this implies

dw(2,0Z) <k +2+dw(v,0) <k +2+ Q< M/2.

However, the time ordering W < Z implies dw (x,0Z) = 2M/3, a contradiction.
For the second claim, if W and Z were disjoint or nested, we would have
diame (g (C(Elw) U C(E|z)) < 2; this can be seen by choosing a curve in 0W U 07
that is disjoint from every curve in C(E|w ) u C(E|z). As this is incompatible with
the hypothesis dg(x,C(E|w)) < dg(x,C(E|z)) — 3, it must be that WhZ. Thus
either Z < W or W < Z. But by the first part of the lemma, W < Z is the only
option compatible with the hypothesis. ([l

We may now extend suborderings to any augmentation in which the parameter
and corresponding encroachment are controlled:

Lemma 7.26 (Subordering augmentations). Let Q be a subordered witness family
for [z,y] in T(X) and suppose E € Q) satisfies Eq(E) < Ng/3. For each parameter
0 <t < ES(E) (respectively, 0 < t < E5(E)) there is a natural subordering on
Qu L,(E) (respectively, Q v R,(E)) that extends the subordering on Q.

Proof. We prove the lemma for Q = Q U £L,(E); the proof for Q U R,(E) is sym-
metric. We first show that conditions (SO1)—(SO4) give rise to a natural ordering
designation ,/ or *\, for each pair Z,V € Q with Z = V:

(1) If Z,V € Q, we use the designation from  and set Z "V iff Z / V.
(2) f VeQand Z ¢ Q, then Z € L,(F) and we proceed as follows:
(i) IV = E, weset Z./V. (For the case of QUR,(E) with Z € R,(E)\$2
we instead set E\, 7).

(i) K F2V,thenweset Z,/V «— E /VandV\NZ < V\|E
in accordance with (SO1).

(iii) If V = E, then the fact V' 2 Z € L;(F) implies V € L;(FE), contradict-
ing the maximality of Z in £,(E). Hence V & E cannot occur.

(iv) If VAE, we claim it must be that V' < E and therefore set V' Z in
accordance with (SO3). (For the case of QUR, (E) with Z € R,(E), we
instead have E' < V and accordingly set Z ./ V.) To see this, note that
V a2 Z e L,(F) implies there exists v € C(E|z) with dg(z,v) < t+9C.
Since t < E4(F) < Np/3, this gives dg(y,v) > 2Ng — 9C > 5M. Now
since 0V and v are disjoint, we have dg(y,dV) = 4M — 2 > 2M/3,
showing that V < E by Lemma 3.29.
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(3) f V ¢ Q and Z € €, then (WF3) provides some Z' € Q with Z = Z’ and
Z'dV. Thus we set Z/V if Z/ <V and V\.Z if V <« Z’ in accordance
with (SO3). This is well-defined, as Corollary 3.30 ensures it is impossible to
have the two such domains Z1, Z} € Q with the time ordering 7; <V < ZJ.

(4) The case Z,V ¢  is ruled out by the fact domains in £,(FE) are not nested.

The above establishes ordering designations on 2 that extend those of €2, and so
we henceforth use ,/ and \ for the designations in both Q and €. To prove these
give a subordering on £, it remains (by Remark 7.15) to verify (SO2)—(SO4):

Condition (SO2): Let Z, W,V € Q be such that Z ,/ V | W. The condition
is immediate if all three domains lie in Q. If V' ¢ Q, then Z, W € Q) because domains
in £,(E) cannot be nested. As dictated by (3) above, we may choose Z', W' € Q
such that Z = Z/, W = W', and Z' < V < W'. By Corollaries 3.30-3.31, this
implies Z'hy W’ and Zhy W with Z < W, as desired.

Next suppose V € Q. If Z, W ¢ Q, then an examination of case (2) above shows
that Z /' V <= W  V since the ordering designations for Z & V and W = V
are both determined by the relationship of V to E. As this is not the case, at most
one of Z or W can lie outside of 2. Let us first suppose Z € Q and W ¢ 2, so that
W e L,(F). Now case (2) above dictates that the designation V' \, W must fall
under (2ii) with V' \{ E or else (2iv) in which V < E. In the first case V \{ E
we have Z /' V' \{ F so that (SO2) for Q ensures Zhy E with Z < E, and in the
second case V < E we have Z /' V < E so that Zhy E with Z < E by (SO3) for
Q. In either case, we may conclude Zhy W with Z < W, as desired.

It remains to suppose V,W € Q and Z ¢ Q. By case (2) above, the designation
7V must fall under (2i) with V' = E, or else (2ii) with £ / V. In the latter
case E /' V we have E /' V N\, W so that we may use (SO2) to conclude Zh, W
and Z < W as above. So let us restrict our attention to the case V = E. Since
EN W and Z € L,(F), we find that dg(y,C(E|w)) < ES(F) and that

dg(z,C(E|z)) <t +9C < EL(E) +9C.

Since £q(F) < Ng/3 and dg(z,y) = Ng > 30C, the triangle inequality gives
dg(z,C(F|z)) < dg(z,C(E|w))—C so that we may conclude Z < W by Lemma 7.25.
The fact dg(0Z,0W) = M > 3 further ensures that Zhy W, as desired.

Condition (SO3): Let Z,V € Q and W € Y(z,y) be such that Z ,/ V <« W
or W <V \, Z. We may assume exactly one of Z or V lies outside of 2. First
suppose V € Q and Z ¢ Q so that Z € £L,(F) and the designation for Z = V' is
dictated by case (2) above. Let us examine these possibilities in turn: If Z = V
falls under (2i), then V = E and we must have Z ,/ V < W. Here we find that
dv (y,0W) < M/3 and that dy(z,02) < t+ 9C < E5(V) + 9C. Since dy (z,y) >
Ny = 30C and Eq(V) < Ny /3, this together with the triangle inequality implies
dy(0Z,0W) = C. We may thus conclude the desired Zhy W, for otherwise we
would find that dy (0Z,0W) < M/3 exactly as in the proof of Corollary 3.30. If
Z = V falls under (2ii), then (2ii) dictates E /' V' < W in the case that Z ,/ V and
instead dictates W < V' \{ F in the case V' N\, Z. Either way, we may invoke (SO3)
to conclude Ehy W and consequently ZhyW. Finally, if Z = V falls under (2iv),
then it must be that V' < F and V \, Z. Hence we are in the case W < V \( Z
and in fact have W < V < E. Therefore Why E by Corollary 3.30 and we may
conclude Wy Z as desired.
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Next suppose V ¢ Q and Z € Q. Then (WF3) allows us to choose Z' €
such that Z = Z’. If Z /' V < W then (3) dictates that Z’ < V < W, and if
W <V \{ Z then (3) instead dictates W < V < Z’. Either way, we may invoke
Corollary 3.30 to conclude Zhy W.

Condition (SO4): Let Z,V € Q and W € Y(z,y) be such that Z & V,
ZAW, and W = V. Observe that these facts imply W ¢ Q. We must show that
Zy/V = Z<WandV \(Z = W < Z.

First suppose V ¢ Q. Then we must have Z € Q because domains in £,(FE)
cannot be nested. Now (WF3) provides a domain Z’' € Q such that Z'AV and
Z = 7Z'. Since ZAW, it cannot be that Z’ and W are disjoint. Nor can we have
Z'c W. If W o Z' € Q, then the assumption W& = V implies V — Z’ by
Lemma 7.6. As this contradicts Z'AV, we must have Z'&W. Now, if Z / V,
then (3) dictates that Z’ < V so that we find Z < W by Corollary 3.31. If instead
V \\ Z, then (3) dictates V < Z’ and we similarly deduce W < Z. This establishes
(SO4) when V ¢ Q.

Next suppose V € Q. Then the facts Ve Q c Q and W2 = V imply W® =V as
well (since Lemma 7.6 implies V = Vj for any Vy € Q with W = Vp). Thus if Z €
as well we may invoke (SO4) to prove the claim. It therefore suffices to suppose
Z ¢ Q so that Z € L,(E). Let us examine the subcases of (2) in turn:

If V = E, then (2i) dictates Z ,/ V and we must show Z < W. If instead
W < Z, then Lemma 7.25 implies that dg(z,C(E|w)) < dr(z,C(E|z)) <t + 9C.
Since W& = E it cannot be that W e L;(E), for then we would have W = W' ¢ E
for some W' e L,(E) < Q. Thus dg(z,C(E|w)) ¢ [t —9C, ¢ + 9C]. Together, these
inequalities give

dg(z,C(Elw)) <t —9C < E5(E) — 9C.
By definition of encroachment, we may choose a domain U €  such that U ,/ FE
and dg(z,C(E|y)) = E5(V). By Lemma 7.25, the above inequality implies W < U
along [x,y]. We now have U,V € Q with U ,/ V and and W < U. Since we have
seen W = V| this contradicts the fact that € satisfies (SO4). Therefore, W < Z
leads to a contradiction, and we may conclude the desired ordering Z < W.

If E = V, then (2ii) dictates Z ,/ V <= FE , V. Observe that W <% V
precludes W = E. We also cannot have E = W nor E and W disjoint (since
ZAaW). Therefore EAW, and we may apply (SO4) to E = V in Q to conclude
Z )V = FE /V = E < W, which in turn implies Z < W as desired. If
instead V N\, Z, we similarly conclude W < E and consequently W < Z.

If VAE, then (2iv) dictates that V < E and V \, Z. We cannot have E = W
nor E and W disjoint (because ZAE), and if W = E, then Lemma 7.6 would imply
V = W% c E, contradicting VAE. Therefore it must be that WAE. We may now
apply Corollary 3.31 to V < E to conclude W < E and W < Z, as desired. This
verifies (SO4) when V' € 2 and completes the proof of the lemma. O

As for refinements, we shall need to bound each augmentation’s encroachments.
Lemma 7.27 (Augmented encroachments). Let 2 be a subordered witness family
for [z,y] in T(X), let E € Q satisfy Eq(E) < Ng/3, and let Q = Q U L,(E) with
0<t<ELE) or Q=QUR(E) with0 <t < EL(E) be the augmentation of Q
along E with parameter t. Then every domain V = X satisfies

L (V) < max{EL(E),t +9C}, if V=F and Q =Qu L,(E)
2 max{&4(V), M}, else
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and
max{&LH(E),t+9C}, ifV=FE and Q =QUR,(E)

EH(V) <
a(V) {max{é’{z(V),M}, else

Proof. We prove the lemma for Q U £,(E); the proof for Q U R,(E) is symmetric.
First suppose V ¢ €. The claim is immediate for V ¢ Q (since then Eq(V) = 0), so
we assume V' € Q\Q. The proof of Lemma 7.26 shows that any Z € Q with Z &= V
falls under case (3) and satisfies Z = Z' for some Z’' € Q with Z'’AV. Therefore, as
in the proof of Lemma 7.22, Z ,/ V implies dy (z,C(V]z)) < M and V \ Z implies
dy (y,C(V]z)) < M. Thus the lemma holds for V ¢ .

Next suppose V' € € and consider any Z € Q with Z = V. If Z / V, then the
proof of Lemma 7.26 shows that either (1) Z € Q, (2) Z € L,(F) with V = E,
or (3) Z = E  V sothat C(V]z) = C(V]g). In the former and latter cases we
conclude the desired bound dy (z,C(V|z)) < £4(V). In the middle case, we have
V = FE and instead find dy (z,C(V]z)) < t+9C by the definition of £,(F). Thus we
conclude the stated bound on &5(V). If instead V | Z, the proof of Lemma 7.26
now shows that either (1) Z € Q, (2) V \{ F 3 Z so that C(V|z) < C(V]|g), or
(3) V. < E o Z. In these three cases we may respectively bound dy (y,C(V|z)) by
EG(V), ES(V), and M. Therefore £5(V) < max{E,(V), M} as claimed. O

7.7. Completion. We may now extend any witness family to a complete and in-
sulated one:

Definition 7.28 (Insulated completion). If  is a witness family for [z, y] in T(X),
define  to be

Q:=Qu (U L(E) uRO(E)> U ", U F(A,B)

EeQ a cutting pair in Q

The insulated completion of §) is then defined to be = ui:gNQZ-, where Qg, Q4, ...
is the sequence recursively defined by Qg = Q and ;1 = €;.

Lemma 7.29. Let Q be a witness family for [z,y] in T(X) and let Qg,Qq,... be
the sequence recursively defined by Qo = Q and Qi1 = Q. Then
(1) Q is a witness family,
(2) Q= Qg(g)_,_l, and
(3) Q is a complete and insulated witness family.
(4) Any subordering on ) extends to natural suborderings on Q and Q whose
encroachments, for each V- X, satisfy

ES(V),EE(V) <max{€4(V),9C}  and  EL(V),E5(V) < max{&E;(V),9C}.

Proof. For (1), first observe that 2 is finite. This is because there are only finitely
many subsurfaces Z = ¥ with dz(z,y) = M and only finitely many annuli A with
0,(0A) < €y or £,(0A) < €. The family Q may be constructed by adding the
finitely many families £y(E), Ry(E), and F(A, B) one at a time. Lemmas 7.20
and 7.24 show that each addition results in another witness family. Therefore the
output  of those finitely many additions is a witness family.

For (2), let kg = max{¢(V') | V € Qo}, and for each i > 0 let k; = max{{(V) |V €
Q,\Q;_1} be the maximal complexity of any domain that was added during the ith
iteration, with the convention that k; = —o0 if Q; = ;1 (in which case Q = Q;_1).
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We claim that k;_, > 1+ k; for each i > 0. The result Q = Q¢ ()41 will then follow
from the observation ky < £(X). To see this, suppose V € 2,\Q;_;. Then either
Ve Ly(E)uRy(E) for some E € Q;_1, or else V € F(A, B) for some cutting pair
(A, B) in Q;_1. If i = 1, this shows that V is a proper subsurface of domain in Qg
and hence that kg = 1+ £(V). Next suppose i > 1. If V e L;(E) U Ry(E) then we
must have E ¢ ; o, for otherwise V € Q; 1 = Qs by construction. Similarly, if
V e F(A, B), then either A ¢ Q;_5 or B ¢ Q;_o by the same reasoning. Therefore V/
is a proper subsurface of a domain in ©;_1\Q;_2 and we may conclude the claimed
inequality k; < k;—1 — 1.

Combining (1) and (2), we see that 2 is a witness family and that F(A, B) u
Ly(E) URL(E) < Q for all E € Q and all cutting pairs (A, B) in Q. Therefore Q is
complete by Lemma 7.9 and insulated by Definition 7.11, which proves (3). Finally,
(4) follows from Lemmas 7.21, 7.22, 7.26, and 7.27. ([l

We may also use Lemmas 7.8 and 7.10 to control the cardinality of Q.

Lemma 7.30. For each —1 < j < &(X), there exists a computable function
Gj: NE¢E)=J — N depending only Nesy, .-+, Njy1 with the following property. If
Q is any witness family for any geodesic [x,y] in T (X), then

[, - 191, < G (Kesy, - Kjs1)

for any tuple (K¢(sy, ..., Kji1) satisfying [Q|, < K; for each §(X) =i > j. In
particular, there exists a computable function G: N — N such that ’§| < G(|Q)) for
every witness family Q.

Proof. For j = £(X), we may take the constant function G¢xy = 1 since Q can
contain at most one domain of this complexity. For the remaining j, we proceed
inductively: Fix an integer —1 < j < £(X) and suppose that the stipulated functions
Ge(s), - --Gjp1 have been constructed. Let us count the domains V e Q\Q of
complexity &£(V) = j. Any such V satisfies V € Ly(E) U R,(FE) for some FE € Q
with £(E) > j, or else V € F(A, B) for some A, B €  with £(A),£(B) > j. Letting
J denote the number of domains of Q of complexity at least j + 1, it follows from
Lemmas 7.8 and 7.10 that

_ — J
0], - 191, = [\, < (2) (2N 41)5DF2 £ 27 (2N 453,
However, our induction hypothesis gives
€=
J< ), [0 < (Gewy + Kew) + -+ (Gina (K, Kjva) + K.
i=j+1

Combining these inequalities shows that |§|j —[€2]; is bounded above by function of

(Khy, .-+, Kji1) that depends only on the thresholds N¢(sy, ..., Nji1, as claimed.
The final assertion of the lemma then holds for the function G: N — N defined as

G($)=I+G§(g)++G,1(.’L‘7,JI) U

8. COMPLEXITY OF WITNESS FAMILIES

We next explain how the the structure of a witness family organizes curve com-
plex projection data into a quantity that we call complexity. Let us first designate
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an acronym combining the many types of witness families that have been introduced
in Definitions 7.7, 7.11, 7.14, and 7.18.

Terminology 8.1 (WISC). A witness family is WISC if it is wide, insulated,
subordered, and complete.

The starting point is the following notion that is suggested by completeness:

Definition 8.2 (Contribute). If Q is a complete witness family for a geodesic
segment [z,y] € T(X), we say that a domain Z = ¥ contributes to V € Q if
ZeY(z,y) and V = Z%

Since every domain Z € T (z,y) has a unique 2-supremum, we may partition the
domains of Y (z,y) according to the elements of {2 they contribute to. We would
like to somehow combine the data {(Z,dz(z,y)) | Z contributes to V} into a notion
of “distance in V” that, when summed over all V' € ), can be used for counting
problems and is moreover related to the total Teichmiiller distance drx)(z,y). A
subordering on Q allows us to accomplish this by resolving x and y into points
in the Teichmiiller space T (V) for each V € Q. In fact, we can resolve any point
coarsely aligned between = and y.

8.1. Teichmiiller resolutions. Recall the constant C > 0 specified at the start of
§7 (which determines the N;).

Definition 8.3 (Projection tuple). Let © be a WISC witness family for a geodesic
[z,y] in T(X). For each domain V € Q and point w € T (X) satisfying

dz(x,w) +dz(w,y) <dz(z,y) +9C forall Z =V,
define its projection tuple to be the tuple (wz) € [ [, C(Z) given by:

nz(y), if ZeY(x,y)and 2% /V
Wy =4 mz(z), if ZeY(x,y)and V \, Z9.
wz(w), else

In particular, Wz = 7wz (w) whenever Z = ¥ contributes to V.

Proposition 8.4. With the notation from Definition 8.3, the projection tuple
(Wz) € [ 140y C(2) is k—constistent for some constant k depending only on C.

Proof. Let U, Z = V be arbitrary subdomains. We must show that:

UhZ - min{dU(ﬁ/UﬁZ),dz(wzﬁU)} <k
Uc /7 — min{dU(IDU,WU(’ljjz)>7dz(lbz,aU)} <k

Note that for each p € {z,w, y} the pair (7y(p), 7z (p)) in C(U) x C(Z) satisfies these
conditions with constant K by Theorem 3.37. Thus we may assume wy # my(w)
or Wy # mz(w). We may additionally assume dy(x,y) = Ny and dz(z,y) = Nz.
Indeed, if say dz(z,y) < Nz, then by coarse alignment 7z () U mz(w) U mz(y) has
diameter at most 9C + Nz < 2N. Hence, regardless of whether wy is defined as
7wy (), my(w), or my(y) we may move wz by distance at most 2N to arrive at a
K—consistent pair (7 (p), 7z(p)) as above. In particular, U,Z € Y(z,y) and U®
and Z® both exist by the completeness of Q.

Suppose first UhZ. By symmetry, we may suppose Wz # 7z(w) so that Z%
is a proper subsurface of V. We only consider the case Z% / V as the opposite
case V N\, Z is symmetric. In this case Wz = mz(y) by definition. If we also

(8.5)
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have U /' V, then Wy = 7y (y) and the pair (W, Wz) is K-consistent. If instead
V N\, U%, then (SO2) and Corollary 3.31 imply that Z < U along [, y]. Therefore
dz(Wz,0U) = dz(y,0U) < M/3 by Lemma 3.29, and (8.5) is satisfied. The only
remaining possibility is U = V. In this case we necessarily have Uh(Z?) (U is
not disjoint from Z** since UhZ = Z, U is not contained in Z as that would
give U = Z9, and Z* is not contained in U since that would give Z = U). Thus
U and Z% are time-ordered. Since Z% / V and U = V, condition (SO4) forces
7 < U which in turn implies Z < U. Therefore dz(wz,0U) = dz(y,oU) < M/3,
as above, and we have verified (8.5) when UhZ.

Next let us suppose that U — Z. Then U® = Z?. If U = Z%, then consistency
is automatically satisfied by definition of wy,wz and Theorem 3.37. So suppose
U o Z9 If Z% ¢ V, then condition (SO1) ensures that U / V iff Z9% / V
and we again have consistency by Theorem 3.37. The only remaining possibility is
U © Z® = V. Let us consider the case U ,/ V (the other case V \, U being
similar). In this case we have Wz = mz(w) and Wy = 7wy (y) by definition.

Claim 8.6. dz(z,0U) < &q(V) +M < N/2.

Proof. We clearly cannot have Z = U®. If Z&U® then (SO4) implies we must
have U < Z and consequently dz(z, d(U?)) < M/3. Since oU u o(U®) is a curve
system on ¥ we have dz(0U, 0(U®)) < 2. Thus dz(z,0U) <2+ M/3 < M.

Since U® and Z cannot be disjoint, it remains to suppose U = Z. There are
two possibilities: Firstly, if Z = V| then

dz(x,ﬁU) = dv((E,aU) < dv(.’E,C(V|UQ)) < SQ(V) < N/3

by the fact U? ,/ V. Secondly, if Z = V, then Z = V implies Z ¢ Q so that (WF3)
provides some Z’ € Q with ZhZ' and U? = Z’. Note that we must have Z’ # V.
If Z/ = V, then (SO1) implies Z’ /' V so that (SO4) forces Z’ < Z. Otherwise we
have Z'AV so that (SO3) (using U? ,/ V and U® = Z’) forces Z' < V and we
may again conclude Z’' < Z by Corollary 3.31. Therefore dz(z,0Z’) < M/3 so that
we may use U = Z’ to conclude dz(x,0U) < M/3 + 2 < M as above. O

Since diame ) (7 (w), Ty (mz(w))) is bounded by Lemma 3.9, verifying (8.5)
amounts to bounding min{dy (y,w),dz(w,dU)}. Thus if dy(w,y) < N we are
done. Otherwise dy(w,y) > N, and applying Corollary 3.27 and Claim 8.6 gives

dz(w,z) +dz(z,y) < dz(w,0U) +dz(0U,y) + N < dz(w,y) + 2N.
On the other hand, the coarse alignment hypothesis on w gives
dz(z,w) +dz(w,y) < dz(x,y) + 9C.
Combining these inequalities yields
2dz(x,w) +dz(w,y) —9C < dz(w,y) + 2N,

or equivalently dz(w,z) < (2N + 9C)/2 < 3N/2. Thus the triangle inequality and
Claim 8.6 now give the desired bound dz(w, dU) < 2N. O

Combining Proposition 8.4 with Theorem 3.37 and Lemma 3.10, we are now able
to resolve w into the Teichmiiller space of any V € Q:

Definition 8.7 (Resolution point). Let © be a WISC witness family for [x,y] in
T(X). For any V € €, there are coarsely well-defined resolution points 73,95} €
T (V) constructed as follows: Let w € {x,y}. If V is nonannular, then @$! € T, (V)
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is a thick point realizing the consistent tuple (Wz)zcy from Definition 8.3. If V' is
an annulus, then the tuple(@z)zcy is a singleton 1wy € C(V), and we define @3 to
be the point in 7 (V) = H? whose twist coordinate is given by wy = my(w), and
whose length coordinate is m

0Cw

8.2. Complexity via Teichmiiller distance. Given a WISC witness family (2
for a Teichmiiller geodesic [z,y] in T(X), Proposition 8.4 provides a pair %, i of
resolutions for each V € . We now combine these into the following quantity:

Definition 8.8 (Complexity). The complerity of a WISC witness family Q for a
geodesic [z,y] in T(X) is the weighted sum

A0 ~Q
Q) = ). hdran (@Y, 50)
VeQ
where hj, = hy for every nonannular domain, and for annuli A we set h% = 1 in
the case that 7%, %} are both ey—thick, and otherwise set h¥ = 2 = hy.

Remark 8.9. Let us highlight three features of this definition.

(1) The resolution points Z3%, 7i* coarsely encode all the projection data of z,y,

with the result that it is possible to reconstruct the original points from
their resolutions. This allows one to relate complexity £(£2) to counting
problems, as we do in §12 below.

(2) It is helpful to compare this definition of £(€2) to the distance formula
Theorem 3.33. Indeed, if one applies the distance formula to each term
drvy(@%, 73, the result is a weighted (by h}, and the multiplicative er-
rors) sum of curve complex distances dz(z,y) for all Z € Y(x,y). Thus
£(9) is coarsely equivalent to dr (s (z,y) with some bounded but unknown
multiplicative and additive error. The purpose of §§9-10 below to show
that one can choose 2 carefully so that, up to only additive error, £(Q) is
bounded above by the explicit multiple hydy(s)(z,y) (Theorem 11.2). This
multiplicative control is crucial in our counting applications (Theorem 12.1)
since the quantity £(Q2) appears in the exponent.

(3) The final and perhaps least apparent feature is that by decomposing the
Teichmiiller distance into separate subsurfaces, the quantity £(Q) is able
to tap into the hyperbolicity of curve complexes and promote alignment
in curve complexes to a sort of alignment for complexity. That is, the
definition is constructed with the heuristic that if (x,y,z) is an aligned
triple in 7/(X) with associated WISC witness families QY, Q7 QF, then one
should morally expect £(€2%) + £(Q7) < £(£2) up to additive error. To
achieve this precise statement seems to be quite difficult. However, we will
show in Theorem 11.2 that the witness families can be chosen so that, up
to only additive error, £(Q%) + £(Q7) is bounded above by hxdrx)(, 2)
provided (z,y, z) is strongly aligned. This feature together with the above-
mentioned Theorem 12.1 make complexity a useful tool for counting orbit
points of finite order and reducible mapping classes.

8.3. Complexity of tuples. To obtain the features indicated in Remark 8.9, we
will work in a more general setting of tuples of witness families. Recall the param-
eter C > 2M from §7 that determines the constants N; and satisfies (7.1).

Definition 8.10. A witness family for a strongly C—aligned tuple (xg,...,2,) in
T(X) is a tuple Q = (Q1,...,Q,) where each Q; is a witness family for [x;_1,2;].
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All of the notation and terminology from §7—such as subordering, refinement,
augmentation, completion—are extended componentwise to the setting of witness
families for tuples. Thus 2 has a given property provided it holds for each ;. In
particular, a subordering on 2 is a subordering on each §2;, and we will write .4 and
i\ for the subordering designations on §2;. We additionally define encroachments as
Ea(V) = max; Eq, (V) and similarly for £5(V) and £5(V), and define the insulated
completion of  to be 2 = (Qy,...,Q,).

Notation 8.11. When a strongly C-aligned tuple (zo,...,z,) has been speci-
fied, we will use the shorthand Y; = Y(x;_1,2;) and similarly T = Y¢(z;_y, x;)
and T¢ = Y°(z;_1,2;). Similarly, if Q@ = (Qq,...,Q,) is a witness family for
(zo,...,2n), we will by abuse of notation write V' € ) to mean that V € u;$;.

Definition 8.12. A witness family  for a strongly C-aligned tuple (zq,...,z,)
is WISC if each ; is WISC, and in this case the complexity of ) is defined as

n

Q) = D1 2() =Y D) hidroy@ay, 8.
i=1

i=1VeQ;

In order to account for those annuli where we use hj, = 1 instead of A}, = 2 in
the above formula, we also introduce the following:

Definition 8.13. The savings of a WISC witness family Q = (Qq,...,Q,) is

&(Q) = > > (hy — h¥)dro) @y, &)
=1 VEQi

9. BOUNDING THE CONTRIBUTION OF A WITNESS

We recall from the introduction that the reason witness families were introduced
and the goal of the whole second half of the paper are Theorem 11.2 and Theo-
rem 12.1 The first bounds the complexity of a collection of witness families defined
by a strongly aligned set of points in terms of Teichmiiller distance. The second
counts net points in terms of complexity. Together they will give the desired count
of net points in terms of Teichmiiller distance. As a major first step towards proving
Theorem 11.2 in this section we bound the distances dy (971_\13, £;3%) contributed
by each individual witness; this is the content of Theorem 9.4. Throughout this
section, we fix a WISC witness family Q = (4,...,Q,) for a strongly C-aligned
tuple (zq,...,2,) in T7(X). For each domain V = ¥, we let zy,...,2Y € [x0,z,]
denote the points provided by Definition 3.21 (strong alignment) that appear in
order along [zg,z,] and satisfy dy(z;,}) < C. In the case of an annulus, we
furthermore assume the ratio of min{eo, z,(0A)} and min{eg, €,v (0A)} is at most
C. We also remind the reader that the collections Y, Y¢ YT were introduced in
Definition 7.2.

9.1. Contribution sets. Estimating £(Q) will involve a careful analysis of active
intervals along the main Teichmiiller geodesic [xg,x,]. To this end, we have the
following basic observations.

Lemma 9.1. If V € Y(z;_1,x;), for some 1 < i < n, then V has a nonempty
active interval Ty along [xo, x,]. In particular, this holds for each V € U;Q;.
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Proof. Assume first V € YT¢(x;—1,2;). Then dy(x;—1,2;) = Ny. Hence by C-
alignment of (zo,...,z,) we have

dy (o, xn) = dv(xo,xi—1) + dv (Ti—1, ;) + dv (2, x,) —2C = Ny — 2C > M.
Hence Zy # & by Lemma 3.26.

Otherwise V € Y¢(x;_1,7;) and V is an annulus with at least one of ¢, ,(3V)
and £, (V') smaller than ey/Ny Without loss of generality, we may therefore sup-
pose £y, (0V) < €9/Ny. By strong C-alignment and the choice of Ny (7.1), this gives
L,v(0V) < Ceo/Ny < €. Therefore, V has a nonempty active interval Zy = Z7?
along [xg, z,,] by Theorem 3.22(2) and Definition 3.25. O

Lemma 9.2. If Z € Y(a;_1,2;) and W € Y(x;-1,x;) satisfy Z&W, then Z and
W are time-ordered compatibly along [zo,x,] and [x;—1, z;].

Proof. We know from Lemma 9.1 and Remark 7.3 that Z and W have nonempty
active intervals along both [z;_1, ;] and [xg, z,,]. Let us suppose that Z < W along
[%i—1,x;] (the reverse possibility being handled similarly), and by contradiction that
W < Z along [zg,x,]. Then by time-ordering, dz(dW,z;) and dz(zqg, W) are at
most M/3. Hence

dz(xo,l‘i) < dz(l‘o,aW) + dz(aVV, l‘l) < 2M/3
Since Z € Y¢, alignment now gives the contradictory inequality
dz(zo, ;) = dz(xo,i—1) +dz(vi—1,2;)) —C=Nz —C=>M. O

Recall (Definition 8.2) that Z = V contributes to V € Q; if Z € T; and V = Z%.
For each V € Q, we will now define a “contribution set” for V along [z¢,z,] by
starting with the active interval Zy , then removing the active interval Zy for any
domain W € Q with W £ V, and finally adding the active intervals Z; of any
domain Z that contributes to V' in some §2;. More precisely, for each V € Q, we
use Lemma 9.1 to define

MV) = | J{Zw | W e Q with W = V} < [20,2,], and
cv)y=J aw),

1<isn

where for each index 1 < i < n we define C;(V) = @ if V ¢ Q; and otherwise define
Ci(V) = U {Zz|Z £V contributes to V in Q;} < [xo, zy].
Definition 9.3 (Contribution set). The contribution set of V € u;Q; is
AY = (T\M(V)) U C(V) < [0, 2]
We stress that all active intervals here are taken along the main geodesic [z, 2, ].

The following result is the heart of proving Theorem 11.2. It bounds Teichmiiller
distances in terms of size of active intervals of contribution sets.

v
T

Theorem 9.4. IfV € Q;, then dT(V)(x/Z-_\l%,@%") N J ]lAg.
z¥

We remark that the term on the left and the integrand both depend on the
witness family, while the limits of integration just depend on the points x;_; and

Z;.
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9.2. Proving Theorem 9.4 for annuli. We maintain the notation 2, x;, and z}
from the start of §9. Fix some index 1 < ¢ < n and an annular domain V € ;. So
by strong alignment we have, in particular:

1 min{eg, £, (OV)}

. =< : <C forj=i—1,i.
(9.5) dy(zj,x J) < C and C < minfeo, w}/(av)} C forj=i i

To ease notation, set &; = @S‘} € T(V) =H3,, for j € {i —1,i}, and recall that by
definition these resolution points satisfy

(9.6) dy(2j,7;) Xc 0 and L3, (V) = min{eg, l,,(OV)} for j =i—1,i.
The proof will follow easily from these facts:

Proof of Theorem 9./—Annular case. Consider the active interval Zy of V along
[z0, 25]. For each point w € Zy we have £,,(éV) < ey, and we write w|y for the
T (V)—component of the point P4y (w) in the product region P(X|dV). Since V is an
annulus, there are no proper subdomains of V; hence by definition the contribution
set is simply AL = Ty

First suppose that A% n [z}, 2] is empty. Then dy(z) ;,2)) < M and
Ly (V) L,y (0V) = €. Therefore equations (9.5) and (9.6) above imply that

60’

dy(Zi_1,45) £c 0  and f<£gz,i,1(aV) £3,(0V) < e,

which together uniformly bound d(y)(#;-1,2;) in terms of C.
If AL A [2) 1,2)] is nonempty, then (being the intersection of intervals) it is
necessarily an interval and we may write it as [y, 2] < [z} ;,2}]. We claim that

(9.7) drony(#i—1,ylv) ¢ 0 and  dran (@, 2|v) X 0.

By symmetry, let us just consider dr(vy(Z;, z[v). To see this, note that if z = z}

then obviously £.(0V) = £,v(dV), and otherwise we have both £,v (V) > €’ and
€0’ < £,(0V) < €. Thus in either case equations (9.5)—(9.6) 1mply

Cep Ce.(oV) T .(0V) T T minfep, £.(0V)} T e

Furthermore, since [z,z)] is disjoint from the interior of Zy, Lemma 3.26 gives
dv(z,2)Y) < M. Combining with (9.5)-(9.6) we therefore have dy (i;,2) Zc 0.
This proves #; and z|y coarsely have the same horizontal coordinate in H3;,, and
the above bounds on ¢;,(0V)/¢,(0V) show they coarsely have the same vertical
component. Therefore d7(y)(%;, z|v) is indeed bounded as claimed.

To conclude the argument, since y and z both lie in the thin region for oV,
Minsky’s product regions Theorem 3.11 implies that

dron(lv, zlv) £ dres)(y, 2 J J

Combining this with (9.7) and the triangle inequality proves the proposition. O

9.3. Proving Theorem 9.4 for nonannuli. We maintain the notation 2, x;,
and ) fixed at the start of §9. We also fix an index 1 <i < n and a nonannular
domam V € Q;. Note that in this case V € YT(x;_1,2;) so that dv(xi—1,z;) = Ny.
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9.3.1. Setup. We begin by identifying a subinterval of [z} ;,z}] on which we have
better control of resolution points.

Lemma 9.8. There is a nonempty subinterval J = [y, z] < [z}, 2} such that

o dy(zi_1,y) and dy(x;, z) are both at most 7C.
e For all w € J the distances dy (x;—1,w) and dy(w,z;) are both at least 3C.

Furthermore J is contained in the active interval Iy of V along [zg,xy].
Proof. Recall C > M = L. We know dy (z;, 7)), dy (z;_1,7) ) < C. Therefore
dyv(z) 1, x)) = dy(z;_1,z;) — 2C = Ny — 2C = 28C.

Since my : T(£) — C(V) is coarsely L-Lipschitz and L < C, there must exists points
y,2z € [z)_1,2)] such that

5C < dy(x) |,y) < 6C and 5C < dy(z),2) < 6C.

Observe that necessarily y and z appear in order along [z} ,z)] for otherwise

y € [2,2)] and we may apply Theorem 3.19 (no backtracking) to conclude
dy (2} y,2]) < dv (21, y) +dv(y,z]) < 6C+dy(zy) +dv(y,z))
< 6C+dy(z,2)) +B < 6C+6C+B < 13C,
which we have seen is false. By the triangle inequality, we also clearly have
dy(z;—1,y) <7C and dy(z;2) <7C.
Finally, for any w € [z, z] Theorem 3.19 additionally gives
(9.9) dy(w,z)) = dy(w,2) + dy(z,2)) — B > 5C — B > 4C

so that dy (w, z;) > 3C by the triangle inequality. Similarly dy (z;—1,w) > 3C for
all w € [y, x,]. This proves all w € J satisfy the second bullet point.

Finally, we know from Lemma 9.1 that V has a nonempty active interval along
[20,Tn]. If Ty were disjoint from [z, 2} ], then we would have dy (z,z}) < M/3 by
Lemma 3.26(3). But this contradicts the implication dy (z, V) > 4C of Equation

(9.9). Thus Zy necessarily intersects [z, z) | and, similarly, [z} ;,y]. Since Zy is
an interval, the containment J = [y, z] < Zy follows. O

The interval J moreover contains the active interval of each domain contributing
to V in €;; this is a variation of Lemma 7.12(1) for this more general context of
witness families for aligned tuples:

Lemma 9.10. If Z = V contributes to V in €, then its active interval along
[z, @y, ] lies in the mterwr of J. Further, dz(z;_1,z) 1) <M and dz(z;,z)) < M.

Proof. The fact that Z contributes to V implies Z € Y(x;_-1, ;) but that Z ¢ ;.
Recall from Lemma 7.13 that Q; o Y¥(x;_1,7;); hence in fact Z € Y¢(x;_y,x;). If
dy (z;,0Z) < 9C, then by definition we would have Z € Ro(V) for Q; and hence
Z © Z' for some Z' € Ry(V). But since €); is insulated, this would imply Z’ € Q;
and contradict Z%% = V. Therefore

dv(z;,0Z) > 9C > C+M = dy(z;,z)) + M.
Corollary 3.27 therefore implies dz(x;,z}) < M. Similarly dz(x;—1,2) ;) < M.

Also observe that for all all w € [z, z)]

dv(z},w) < dy(z),w) + dy(w,z) <dy(z),z) + B<6C+B

we have
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and therefore dy (x;, w) < 8C. Similarly dy (z;_1,w) < 8C for all w e [z}, y].

We know from Lemma 9.1 that Z has a nonempty active interval Z; along
[20, 7). We claim that Zz is disjoint from [z,2)]. Indeed, otherwise we would
have w € [z,2)] n Iz with 6Z < p, and hence dy(z;,07) < dy(z;,w) < 8C,
contradicting the above lower bound

dv(IL'i, 6Z) > 9C.

Similarly Zz must be disjoint from [z} |, y].

Therefore, if Z; is not contained in the interior of J = [y, z], it is necessarily
disjoint from [z} ;,z)]. This gives dz(z)_;,2}) < M/3 and thus by the triangle
inequality

dz (i1, @) <dg(wiov,2)) +dz (@), 2)) + dz(a) ;)
<M+M/3+M<Ng.
But this contradicts the fact, observed above, that Z € T¢(z;_1, ;). O

The following observation will also be useful.

Lemma 9.11. Suppose W = V has a nonempty active interval along [xo,xy,]. If
Tw intersects [xo, z] (resp. [y,xn]) then dW(mj,:c;/) <M for all j =i (resp. all
j <i—1). In particular, if Ty intersects J (as holds for every Z that contributes

to V in Q; by Lemma 9.10), then dw(mj,x;-/) <M forall0<j<n.

Proof. We suppose Iy N [xg, 2] # &, the alternate hypothesis Zy N [y, z,] # &
being handled symmetrically. Fix any j > i. Pick some point w € Iy N [zo, 2], so
that OW < g, We then have [z,2)] < [w,x;/] and therefore (by Theorem 3.19)
dv(w,x;/) > dy(w,2) + dy(z,2)) + dv(asy,xy) — 2B > dy(z,z)) — 2B = 4C.
It follows that
dy (OW, x;/) = dv(w,x}/) -L=3C> dv(xj,x}/) + M.
Thus Corollary 3.27 gives the desired bound dw (z;, :C;/) < M. O

Corollary 9.12. Suppose that W © V satisfies W € Y(zj_1,x;) for some j # i.
Then Iy n J = .

Proof. We assume W e Y(x;_1,z;) for j > 4, the alternate case j < ¢ being
symmetric. We know (Lemma 9.1) that W has a nonempty active interval Zy, along
[z0, 25]. To derive a contradiction, let us suppose there is a point w € Zyy n J. Tt
cannot be that =) € Ty, since that would imply [z,7)] € Zy and hence

dy (z,x)) < dy(z,0W) + dy (oW, z)) < 2L < 5C,

violating the choice of z in Lemma 9.8. Since Zy is an interval, we find that

[2) 2,] 2 [zyfl,x}/] misses Zyy. Lemma 3.26(3) and Lemma 9.11 now give

dw(zj—1,2;) < dw(xj_l,x;/_l) + dW(ac}/_l,x}/) + dW(m}/,xj) < 3M < Ny
This shows W ¢ Y¢(x;_1,z;). Thus we must have W € T*(x;_1,7;). Choose
ke {j—1,7} so that £;, (0W) < ¢y/Nyw, and note that k > 4. Since the curve oW

is short at xzy, we evidently have dy (0W,x) < L. Since 0W is also short at the
chosen point w € Zyy n J, this shows

dy(w,z)) < dy(w, W) + dy (W, z) + dy (zg, xf ) < 2L + C.
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On the other hand the fact that [2,2)] < [w, 2} ] gives (via Theorem 3.19)
dy(w,z)) = dy(w,2) + dyv(z,2)) +dy(z),z)) — 2B = 5C — 2B.
As these inequalities are incompatible, we have derived our contradiction. ([

The following property of the interval J will play a key role in our argument.
Lemma 9.13. If we J, then every domain Z =V satisfies
dz(xi_l,w) + dz(w,x,-) < dz($i_1,$i) + 9C.

Proof. Fix any domain Z = V. First suppose that dz(z;_1,z) ;) and dz(z;,z))
are both at most 2C (as is the case for Z = V). Then since J < [z} ,,2)],
Theorem 3.19 and the triangle inequality give

dz(zi_1,w) +dg(w,2;) < dg(xz} |, w) + dz(w,z)) +4C
<dg(zY |, 2Y)+4C+B <dy(x;_1,z;) + 9C.

3

So it suffices to assume at least one of the quantities is larger that 2C. Suppose
then that dz(z),x;) > 2C > M (the other possibility is handled similarly). Then
dy(x4,02) < dy (x4, 0Z) + dv(0Z,x)) < dy (zs,z)) + M/3 < 2C

by Corollary 3.27. The triangle inequality therefore gives
dy(zi—1,07) = dy(vi_1, ;) — dv(x;,0Z) = Ny — 2C > 28C.

In particular, it must be the case that dz(z;_1,2) ;) < 2C (since otherwise the
above argument would force dy (z;—1,07) < 2C, which is false).

We next show that dz(z)_;,w) < M. Indeed, otherwise dz(z} ;,w) > M and Z
must have an active interval along [x} |, w]. Thus there is some point u € [z} |, w]
that contains 07 in its Bers marking. Thus dy (z;,u) < dy(z;,0Z)+1 < 2C+1. On
the other hand equation (9.9) (in the proof of Lemma 9.8) gives dy (u,z)) > 4C,
which implies dy (u, ;) = 3C; a contradiction.

We now know both dz(x;_1,z} ;) < 2C and dz(z) ;,w) < M. Combining these
gives dz(x;—1,w) < 3C. It is now easy to conclude

dz(xi—1,w) +dz(w, z;) < dz(zi—1,w) +dz(w,zi-1) + dz (i1, ;)
<3C+3C+dz(1}1,1,1}1) O

9.3.2. Comparison points. Lemma 9.13 and Proposition 8.4 imply that for each
w € J, the projection tuple (wz) € [ [, C(Z) from Definition 8.3 is k—consistent
for some constant k depending only on C. We next use this fact together with the
lengths of certain curves at w to define a point @ € T (V') as follows:

Definition 9.14 (Comparison point). For each point w € J, consider the tuple
(Wz)z=v from Definition 8.3. Let a,, be the multicurve consisting of those curves
v € T(V) which are essential in V', have £,,(y) < €o, and satisfy

(9.15) dz(,wz) = diamez)(1z(y) U wz) < 2M for every domain Z = V.

Using Proposition 8.4, Theorem 3.37, and Lemma 3.10, we may then build a mark-
ing p of V that realizes the tuple (wz)z and has «,, < base(n). Working in
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Fenchel-Nielsen coordinates for the pants decomposition base(u), take w € T (V)
to be the point whose Bers marking is p and such that v € base(u) has

E‘()_ 607 if7¢aw
o7 (), if yeay,

This comparison point satisfies (and is coarsely characterized by):
(1) dz(,wyz) % 0 for every domain Z = V.

(2) If v € T'(V) is an essential curve in V, then ¢4;(y) < € if and only if v
satisfies £, (7) < €p and (9.15). Further, in this case £45(y) = £y (7).

The next lemma shows that if w € Z for some domain Z = V that contributes to
V in Q;, then 0Z < «,, and hence, by construction, £, () < €g for each component
v of 0Z that is essential in V. Thus the points w € T(X) and w € T (V) both live
in product regions for Z, and we may compare them as follows:

Lemma 9.16 (Comparisons in active intervals). Suppose Z = V' contributes to V
in Q;, For all w € Ty with corresponding comparison w € T(V), the following hold:

(1) () < eg and Ly (y) < €o for each component v € 0Z n T'(V).
(2) Writing w|z and w|z for the T (Z)—components of ®oz(w) € P(X]0Z) and
®oz () € P(V|0Z), respectively, we have dy(z)(w|z,@|z) £n 0.

Proof. We will need the following observation.

Claim 9.17. If U € Y(z;_1,x;) satisfies U 4V (resp. Vi, U ), then either Z
and U are disjoint, or else Iy occurs before (resp. after) Iz along [xo, xn].

Proof. Set U’ = U% and, by symmetry, suppose U’ 4V. We may assume Z is
not disjoint from U, and hence neither disjoint from U’. Note that we cannot have
Zc U or Z— U, as that would imply V = Z% = U’ = V by Lemma 7.6.

The fact that Z = V contributes to V implies Z ¢ ;. We claim there is some
W e Q; such that U = W and WhZ. If U'nZ then we can simply take W = U’.
Otherwise U’ = Z and (WF3) (applied to U’ € ; and Z ¢ Q;) provides such a W.

Since WhZ = V, we see that both V. = W and V 1 W are impossible. If
WAV, then (SO3) (applied to U" /;V and V 2 U’ = W) forces W < V and
hence W < Z along [x;—1,x;] by Corollary 3.31. Otherwise W = V and (SO1)
(using U’ 4V') implies W £V so that we may invoke (SO4) (using WhZ) to again
conclude W < Z along [z;_1,x;]. Note that the fact Z ¢ Q; > Y¥(x;_1, ;) ensures
that Z € Y°(x;_1,x;). Hence Lemma 9.2 implies we have the same time-ordering
W < Z along [xg,z,]. Since U = W, Lemma 3.26(4) now implies the intervals
Iy and Zz along [xo, z,] are disjoint, and in fact it must be that Zy occurs before
Zz. O

Returning to the lemma: Since w € Zz, Lemma 3.26 implies £,,(a) < € for every
component a of 0Z. Hence, (1) will follow from the following fact:

Claim 9.18. If v € C(V|z) satisfies £,(7) < €0, then Ly () = Ly(v) < €o-

Proof of claim. Given the hypotheses, by definition of w it suffices to show - satis-
fies (9.15). Let U = V be any subdomain. If v is disjoint from U, we trivially have
dy v,y ) = diame gy (wy) < M. Observe also that

du (7, w) = diame(u) (o () L o (w)) < L < M/2
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owing to the fact that v is short at w. Thus (9.15) is immediate when @y = 7y (w);
this takes care of the case that U contributes to V. It remains to suppose, then,
that yhU and U € Y(z;_q,2;) with U% # V. We write U’ = U% and, by
symmetry, assume U’ V. Then wy = wy(x;). As the curve v € C(V]z) cuts
U, it cannot be that Z and U are disjoint. Claim 9.17 thus ensures Zy occurs
before T along [xg,x,]. Since w e Iy < J = [y,2] < [z 1,2} ] by Lemma 9.10,
we now see that w and x} lie in the same component of [zg,z,]\Zy. Whence
dy(w,zY) < M/3 by Lemma 3.26(3). We also see that Zy; intersects [z, z] and
hence that dy(z;,z)) < M by Lemma 9.11. Therefore dy(w,z;) < 4M/3. Since
wy = my(x;) and we have already observed dy(y,w) < M/2, we conclude that

dy (v, wy) < 2M and condition (9.15) is verified. O

It now follows from (1) that w and & lie in product regions for 67, so we are
justified in considering w|z,w|z € T(Z). By the distance formula [Rafl, Theorem
6.1], to bound dy(z)(w|z,w|7) it suffices to show that w|z and 0|z have the same
short curves and the same curve complex projections to all subsurfaces of Z.

First let 8 € I'(Z) be an essential curve of Z. We claim that either £,,,(3) and
L), (B) are both at least e, or else £y, z(8) and £, (3) coarsely agree. Indeed, by
nature of the homeomorphism @57, the lengths £,,(3) and £,,,(3) coarsely agree,
as do £y (B) and Ly, (8). Thus it suffices to show either £,,(3), £s(5) = €o or else
£,(B) and £y (B) coarsely agree. But this follows from the construction of w: if
Ly(B) < €o, then £4(8) = £,(8) by Claim 9.18. Conversely, if £;(8) < €, then we
must have £ (8) = £,(8) by item (2) of Definition 9.14.

Next let U = Z be any domain in Z. Since the curves of 0Z are all short at
w, the Bers marking u,, at w has 0Z < base(p,,). Therefore, taking the curves of
Il that are essential in Z defines a marking of u’ of Z, and in fact p’ is a Bers
marking s, of w|z. Since U = Z, we have my (pw) = mv (1) = 7y (), ). Thus
dy(w,w|z) £ 0. Similarly d (,|7) £ 0. Tt therefore suffices to bound dys (w, ).
By construction (Definition 9.14(1)) dy (1, wy) %y 0 for @y as in Proposition 8.4.
Thus we must bound dy(w,wy). We consider the three possibilities of wy: if
Wy = 7y (w) this is immediate. If not then U € Y(z;_1, ;) and U # V. Since U
and Z are evidently not disjoint, if U* 4V then Claim 9.17 implies that Zy; occurs
before Z along [xg, z,]. As above, (using Lemmas 3.26(3) and 9.11) it follows that
dy(w,z)) < M/3 and dy(z),z;) < M so that dy(w,wy) = dy(w,z;) < 2M. If
instead V3\, U*%, we similarly obtain dy(w,wy) = dy(w,z;_1) < 2M and thereby
establish (2). O

9.3.3. The main argument. With the requisite notation and setup established, we
now work in earnest towards the proof of Theorem 9.4.

Definition 9.19 (The point w). Since J < Zy (Lemma 9.10), each point w € J
lies in the thin region for the multicurve 0V; accordingly we let w denote the
T (V)-component of product region point @5y (w) € P(X[0V).

Our proof relies on comparing the points w,w € T (V) for carefully chosen w €
J. To streamline notation, and mimic that used in Definition 9.14, we will set
Tii1 = x/l_\l% and &; = @81, however we stress that #;_; and #; are defined
by Definition 8.7 and are necessarily thick, whereas points @ for w € J (from
Definition 9.14) may be thin.
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Remark 9.20. The fact that points w, for w € J, are allowed to be thin causes
technical complications in the proof. However, allowing thinness is necessary in
order for the crucial ingredient Lemma 9.16(2) to hold.

Strategy 9.21. The goal is to show that d7(y)(#;_1,2;) is bounded, up to additive

\ %
error, by Si",l 1ae. Since J = [y, z] < [z} 1, 2Y], it suffices to instead work with

Sz 1 40 . That is, we are concerned with the Lebesgue measure of J n AL

We will construct a piecewise geodesic path in 7(X) from z;_1 to x; with the
property that each segment [p, q] satisfies either d7(v)(p, q) c dr)(p, q), or else
dz(p,q) ¢ 0 for every domain Z = V; these two properties will be established in
Lemmas 9.27 and 9.28 below. The piecewise path will consist of boundedly many
segments—each of which is either [x;_1,y], [z, 2;], or a subintervals of J—and will
be constructed using breakpoints provided (essentially) by Lemma 9.29.

Furthermore, the segments [p, q] with dr (P, ) c drx)(p, q) will have total
length at most SZ 1ag. The triangle inequality thus implies dy(v)(2;-1,2;) is at
most S; 140 plus the sum of the lengths d7(v)(p, q) for the other segments [p, q]
with dz(p, §) bounded for all Z = V. To complete the proof, we will use Minsky’s
product regions Theorem 3.11 to show these latter segments can be ignored.

To begin, let D denote the set of domains Z = X such that Z € Y (z;—1, ;) with
Z =V and Z% = V. Thus D consists of all domains contributing to V' in ;
except for V itself, and hence C;(V) = UzepZz.

Definition 9.22. We say a subinterval [p, q] of J is squarely covered by D if:

e the open interval (p,q) intersects C;(V'), and
e whenever the open interval (p,q) intersects Zy for some Z € D, then we
have [p,q] € Zy for some Y e D withZ; c Zy and Z c Y.

Lemma 9.23. If[p, q] < J is squarely covered by D, then drv(p, q) e dr)(p, q)-

Proof. By hypothesis there exists Z € D with (p,q) nZz # . If Z € D is any
such domain, then square covering further implies [p, q] < Zy for some Y € D with
Tz €Iy and Z = Y. Let ) denote the set of topologically maximal domains in
the collection

{YeD|[pql =y}
It follows from the above that ) is nonempty and moreover that if Z € D satisfies
Iz (pyq)# J,then Z =Y for some Y € Y.

The domains in ) are evidently pairwise disjoint, since they cannot be nested
and their active intervals overlap. Therefore 0 = UyeydY defines a multicurve
in V with the property that every element of ) is a component of V\d). By
Lemma 9.16, each component 7 of 0 satisfies £,,(v) < €9 and £3(y) < € for all
w € [p, q]. Consider the the product regions map ®sy: T(V) — P(V|0Y). For each
component Z of V\0) and each point w € [p, ¢], we may consider the projection
w|z of Doy (W) to T(Z).

Recall that dp(viay)(Pay (D), Poy(q)) is the supremum of dy(yv)(ply,qly) over
all factors T(Y") of the product P(V]0Y), that is, over all components Y of V\o).
Note that the components of the multicurve d) count as annular components of
V\0Y. Let Y be the component of V\0)Y maximizing this supremum. By Minsky’s
Theorem 3.11 we thus have

dron (D, 4) X dpvioy) (Pay (D), Pay(d)) = dr)(Bly, dly)-
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First suppose Y is not an element of ). We claim that dyw (p|y, ¢|y) is uniformly
bounded for all domains W = Y. Note that by definition of product region factors,
we have dyw (ply,dly) < dw (p,q). Clearly Y is the only component of V\@) con-
taining W; since elements of ) are components of V\@) and yet Y ¢ ), it follows
that W cannot be contained in any element of ). If W € D, it follows that (p, q)
is disjoint from Zyy, since otherwise W would be contained in an element of ) by
construction. Hence in this case

If W ¢ Dbut We Y(x;_1,x;), then evidently W # V and therefore the points
pw and Gy in the projection tuple (Definition 8.3) are equal (either my (z;—1) or
7w (2;)). Hence dw (p,§) %c 0 in this case as well. In the remaining case W ¢
Y(z;—1,x;) we have dw (z;—1,x;) < Ny and therefore dw (p, z;), dw (g, x;) e Ny
by Lemma 9.13. Consequently dyw (5, q) %c dw (p,q) %c 0 as before. Thus we have
shown dw (ply, 4ly) Zc 0 for every domain W = Y.

Now let R denote the quantity from Lemma 3.35 for the pair p, ¢, and let R|y
denote the corresponding quantity for the pair ply,dly. The lengths ¢;(y) and
C5)y (v) are comparable for every essential curve v in Y. Further, by construction,
if £5(y) < e€o, then £,(y) = £5(y) < €. Thus every short curve at ply is also
short, with a comparable length, at p. The same holds for the points ¢|y and gq.
Therefore we evidently have R|y ¥ R. Applying Lemma 3.35, and using our bound
dw (Ply,dly) £c 0 for all W = Y, we now conclude

drony (B, 4) X driv)(Bly.dly) Zc Rly £ R < drs)(p,q).

It remains to suppose that Y is an element of ). Hence [p,q] < Zy. Using
the product regions map ®zy: 7(X) — P(X|0Y) in the main Teichmiiller space
T(X2), we may consider the T (Y)-components p|y and ¢|y of ®sy(p) and Py (¢),
respectively. We may now finally invoke Lemma 9.16(2) to obtain

drvy(Bly, dly) Zc dron(ply . dly)-

Combining with the above estimate, and again using Theorem 3.11, we conclude
dron (B, 4) X drony(Bly, dly) Zc drev)(ply. aly) £ dres)(p, q).- O

Recall from Definition 9.3 that A} = (Zy\M(V)) u C(V). Lemmas 9.8 and
9.10 together show that C;(V) < J < Zy. If we define M;(V) = {Zw | W €
Q; with W = V} then Lemma 9.12 furthermore shows that M;(V) nJ = & and
C;(V)nJ = & for j # 4; that is, we have JA M(V) = Jn M;(V) and JnC(V) =
C; (V). Combining these observations, we conclude that

(9.24) A% 0 T = ((TAMV) 0 C(V)) 0T = (N\M(V)) L Ci(V).

Since M;(V') is the union of the active intervals Zy, of all domains W € Q; with
W 4V or Vixy W, let us define

W_={WeQ |W 4V} and W, ={WeQ | VW)

Using these collections, we then define

y1 =sup | {y} v U Tw and z1 =inf | {z} U U Iw |,
Wew_ Wew,
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where here each interval Zyy is taken along [z, 2, ] and the supremum /infimum are
taken with respect to the orientation of this interval from xy to x,. Note that we
have included {y} and {z} in the definition to both handle the case that Wy may
be empty and to ensure yi, 21 € [y, 2] = J.

Lemma 9.25. The points yi1, z1 satisfy the following:

(1) dv(x;—1,y1) and dy(z1,x;) are both at most Ny /3 + L.

(2) y1 and z lie in and occur in order along J.

(8) The interval [y1,21] < J is contained in J\M;(V) < J n AL,
(4) Each point w € [21, 2] satisfies dy (w, x;) %c 0.

(5) Each point w € [y,y1] satisfies dy (x;_1,w) Zc 0,

Proof. For (1), let us only consider dy (21, ;). The construction of J (Lemma 9.8)
ensures dy (2;,2) < 7C. Hence the claim is immediate if z; = z. Otherwise, there
is some W € W, so that z; € Zyy. Thus W is contained in the Bers marking at z;
so that dy (z1,2;) < dy(0W,x;) + L. Since V), W, the definition of encroachment
and the fact that €; is wide now give

dv(l‘i,21> < dv(l‘i, oW)+L< ggl(V) +L< Nv/3 + L.
For (2), since the pairs y,y; and z1, 2z occur in order by construction, it suffices
to show y1, 21 occur in order along [zg, z,] as this will force [y1,21] < [y, 2] = J.

By means of contradiction, let us instead suppose z1,y; occur in order. First note
that having y; € [z}, ,,] would imply (by Theorem 3.19)

dy(z) | y) = dv(z) |,2)) =B = dy(xi_1,2;) —2C — B = Ny —3C

and hence dy (z;—1,y1) = Ny —4C. Since Ny > 30C, this is incompatible with (1).
Hence we must in fact have y; € [21,2)], in which case Theorem 3.19 now gives

dv (y1,z)) < dv(z1,2)) + B < dy(z1,2;) + C+ B < Ny/3 + 3C,
where we have again utilized (1). Using V € T¢(x;_1,x;) together with one more

application of (1), this now leads to the contradiction:

Ny < dv(zic1,2:) < dv(zic1,51) + dv(y1,3) ) + dv(z), 2;)

< Nv/3+L+Nv/3+3C+C< Ny .

Since [y1, z1] < J, the assertion [y1,z1] < J\M;(V) of (3) is clear: M;(V) is the
union of intervals Zyy for W £ V with W e W_ u W,.. By definition of the points
Y1, 21, if W e W_ then Iy < [xg,y1] and if W € W, then Ty < [z1,x,]. Hence
M;(V) is disjoint from [y1, 21], which proves the claim.

For (4), if w € [21, 2] = [21,2) ], then as above Theorem 3.19 and (1) give

dy(w,z;) < dy(z1,w) + dv(w,x}/) + dv(a:z‘»/,xi)
<

dy(z1,2)) + B+ C < dy(z1,7;) +2C + B %c 0.
The argument for (5) is symmetric. O
The significance of the subinterval [y, 21] is highlighted by the next lemma.

Lemma 9.26. Every point w € [y1, 21] satisfies dryy (W, w) Zco.

Proof. We use Lemma 3.35 and show that @ and w agree in all subsurfaces and
have the same short curves with the same lengths. Consider any domain Z = V
and let Wz < C(Z) be as in Proposition 8.4. Then dz (1, wz) Zc 0 by construction.
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Since w is simply the 7 (V)-component of w, we also observe that dz(w,w) % 0.
Thus to bound dyz(w,w) it suffices to bound dz(w,wz).

If Z ¢ Y(x;_1,z;) orif Z € Y(x;_y1,x;) with Z% = V, then @z = mz(w) by
definition and hence dz(w, wz) £ 0 is immediate. So suppose Z € Y (-1, x;) with
Z% = W = V. We consider the case W 5V, the opposite possibility V;\, W
being similar. By definition we now have wyz = mz(z;). On the other hand, the
construction of y; implies Zyy < [zo,y1]. As Tz < Zy by Lemmas 9.8 and 9.10
(applied with W in place of V), it follows that Z is contained in [zg, y1] and that
w, z) lie in the same component of [zg,z,]\Zz. Therefore dz(z),z;) < M by
Lemma 9.11 and dz(w,z)) < M/3 by Lemma 3.26. The triangle inequality thus
gives dz(w,Wz) = dz(w,z;) £ 0 here as well.

By Lemma 3.35 it remains to bound the quantity R associated to the two points
w,w € T (V). For this, it suffices to bound the ratio £5()/ls (), from above and
below, for every curve v that is short on either w or w. Note that £,,() and £4(7)
agree up to bounded multiplicative error for all essential curves v in V', thus we may
instead bound the ratio £,,(y)/fs (7). Suppose now that 7 is an essential curve in
V with 4 (y) < €9. Then by Definition 9.14, £, (v)/ls () = 1. Conversely, suppose
v is a curve in V' with £, (7) < €9. We show that ~ satisfies condition (9.15), it
will then follow from the definition of w that £;(v) = £, (7). Let Z = V be any
domain. Since £, () < €g, we have v € u,,. Thus dz(y,w) < L. Hence (9.15) is
satisfied if Wz = 77 (w). If Wy # 77(w), then Z € Y(x;_y1,x;) with W = Z% = V.
Let us suppose W 4V so that wy = 7z (x;), the reverse possibility V3N, W being
similar. As above, we have that dz(w,z;) < 4M/3 and therefore conclude

dz(v,0z) =dz(v,2;) < dg(v,w)+dz(w,z;) <L +4M/3 < 2M
as required. This establishes (9.15) for v and proves the claim. (]

We now establish the properties mentioned in Strategy 9.21 that will hold for
the segments of the yet-to-be-constructed piecewise geodesic path from z; 1 to x;.
Lemma 9.27. Let [p,q] < J be a subgeodesic satisfying either

e [p,q] is squarely covered by D, or

* [p,a] = [y1, 2]
Then [p,q] is contained in J n AS: and drovy (D, ) L dres)(p,q).
Proof. To see that [p, q] = A, we simply note that [y1, 21] is contained in J\M; (V)
by Lemma 9.25(3), and that each squarely covered interval is contained in Zy <
C;(V) for some Y € D. Thus clearly [p,q] = (J\M;(V)) u Ci(V) = J n ASL.

If [p, q] is squarely covered by D, the bound on dr vy (P, §) is simply Lemma 9.23.
If instead [p, q] = [y1, 21], then Lemma 9.26 implies d7 v (p,p) and dr (g, §) are
both bounded in terms of C. Therefore

dr vy (D, §) Zc droy (D, )
Since the metric in P(X|0V) is a sup metric, by Minsky’s Theorem 3.11 we have

dr vy (P, @) < dpsiov)(Pav(p), Pav () < dr(s)(p, q) + Do.

Combining with the previous inequality thus proves the lemma in this case. O
In contrast to Lemma 9.27, we have the following for certain subintervals of .J:

Lemma 9.28. Let [p, q] be a geodesic segment in T(X) such that either
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b [ 7Q] = [l‘i—hy]) or I:p7QJ = [Z"r’i]7 or
e (p,q) is contained in J and disjoint from C;(V) U [y1, 21].

Then dz(p,q) Zc 0 for every domain Z = V.

Proof. To ease notation, set J' = {z;_1} u J U {x;} and note that p,q € J'. By
Lemma 9.13, each point w € J’ satisfies the condition of Definition 8.3

dz(xi—1,w) +dz(w,z;) <dg(x;—1,2;) +9C forall ZcV

and so determines a consistent tuple (wz) € [[,-,, C(Z). Recall from Defini-
tions 8.7 and 9.14 that € T (V) then satisfies dz(wyz,w) ¢ for any Z = V.

Let us now fix a domain Z = V and bound dz (p, ¢) provided any of the conditions
hold. First suppose Z ¢ Y(z;_1,%;), so that by Definition 8.3 pz = mz(p) and
Gz = mz(q). In this case we have dz(z;_1,2;) < Ny, so the above condition implies

dz(i—1,w) + dz(w,z;) < Ny +9C
for every point w € J'. Therefore we conclude that
dz(p,q) Xc dz(Pz,q4z) = dz(p,q) < dz(p,xi) + dz(xi,q) < 2(Ny + 9C).

Next suppose Z € Y(z;_1,7;), and set W = Z% € Q,. If W 4V, then by

definition pz = 7z (x;) = ¢z, and we have
dz(p,q) %c dz(Pz,qz) = dz (i, x;) < L.

Similarly if W3\, V, then pz = mz(z;_1) = §z and we again find dz(p,q) Zc 0.
The remaining possibility is W = V, in which Z contributes to V in €;. In this
case, py = nz(p) and Gz = 77(q), so that dz(p, ) Zc dz(p, q). Hence it suffices to
bound this latter quantity dz(p,q). We consider two cases:

First, suppose Z = V itself. If [p,q] = [x;—1,y] or if [p,q] = [z,;], then
Lemma 9.8 provides the desired bound:

dz(p,q) € {dv(xi—l»y)adv(%xi)} < 7C

Otherwise (p,q) is contained in J and disjoint from C;(V') U [y1,21]. It follows
that [p, ¢] is either contained in [y, y1] or [21, z]. In the latter case, Lemma 9.25(4)
implies
dV(pa q) < dV(pa xl) + dV(xia Q) 2C 0,
and in the former case Lemma 9.25(5) similarly implies dy (p, q¢) Zc 0.
Second, suppose Z = V. In that case we know that Z; < J = [y, z] (Lemma 9.10)
and that dz(z;_1,2) ;) and dz(x;,z)) are both at most M (Lemma 9.11). By

Lemma 3.26 and the triangle inequality, it follows that
dz(z,x;) <dg(z,2)) +dz(x),2;) <M/3+M < 2M

and similarly that dz(x;—1,y) < 2M. This handles the case that [p,q] equals
[zi—1,y] or [z,2;]. If instead (p,q) is contained in J and disjoint from C;(V) u
[y1, z1], then evidently (p,q) N Zz = & due to the fact that Z; < C;(V') by defini-
tion. Therefore dz(p,q) < M/3 by Lemma 3.26 and the lemma is proven. d

In order to decompose J into subsegments that satisfy either Lemma 9.27 or
9.28 above, we will use endpoints of active intervals Zy for domains Z € D. To
this end, let D denote the collection of all Z € D such that Zz intersects [z1, z].
Define Dj, symmetrically. Observe that z; = z forces Dr = & (since each Z € D
has Zz < (y, z) by Lemma 9.10) and similarly for Dy,. Using the notation of §4.1,
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we write D" o and DR“ for the set of domains in Dy, and Dpg, respectively, that
are maximal with respect to the order

Z <zoan) Y == Z Y and Iy c Iy along [2o, Zn].
Lemma 9.29. The collections DL';" and %ﬁg have uniformly bounded cardinality.

That is ‘7

Tn

Proof. We only consider Dg’". We may assume 21 # z, for otherwise D = J and
there is nothing to prove. Thus, by definition of z;, we may choose W € ; such
that VX, W and so that z; is the left endpoint of Zy,. Since £2; is assumed to be
wide, we have that dy (W, z;) < Eq, (V) < Ny/3.

We claim that for every Z € Dpg, the multicurves 0Z and 0W are disjoint.
Indeed, the definition of Dy ensures that Z; either intersects or occurs to the right
of Ty . If 0Zh0W, then ZhW and hence W is necessarily time-ordered before Z
along [zg,%,]. Lemma 9.2 implies we also have the time ordering W < Z along
[zi—1,%;]. But, since Z contributes to V in €; and V3 W, this contradicts (SO4).

Choose « € my(z;—1) and 8 € 7wy (z;) realizing dy (z;—1,z;) and fix a geodesic
B = Y0,--,¥m = a in C(V). Since Y¢(z;_1,x;) < €, by insulation, we have
D < Ya;—1,2;); that is dz(z;—1,2;) = Nz for each Z € D. Exactly as in the
proof of Lemma 4.1, the bounded geodesic image theorem implies that each Z € D
is disjoint from one of the curves ~y;. If we fix Z € Dg and let 0 < j < m be such
that Z is disjoint from +;, it follows that

j = dv(ﬂ,’yj) < dv(mi,’}/j) < dv(xi, &W) + dv(aVV, 8Z) + dv(aZ, ’}/j) < 5@1(‘/) + 2.
This proves that if we define
={Y | Y is a connected component of V'\«y; for some j < &Eq, (V) + 2},

then each Z € Dg satisfies Z = Y for some Y € ). Notice that, since €2; is wide,
V| < 2(Eq, (V) +3) < 2Ny /3 +6 < Ny.
For each Y € Y we consider the collection

P(Y) = {U Y | dU(Z'ifl,l'i) = NU}

Now choose any Z € DR"”” that is a maximal element of Di with respect to the
partial order <[zo,zn] Choose some Y € Ysothat Z = Y. Since dz(x;—1,2;) = Ng,
we have Z € P(Y) as well. We claim that furthermore Z € P7»(Y'). To see this,
consider any U € P(Y) with Z = U and Ty < Zy. Since Z = U =Y © V, the
fact Z% =V forces U% =V as well. AsU = V and U € Y(z;_1,2;), we see that
U contributes to V and in fact that U € D. Finally, since Ty intersects [z1, z], the
same holds for Zyy © Zz. Therefore U € Dg. Since Z is <[, ,,]-maximal in Dg, it
follows that U = Z. Hence Z € P;"(Y) as claimed. This proves that each element
of Dg_" is contained in P7o(Y) for some Y € ). Thus we have

R U Pwn
Yey
Applying Lemma 4.1 with the thresholds N¢is) < --- < N_; = N gives a bound
[Pon (V)] £y 0 for every Y. Since |Y| < N, we conclude ’&z‘ N 0, as desired. [

We are now finally ready to complete the proof of the Theorem:
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Proof of Theorem 9.4—Nonannular case. Let E denote the union of {y,y1, 21,2}
with the set of all endpoints of active intervals Z, for Z € DL " or Z € DRI"
This nonempty set is contained in J and has uniformly bounded cardinality by
Lemma 9.29. Let us write F = {ej,...,ex_1} ordered along J as

y=e€e <exy < - <€p_1 =2

We also define eg = z;_1 and ex = x;. The points ey, ..., e, therefore define a
piecewise geodesic path in 7(X) from z;_1 to z;:

[eo, e1][er, e2] - -+ [ex—1, ex]

We claim that each segment [p, ¢] of this concatenation satisfies the hypotheses
of either Lemma 9.28 or Lemma 9.27. Indeed, the first and last segments [z;_1,y]
and [z, z;]| satisfy Lemma 9.28 by fiat, and any subsegment of [y, 2] satisfies
Lemma 9.27. If [p, ¢] is not covered by the previous sentence, then [p, ¢] is contained
n [y,y1] or [z1,2]. By symmetry, let us suppose it is the former. We may assume
(p,q) intersects C;(V), for otherwise it satisfies Lemma 9.28. Now let Z € D be
any domain for which Z, intersects (p,q). Since [p,q] < [y, y1] we evidently have
7 € Dy, and may choose some Y € &i;‘ with Z =Y and Zz < Zy. It follows that
[p, q] intersects Zy as well. Since the points p, ¢ are consecutive in the set E, which
by definition contains both endpoints of Zy, it must be that [p, q] € Zy. Therefore
[p, q] is squarely covered by D and satisfies Lemma 9.27.

Taking resolutions produces a sequence of points ;1 = &, ..., = &; in T (V).
Let P < {1,...,k} be the set of indices 1 < j < k such that the segment [e;_1, e;]
satisfies Lemma 9.27. Since the intervals [e;_1, ;] with j € P have disjoint interiors
and are each contained in J N .Af‘}, applying Lemma 9.27 implies that

z
(930) Dldran(E-1.65) Zc D) dres(ejo1,e5) < f 1.
jeP JEP Y
Note that in the first inequality above we have used the fact that k£ is uniformly
bounded (Lemma 9.29) to combine the additive errors from each of the |P| < k
applications of Lemma 9.27 into a single additive error depending only on C.

Now let @ = {1,...,k}\P be the set of remaining indices. By the above, for

each j € Q) the segment [e;_1, e;] satisfies Lemma 9.28; consequently we have

(9.31) dz(éj-1,6;) Zc 0 for each j € Q and every domain Z = V.

For each j € @ let I'; denote the set of essential curves o in V' such that either
lo, (a) < e0’/2 or le; () < €'/2. Since a point in 7 (V) can have at most £(V)
disjoint curves, we see that |I';| < 2£(S). Setting I' = U,eql’; now gives a set of
uniformly bounded cardinality.

Note that if T; = (¥, then the quantity R; in Lemma 3.35 for the pair é;_1,¢é;
is uniformly bounded and hence that lemma implies dy(v)(é;-1,¢é;) %c 0. Thus
if T' were empty, combining the inequalities (9.30) and (9.31) above would prove
the proposition. However, since the points @ for w € J are allowed to be thin (c.f.
Definition 9.14), T" may be nonempty and we must work a bit harder.

Claim 9.32. If Ac V is an annulus with 0A = a € T', then A does not contribute
to V in Q;. Therefore diamea)(ma(é0) U -+ U Ta(ér)) Zc.

Proof of claim. By contradiction, suppose that A contributes to V. The hypothesis
implies there is some 0 < j < k such that £, (0A) < €'/2 and such that either
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jeQorj+1e Q. By construction, ég = ;1 and é; = &; are both thick; therefore
it must be that 0 < j < k. The construction of é; (Definition 9.14) implies in this
case that £, (0A) = l¢;(0A) < €'/2. Therefore the point e; € J evidently lies in
the interior of the active interval Z4 of A. Since Z4 < J by Lemma 9.10, this rules
out both possibilities e; = y and e; = z; hence in fact 1 < j < k — 1. Since ¢; is in
the interior of T4, we see that T4 < C;(V) intersects the interiors of both [e;_1, e;]
and [e;, e;11]. It follows neither (e;_1, e;) nor (ej, e;41) is disjoint from C;(V), and
thus that neither of these intervals satisfies Lemma 9.28. But this contradicts the
assumption that either j € Q or j +1 € ). Hence A cannot contribute to V.

For the second conclusion, if A € Y(x;_1,x;) then the above implies that either
A% 4V or Vi, A%, In the former case we have d4(€;,7;) Zc 0 for all 0 < j <k,
and in the latter case we have da(é;,r;—1) Xc 0. Otherwise A ¢ Y(z;_1,2;) so
that da(z;—1,2;) < Ny4. In this case for each 0 < j < k we have da(é;,e;) Zc0by
construction and, by Lemma 9.13, that

dA(éj,:L'i) ic dA(ej,Jfl') < dA(:ci_l,ej) + dA(ej,xi) 2(; dA(:L'i_l,IL'i) < Ngy4.
In any case, U;ma(é;) lies within bounded distance of either 74 (z;—1) or ma(z;). O

For any essential curve o on V, we now define a transformation f, of 7(V) to
itself by utilizing the product region P(V|a) = T(V\a) x T (). Recalling that
T(a) = H?, let hy: T(a) — T(a) be the map that pushes points vertically down
to below the horizontal line 1/¢y’; that is, ho (2, y) = (2, min{y, }O,}) for (z,y) € H2.
Conjugating with @, then gives a transformation f, = ®_! o (id x hy) o ®, from
T (V) to itself. Observe that f, is the identity on the complement of the thin region
Heo .o, and therefore fixes every point of w € 7 (V) with ¢,,(a) = €¢’. The fact that
fa only makes « longer and does not affect twisting leads easily to the following:

Claim 9.33. For every point w € T (V) we have:
o dz(w, fo(w)) £ 0 for every domain Z = V.
o 1og(Cy, (w)(7)) £ log(min{l, (), €0’}) for every essential curve v on V.

Proof of Claim. It is clear that any short marking at w is also a short marking for
fa(w); whence the first bullet. The second bullet is immediate for the curve o = .
If v # « is disjoint from «, then ~ is essential in 7 (V\«) and so the lengths £, ()
and £y, ()(7) coarsely agree. Finally suppose yha. If £, (a) = €’ then f,(w) = w
and there is nothing to prove. Otherwise £, () < € and so £y, () () = €’ by
construction. Thus necessarily £;_(.,)(7) > €0’ since ¢y’ is smaller than the Margulis
constant. O

Let us list the curves in I" as I' = {a1,..., .} and write f; = f,,. For each
0<j<k, set é? = ¢; and then recursively set é; = ft(é§_1) for 1 <t < m. Since
the points €y and é; are thick by construction, each map f; fixes these two points
and we have éj' = &y = &,_1 and €] = &, = &;. Hence to prove the proposition it
suffices to bound d v (€F", €7).

Applying Claim 9.33 successively for the maps f1,..., fm gives dz(é;,€7") Zco
for each Z = V (recall that m %¢ 0). Therefore (9.31) can now be restated as

dz(e",e7") Zc0 for each j € Q and every domain Z — V.

Furthermore, when j € @, since I' contains every short curve at é;_; or é; and
each of these curves gets lengthened by one of the maps f;, repeated applications of
Claim 9.33 shows that the points €] ; and €7 are uniformly thick. Therefore the
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quantity ]%;” from Lemma 3.35 associated to this pair is uniformly bounded above
(in terms of C), and we may promote the above bound to yield the following:

(9.34) drvy (€, €7") £c0 for each j e Q.

The only remaining step is to promote the bound in (9.30) to the new points
ey, e} for j € P. The key point here is that the diameter bound from Claim 9.32
implies our transformations f; are coarsely 1-Lipschitz for the points in question:

Claim 9.35. Forany 1 < j <k and 0 <t < m we have
drony(éh_y,e5) 2<: drovy(€5-1,€5).

Proof. We fix j and proceed by induction on ¢, with the claim being immediate
for t = 0 Fix ¢t > 1 and suppose the claim holds for ¢t — 1. To ease notation, set
p= e and q= et 1. Thus by the induction hypothesis it suffices to prove

(9.36) drov)(fe(p), f1(a)) Zc drov)(p, @)-

Let [a,b] = Z,, be the (possibly empty) active interval for the curve a; along
the geodesic segment [p, g]. Since the length of «; is at least ¢y’ in the complement
of Z,,,, the map f; is the identity on this complement. Thus it suffices to suppose
[a,b] is nonempty, for otherwise f; fixes both points p,q and (9.36) is immediate.
As f; is the identity on [p, ¢]\[a,b], we have dr ) (f:(p), fi(a)) = drv)(p,a) and
similarly drv)(fi(0), fi(q)) = d7(vy(b, q). Since

drv)(p,q) = drv)(p;a) + dry(a,b) + drv) (b, q),
by the triangle inequality it therefore suffices to prove that

(9.37) drovy (fr(a), f: (b)) <c drv)(a,b).

Now let A = V be the annulus with dA = «;. Combining Claim 9.32 with
t — 1 applications of Claim 9.33 implies that da(p,q) £c 0. By Theorem 3.19
it follows that da(a,b) Zc. Let ala,,al;, and b|s,,b|;, respectively denote the
T(ay)— and T(V\ay)-components of the images ®@,,(a), Pq, () € P(V|ay). The
previous sentence implies that the horizontal coordinates of a|,, and b|,, (viewed
in T(a;) = H?) differ by an amount bounded in terms of C. On the other hand,
since a,b € Z,,, we have ¢, (ay), () < €. It follows that the vertical coordinates
of hy, (a|a,) and hq, (b|a,) both lie between X and i We conclude that hq, (ala,)
and hg, (b]a,) have uniformly bounded (in terms of C) distance in T (o). Since the
metric on P(V]ay) is a supremum, it follows that

dp(viao) (id X ha, (0, (@), id % o, (0, (5)))

= sup {dT(V\at)(a|;t’b|;t>7 dT(m) (hat (a|at)> ha, (blat))}
2c drian (ala,s b13,) < dpvia,) (Pa, (a), Pa, (b)).

Finally, the points a,b, fi(a) f¢(b) lie in the thin region H, o, (V) where Minsky’s
Theorem 3.11 ensures the maps @gtl change distances by at most Dg. The last
quantity above thus lies within Dy of d7(y)(a,b) and, recalling that f; = <I>;t1 o
(id % hq,) © @4, the first quantity lies within Do of d7(v)(fi(a), fi(b)). Therefore
the above estimate establishes (9.37) and completes the proof of the claim. g
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The proposition now follows easily by invoking the triangle inequality and suc-
cessively applying equation (9.34), Claim 9.35, and equation (9.30):

drvy(Rio1, &) = drony (€5 6 < Y dran (€)1, €7 + . drary (€71, €7)

Jjep JjeQ
k k z
+ A amy + A AN £
e DL dran(@y,e) Zc ) drv)(@j-1,¢)) <cf Tag. O
jeEP jeP Y

10. DEALING WITH BADNESS

Continue to let Q@ = (Qq,...,9,) be a WISC witness family for a strongly C—
aligned tuple (zg,...,x,) in T(X). We want to use Theorem 9.4 to estimate both
the complexity £(£2) (Definition 8.12) and the savings &(Q2) of Q (Definition 8.13).
To this end, we will utilize weighted characteristic functions 1 4o of contribution
sets: Again the ultimate goal is Theorem 11.2. The obstacle as has been suggested
are the existence of nested sets. In this section we show how to modify a witness
family, if necessary, to deal with this problem.

Definition 10.1 (Weight and savings). For each V € Q, use the points xy ,...,zY

rn
to define an adjustment function &y : [zg, z,] — R whose value is 1 on those subin-

tervals [z) ;,z)] such that V € (; is an annulus with .23/1-_\15‘},@81 both thick,

and whose value is zero elsewhere. Thus & = 0 for nonannular V. On [z} |, 2)]
the values of hy — &y and &y thus respectively agree with the coefficients hf, and
(hy —h3) of the dr vy (ar/l_\lg’ | £33%) terms appearing in the complexity £(€;) (Def-
inition 8.8) and savings &(§) (Definition 8.13). Accordingly the weight and savings
functions [xg,z,] — R of V' € () are defined as the products wy = (hy — &{v)1 40
and oy = &y 1 A2 with the characteristic function of the contribution set .AS‘} (from
Definition 9.3). Summing now yields the total weight and total savings functions
wa,0q: [To,2n] — R of Q:

wq = Zwvz Z(hv—fv)ﬂAg and oq = ZO’V: ng]lAgz
VeQ VeQ VeQ VeQ
Theorem 9.4 says that the individual terms (hy — hé)dT(V)(fi,\lg,@g) and

Ry dr v (E_\lg, 7;3%) appearing in the savings &(9) and complexity £(€2) are bounded
v Vv

by the respective integrals Sz}/ oy and Si; wy. Since the points zy,...,xY ap-
i—1 i—1

pear in order along [z, z,], summing over all ¢ and V shows that £(Q2) and &(Q)

are bounded by the integrals of the total weight wqo and total savings oq func-

tions over [z, z,] (up to an additive error depending on n, N, and the cardinality

1]). If we knew wq(p) + oq(p) < hy for all p, we would thus be able to bound

£(Q) + &(Q) X hydr(s)(xo, ©,). While this inequality need not hold in general, it

can only fail on the following sets:

Definition 10.2 (Bad set). We say a point p € A is bad for V in Q if there exists
Z € Q such that Z = V and p € AL n AZ. The bad set for V is then defined to be

By} = {pe A} | pis bad for V} < AL

with corresponding badness function By = hy ]133 . As for the weight and savings,
the total badness function is Bo = ], cq fv
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Remark 10.3. We note that A < Zy for every domain V € Q. This is immediate
from the definition when V' annular, and when V' is nonannular it follows from
Lemmas 9.8-9.10. Therefore any pair of domains V, W € Q with AS‘} N AQW #*J
must either be disjoint or nested (since VAW is precluded by Lemma 3.26(4)).

The relationship between badness and weight is made precise by the next lemma.

Lemma 10.4. For any WISC witness Q for a strongly C—aligned tuple (xo, ..., x,)
inT(X), the weight, savings, and badness functions wq, oq, fa: [To, Tn] — R satisfy

wo +0oq — Pa < hs.
Proof. Fix p € [xg,z,] and consider the subcollection
G, ={VeQ|pe Al and p ¢ B}
Notice that if V ¢ G, then necessarily p € (A4 N BY) U ([0, 7n]\AS) and thus
(wyv +ov = Bv)(p) = hvl,e(p) — hvilge(p) = 0.
On the other hand, if V € G, then Sy (p) = 0 so that
(wy +ov = Bv)(p) = (wv +ov)(p) = hvlae(p) < hv.

Summing over all V, we therefore have (wq + 0 — Ba)(p) < Xyeg, hv. That this
latter quantity is at most hy, follows from the observation that the domains in G,
are disjoint subdomains of . Indeed, all V,Z € G, have p € A* n A%; hence
cutting VAZ is impossible by Remark 10.3, and nesting Z = V is impossible by
virtue of V € G, and the definition of B‘g}. O

We remark that the lemma indicates that in trying to bound wq + oq in terms
of hy, we need to bound SBq. The goal of this section is to construct witness families
where that term is small.

We will also need the following feature of bad sets.

Lemma 10.5. If p € B{}, then there exists an index 1 < i < n and domains
Z,)Y © V such that Z,V € Q;. Y € Y(x;_q1,2;) with Y% =V, and p e A% N Ty .

Furthermore, i is the unique index for which p lies in the interior of [zY |, xY].

Proof. By definition, there is some Z € 2 such Z = V and p € .,4522. Since Z,V € Q)
with Z £ V, it follows from the definition that Z, < M (V). Since the contribution
set is defined as A = (Zy\M(V)) u C(V), it must be the case that p € C(V).
In particular, p € C;(V) for some 1 < i < n, which means that p € Zy for some
Y © V satisfying Y € Y(z;_1,7;) and Y% = V. From Lemmas 9.8-9.10, we see
that pe Zy < J < [z} |, xY]. Since I evidently intersects .J, by Corollary 9.12 we
must have Z ¢ Y(x;_1,x;) for all j # i. Hence the fact Z € Q implies Z € ;. O

10.1. Fixing badness. If Q = (24,...,Q,) and ' = (],...,Q) are both WISC
witness families for a tuple (zo, ..., x,), we will write Q < €’ to mean that Q; < €}
for each ¢ and that the the subordering on €2 extends the subordering on €;. Note
that in this case, for each V € Q we have M2(V) c M (V) and C%(V) > C¥ (V)
(since in € there are more domains subordered below V' and thus less domains
contributing to V). Therefore we observe

VeQc — AY c AL



COUNTING FINITE-ORDER MAPPING CLASSES 85

Recall from §8.3 that we have defined £q(V) = max; Eq, (V). If V € Q satisfies
Ea(V) < %NV —9C, then for each 1 < i < n define

Qj’(V) = .
O itV ¢ Q

That is, 2 (V) is obtained by taking the left and then right augmentations of ©;
along V with parameters t = £, (V) and ¢t = & (V), respectively. Observe that
QF (V) is a witness family by Lemma 7.24 and that it inherits a natural subordering
by Lemma 7.26. Then let QF (V) = (2] (V), ..., (V)) be the associated witness
family, and define

~ _—

V) =QF (V) = (QT(V), N .,Q,t(V)) - (ﬁl(V), y .ﬁn(V))

to be the insular completion of Q*(V), equipped with its natural subordering.
Notice that, since (V) is obtained from € by first performing left- and right-
augmentations with parameters &£, (V') and Eéi (V), and then a finite sequence of
refinements and augmentations with parameter 0, Lemmas 7.22 and 7.27 imply
that Q(V) is again WISC (since  was wide and Eq(V) < Ny —9C). Observe

that Q < (AZ(V) and hence that Ag(\/)  A$L. The point of this procedure is that it
moves the bad set for V' entirely off of itself:

Lemma 10.6. Suppose that QF, Q, and QF are insular, complete, subordered wit-
ness families for the strongly C-aligned tuple (zo, . .., 2,) in T(X), that V e Qf < Q
satisfies Eo(V) < Ny — 9C, and that Qf < Q < Q(V) < QF. Then

33’ ABY = .

Proof. Suppose on the contrary that there is some p € B%}T ) B%}I. Let1<i<n
be the unique index (cf Lemma 10.5) such that p is in the interior of [z} ,,z}].
By Lemma 10.5, for each = € {f,1} we have V' € QF and may choose subdomains
Z.,Yy = V such that Z, € QF, that Yy, € T; contributes to V in Qf, and that
p € Lz, n1Iy,. In particular, the domains Zj, Y}, Zy, Yy must be pairwise disjoint
or nested since we have

pEIZT ﬁIYT mIZi mIYT

Since Z;,V € QI it must be that Z; is subordered in QZ with respect to V. Let us
suppose V3N Zy in QI (the reverse possibility Z; £V being symmetric). Since 0Y;
and 0Z; are disjoint and Qf < Q;, we see that

dv(aYL.%‘i) <dv(§ZT71‘i)+1< (V)+1§56i(V)+1.

T
o

Since Qf D €); and Y; € T; contributes to V' in Qg, it must be that Y; also con-
tributes to V' in ;. By definition of encroachment we may choose a domain U € §2;
with Vi, U and dy (C(V|v), z:) = £, (V). We claim that dy (0Yy, x;) = £ (V) =M.
Indeed, if this were not the case then evidently dy (0Y3, 0U) = dy (0Y;, C(V|y))—1 =
M — 1 which implies dY;hoU. Since Y; contributes to V in €;, (SO4) implies we
must have the time ordering Y; < U along [x;_1, %;]. On the other hand, the facts
that Y3 and U both have active intervals along [z;—1, z;] and that dy (0U, x;) +1 >
dy (0Yt, ;) +M imply that we must have the time ordering U < Y}; a contradiction.
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The above two paragraphs show that

Therefore Y} is necessarily contained in the set Lerq, (V) for the segment [z;_1, x;].
Hence we must have Y; = W; = V for some domain

Wi € Lerg, (V) € QF (V) € Qu(V) € QF
But this contradicts the fact that Y; contributes to V' in Qf O

10.2. Limited Admissibility. As conveyed in above, in the discussion before
Lemma 10.4, bounding £(2) by Teichmiiller distance requires controlling the the
badness of the witness family tuple 2. While it may not be possible to eliminate
badness entirely, we will be content to minimize it by repeatedly applying the op-
eration {} v~ (AZ(V) along with Lemma 10.6 to move the badness somewhere else.
Throughout this process we must carefully control the cardinality of the witness
families so that sum of the additive errors from Theorem 9.4 does not blow up.
Recall that we have introduced (at the start of §7) an as-yet unspecified sequence

of thresholds N¢(s)41,- .., N—_1. We will shortly explain how these are chosen recur-
sively, together with accompanying bounds and fractions,
1
Aj>21 and 0<npji=——"m—— <1 foré(S)=j=-1,

45 + 2)3CA;

in a manner that only depends on the parameter C and the global complexity £(.5).
We continue to use the notation 7y = n¢(v) and Ay = Agy) for a domain V = S.
Before specifying these constants, let us mention the role they will play.

Definition 10.7 (Admissible and Limited). A witness family Q = (£4,...,Q,,) for
a strongly C—aligned tuple (zg,...,x,) in T(X) is called:

e admissible if }B | anT(Z (0, xy) for all V €,
o limited if |Q2]; < A; for every index {(S) > j > —1, where here

[ := max [$]; = max #{VGQ [ (V) =3}

1<i<n

Adding these conditions to our previous ones, we now say a witness family is WIS-
CAL if it is wide, insulated, subordered, complete, admissible, and limited, or
WISCL when we drop the admissibility condition.

The significance of such witness families is readily apparent:

Theorem 10.8. Let Q = (Q1,...,Q,) be a witness family for a strongly C—aligned
tuple (zg, ..., zy) in T(X). If Q is WISCAL, then its complezity and savings satisfy

£(Q> + 6<Q) 2C,n (hE + %) dT(g)(.’Eo, l‘n)

Proof. Set A =3’ j Aj. Since ) is limited, each family €); contains at most A;
domains of complexity j. Thence the full union U;; contains at most nA 2% 0

domains. For each domain V € (), since the points z¥,...,z} appear in order
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along [z0, z,,], Theorem 9.4 implies that

——Q ~Q; —;
D Bbdroy@ovhEav)+ Y (hy = h)dran (@ Biy)

1<i<n|VeQ; 1<i<n|VeQ;

Tn

Zen Z J ((hv —&v) +&v)lug = f (wy +ov).
i=1J2) o
Summing these || < nA inequalities over all V € Q, combining their additive
errors, and applying Lemma 10.4 now yields

Tn Tn

(wa+0q) <J (he+Ba) = hxdrs) (o, Tn) + Z hy |BY|.
o VeQ

Using the definition n; = (4(j+2)3CA;)~1, the fact that  is limited and admissible,
and that hy < 2({(V) +2) for all V = ¥, we thus conclude

£(Q) + 6(Q) X hudrs) (T, xn) + Y. hvnvdrs) (o, 7n)
Ve

£(Q)+6(Q) e f

Zo

+2
< dT(E)(xo,xn hs +n Z (M) A

£(%) 1
=d n h — —_—
7(2) (@0, 2n)) | hs + 2C j;—1 (G +2)2

2
n
= dT(g)(l‘o,xn) (hg + 12C) < dT(g)(aﬁ,y) (hz + 6) (Il

10.3. Saturation. It remains to prove that WISCAL witness families exist and,
in the process, to specify all of the constants N;, 7;, A;. Our witness families will
be constructed in the following iterative manner.

To begin with, suppose merely that our constants N; and 7; have been specified
arbitrarily subject to the conditions

(109) 5(5) + 3OC% = Nf(g)_;,_l <---<N_;=N and 0< n; < 1 for all 7.
0

We continue to use the notation Ny = N¢(yy and ny = ng(y) for any domain V' = S.

Let ¥ = S be any domain and let (zo,...,z,) be a strongly C-aligned tuple in
T(X). For each 1 < i < n, let QY be the set of topologically maximal domains in
the collection

Y(wio1,2:) = Y1, i) U Y1, 2:),

where we recall that Y, Y¢, T¢ are the sets from Definition 7.2. Then QY is a
witness family for [x;_1,z;] by definition. Since Té(xi,l,xi) consists of at most
2£(X) annuli, we see that QY consists of the topologically maximal domains in
Y¢(x;_1, ;) together with a subset of Y*(2;_1, ;). Thus the number of domains in
Q9 of each complexity is uniformly bounded as described by Lemma 4.1. Since there
are no nested domains in Y, it is trivially subordered. Now let Q° = (Q9,...,QY)
be the associated subordered witness family for the tuple (xq,...,x,), and let
Q' =00 = (QY,...,Q0) be its insular completion (Definitions 7.28 and 8.10). Note
that by Lemma 7.29 we have Eq: (V) < 9C for all V € Q1.
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For k € N, suppose that we have constructed an increasing chain Q' < --- < QF
of WISC witness families for (xo,...,z,). Among all domains V € QF satisfying

Ee(V) <INy —9C and ‘38’“‘ > ny dy(s) (%0, Tn)

(that is, the Lebesgue measure of B‘g}k c [0, 2] is more than ny—percent of the
total measure of [z, x,]), choose one of maximal complexity and call it V. Using
the operation v Q(V) = Q+ (V) from §10.1, we then define

Qk+1 — @(Vk) = <£/2\]1€(Vk)7 .. ,@(Vk)) .

In this way, we obtain a list V7, Va, ... of domains and a chain Q' < Q% < - - of
WISC witness families. In fact, this process must terminate in finitely many steps
yielding a WISC witness family Q := U,QF with the property that every domain
V e Q satisfies Eq(V) > Ny — 9C or |B{}| < nvdy(s) (o, %,). Indeed, since there
are only finitely many domains in each collection Y (z;_1, x;), there are only finitely

many possible witness families for (zg,...,z,). Since the bad sets 68: and B‘S}:H

are disjoint by Lemma 10.6 (and ng is nonempty by choice of Vj), we see that
OF < QFt1 for each k. Therefore the families QF are all distinct, showing that the
process terminates in finitely many steps.

Definition 10.10. We refer to any family 2 obtained in this way as a saturated
witness family for (zo,...,z,).

By choosing the constants N; and 7; carefully, we will be able to bound the
number of domains in {2 of each complexity and to moreover arrange that every
domain V € Q satisfies £o(V) < Ny and [BY| < nvdr(s) (o, 2n).

To this end, we first observe that a particular domain Z can appear in the list

V1, Va, ... at most 1/nz times. This is because if k1, . .., k¢ are distinet indices with
Z =Vi, =--- =V, then Lemma 10.6 implies the bad sets BZ™" ..., BZ" are all

disjoint. Whence

k
dT(Z) (IO;Z‘n) = ‘Bg !

,
+ -4 ‘B% [‘ > EnZdT(E) (:Co,l’n)
and we have fnz < 1 as claimed. This has the following consequence:

Lemma 10.11. IfQQ is a saturated witness family, then each domain Z € Q) satisfies
£a(Z) < 9C (1 + ,%V)

Proof. Suppose the saturated family is constructed as Q = U,LQF for the increasing
chain Q0 < Q!-.. where each QY is the set of topologically maximal domains in
Y (zi_1,2;), where Q' = Q0. and QF+! = (AZ’“(V;C) for some domain V}, € Q. Since
there are no nested domains in any collection Y for 1 < i < n, we trivially have
Eqo (W) = 0 for every domain W. By Lemma 7.29, its insular completion Q!
satisfies £q, (W) < 9C for all W = X.

For each augmentation QF v QFFL = OF+ (1), Lemmas 7.27 and 7.29 together
imply that the encroachment for any Z = X satisfies

Ear(Z) + 9C, Z =V

Eqrt1(Z) <
ar1(Z) {max{EQk(Z),QC}, else.
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Therefore, we conclude that £q(Z) < (m + 1)9C, where m = [{ke N | Z = Vi }| is
the number of indices k for which Z = V}.. But we have observed that m is at most
1/ny. This proves the lemma. O

Next observe that if Q is complete and insulated, then every domain added
during an operation v (AZ(V) is a proper subdomain of V. Indeed, fix some
1 < i < n and suppose Z € Q(V)\Q. If Z € QF(V)\Q;, then by definition
Z € égéi(v)(V) v E%i(v)(V) showing that Z is a proper subsurface of V' by
definition. Since §2; is already a complete and insular by assumption, it is clear
from the construction (Definition 7.28) of the insular completion (V) = Qf (V)

that every Z € QF (V)\Q] (V) satisfies Z = W for some W € QF (V)\;. Therefore
every Z € ;11\Q; is a proper subsurface of V', as claimed.

Let us next analyze how the cardinalities of a family change under an operation
Q « Q(V). The previous paragraph shows that for each £(X) > j > £(V) and
1 <4 < n, the number [$;|; of domains of complexity j stays constant. Hence:

(V)| =], for &) =i=¢V), 1<i<n

However, surfaces of lower complexity may be added during the augmentation step
Q v~ QF(V), and then during the completion step Q7 (V) v Q(V): For each
—1<j <¢(V), Lemma 7.10 shows that

(V)] < 19l +202N;00)5 % for 1< <€(V), l<is<n
Lemma 7.30 therefore implies that

[U(V)]; < 19ul; + 22N;41) 2 4+ G5 (1l s Rl 40),

where G; is a function depending only on the thresholds N¢(x),...,Njy1. To
summarize, since |Q] ; is defined as the maximum max; 1€2;] ;» for any operation

Q v (AZ(V) and complexity j, we have

PN CL+ G;(|9 oo |9 -1<j Vi
(1012) }Q(V)| o ‘Q| < j + ](| |£(Z) ) a| |J+1)a J < 5( 7,) ,
j 7o, £(Vi) <j<&(®)
where the number C’; and function Gj depend only on the thresholds N¢(xy, ..., Nj41.

With this, we can now specify our constants N;, 7;, and A; recursively:

Proposition 10.13 (Choosing the constants). For any C = M and n > 1, there
are constants Nj, A; and n; for £(S) = j = —1 satisfying (10.9), such that the
following holds: For any domain ¥ = S and strongly C—aligned tuple (xq,...,Zn)
in T(X), every saturated witness family Q for (xo,...,x,) is WISCAL.

Proof. By construction, every saturated family is WISC, but we must take care
to ensure ) is admissible and limited. Fix some complexity j < £(S5). Let

us say a choice of constants Agcgy,...,4A;, fractions ne(gy,...,n;, and thresh-
olds N¢csy, ..., N; is robust if, irrespective of how the remaining fractions
Mj-1,-..,M—1 and thresholds N;_;,...,N_; are specified, subject to equation

(10.9), every saturated resolution family 2 as in the proposition statement satisfies

1]

m

1
<A, and 5Q(V)<§NV—9C for all £(V),m = j;

that is, if limited admissibility holds for all complexities at least j.
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To begin the recursion, let us set

1 €0
Ags) = L, c

1
() = J(E(S) 1 2)°Chg(s)’ and  Ng(s) = 30C— (2 + M) :
Note this ensures N¢(gy = £(S) + 30C 5. We claim this choice is robust. Indeed, let
Q) be any saturated witness family. Since there is only one domain of complexity
£(9), namely S itself, we trivially have |Q\£(S) < 1= Agg). Further, Lemma 10.11
and our choice of N¢(g) ensure that £q(S) < 9C(1 + n%) < #Ng —9C.
By induction, fix some complexity j < £(S) and suppose that we have already

0

designated robust constants A¢(g), ..., A 41, fractions ne(s), ..., nj+1, and thresh-
olds N¢(gy,...,Nji1. Consider any saturated resolution family = urQF for a
tuple (zo,...,x,) in T(X), where Q° = (99,...,0%) with each QY equal to the set

of maximal domains in Y(z;_1,;), where Q' = Q0. and Q*1 = OF(V},) for each
k > 1. Let us consider how many domains of complexity j can arise in 2: By
Lemma 4.1, there are constants C¢(x),...,C; depending only on N¢(s), ..., Njpq
such that the original family Q° satisfies ‘Qo‘m < Cpy, for all j <m < &(X2). There-
fore Lemma 7.30 implies that

ml}j = ’W‘j < By,

where P; is a constant depending only on Cg(x), ..., Cj, Ngs), .., Njp1, and thus
ultimately depending only on Ng(g),...,Njy1. Now, we have seen above that do-
mains of complexity j are only added when we augment along a domain of complex-
ity strictly larger than j. For each m > j and k, our induction hypothesis ensures
that |Qk|m <19|,, < A,,. Thus there are at most nA,, domains of complexity m
that are candidates for augmentation, and each such domain can occur on the list
Vi, Va,... at most 1/n,, times.

Therefore, there are at most Zi&ii +1 M /N indices k such that

|Qk+1|j - |Qk|j_
For each such index k, our hypothesis }Qﬂm < 19|, < A, and equation (10.12)
together imply the difference ’Q’““ ’j — |Qk|jis bounded by a number (); depending
only the thresholds Ng(g),...,Nj11 and constants Ag(gy,...,A 1. This proves
€, < Aj, where

A A
Aj =P+ Q; (n £45) +'--+n]+1)
Te(S) Mi+1
is a constant depending only on n, our previously determined constants A, 7m,
and Ny, for j <m < ¢(S). Now that we know [Q|; < Aj, we set

1 1
10.14 = d N, := 30C(2+ — N .
A0 0= g rapea, 4 N m‘“"{ ( ! m) ’ }

By Lemma 10.11, this d choice of N; ensures that every domain V' € Q with (V) = j
satisfies £o(V) < 9C(1 + 7717) < #Ny —9C. Thus the constants Ags),..., A,
fractions ng¢(g), ..., n; and thresholds N¢(sys - - -» Nj form a robust choice.
Proceeding recursively in this manner, we obtain a complete list of robust con-
stants A,,, Nm, and N, for £(S) = m > —1. Since these constants are robust,
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any saturated family ) built using these constants is necessarily limited. Further-
more, since each V € Q satisfies Eq(V) < %NV — 9C, the fact that © is saturated
automatically implies that }B‘g}‘ <nvdr) (o, ). Hence Q is also admissible. O

11. COMPLEXITY LENGTH

We are finally ready to define the key quantity coming from this lengthy con-
struction, namely the complexity length of a tuple.

Definition 11.1. Let ¥ = S be a domain. The complexity length and savings of a
strongly C—aligned tuple (zq,...,z,) in T(X) are defined to be

L(x0,. .. 2p) = ing(Q) and S(zo,...,xpn) = ing(Q),

where the infima are taken over all WISCL witness families © for the tuple, and
where £(2) and &(Q) are as given in Definitions 8.12-8.13. Note that the infima
are achieved, since the set of such  is nonempty (e.g. by Proposition 10.13) and
finite by virtue of the sets Y (z;_1,z;) being finite.

We now have the following consequences of the construction:

Theorem 11.2. Let ¥ = S be a domain and (xo,...,2,) be a strongly C—aligned
tuple in T(X). Then for any indices 0 = ko < k1 < -+ < ky, = n we have both

m

Zﬁ(a:kjfl,...,xkj) < L(zo,...,xy), and
j=1

n
E(J?O, s ,.’En) + 6('1:07 s 7xn) 2C,n (hz + E) dT(E)(ajOa xn)
As a special case of the theorem, if (y, z, z) is a strongly C—aligned tuple in 7 (5),
then £(y, z) + £(z,2) Zc (hs + &)dr(s)(y, 2)-

Proof. Let Q' be a saturated witness family for (zo,...,x,). By Proposition 10.13,
Q' is WISCAL and hence satisfies £(Q') + &(Q') Xcn (hs + 2)d7 () (20, 2n) by
Theorem 10.8. Next let Q and Q" realize the infima from Definition 11.1, so that
L(zo,...,xzn) = L£(Q) and S(xg,...,z,) = 6(Q”). Since ' is a candidate for
these infima, we trivially have £(Q2) + (") < £(Q) + 6('). Combined with the
previous observations, this proves the second assertion of theorem.

Next, note that by definition each subfamily (7 = (Qgr;ys---, ;) is a WISCL
(but not necessarily admissible) witness family for the strongly C-aligned sub-
tuple (xg, ,,...,2;). Since complexity length is an infimum, it follows that

J

L(wh,_yyenyxpy) < £(€). On the other hand, the complexity of a tuple witness

J

family is exactly defined so that

m m m k; n
D L@k k) S QL) =D Y S(Q) | =D L() = £(Q). O
j=1 j=1 j=1 \i=1+k;j_1 i=1

We note that the § in the main theorem will come from this theorem. Namely
given § we will pick C large enough so that z < §. This observation will be repeated
in the last section.
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12. COUNTING WITH COMPLEXITY LENGTH

In §§7—11 we have gone to great lengths to define a quantity £(z,y) that is essen-
tially bounded above by hsdr(s(x,y). We now count points with given complexity
length. Recall from Definition 3.14 that for each domain ¥ of S we have specified
a (c,2¢) net N (X) in the Teichmiiller space 7(X). Our goal in this section is:

Theorem 12.1. For any parameter C = M there exists an integer k = 1 such that
for any domain ¥ = S, point x € T(X), and distance r > 0 we have

#Hy e N(D) | Say) < r} < hrker.

That is, there are at most kr*e” net points within complexity length r of x.

This should be compared with Lemma 3.15 (itself a consequence of Theorem 3.12
by [ABEM]), but with the Teichmiiller distance replaced by complexity length.

Corollary 12.2. There exists an integer k = 1 depending only on C,n such that
for any domain ¥ © S, point x € T(X), and distance v > 0, there are at most kr¥e”
tuples (z1,...,2n) of net points such that £(x,x1,...,2,) < 7.

Proof. Since "' | &(z;—1,2;) < L&(z,21,...,2,) < r by Theorem 11.2, for each
integer partition r > r1 + - - - +r, we count the number of strongly C-aligned tuples
(xgy...,zn) With g = o and £(x;_1,2;) < r;. By Theorem 12.1, once z;_q is
determined there are at most k(ri)ke” options for the next net point x;. Thus in
total there are at most k™ (ry ...r,)ke"++ < knrkne™ options for each of the at
most ™ such partitions of r. ([

12.1. Directed graphs. The proof will require a bit of setup. Given a WISCL
witness family € for a pair (z,y), we define a labeled directed graph G = G(9)
as follows: The vertex set V = V(G) is the set of domains in 2 with each vertex
Z € Q labeled by the ordered pair (h%, |dr(z)(2%,7%)]), where the first entry h is
the weight used in calculating the complexity £(Q2) (Definition 8.8) and the second

entry is the integer part of the Teichmiiller distance between the resolution points

7,95 Vertices Y, Z € V are joined by directed labeled edge from Y to Z as follows:

o if YAZ with Y < Z along [, y], we have an edge Y £ Z labeled “py

e if Y= ZwithY / Z, there is an edge Y W 7 labeled “SW”

e if Y 3 Z with Y \ Z, there is an edge Y 58 7 labeled “SE;

e if Y and Z are disjoint (that is, Y L Z), there is no edge joining Y and Z.

Lemma 12.3. These directed edges give a partial ordering on the vertices of G.

Proof. We need to prove transitivity. First consider a concatenation W Ly &z
Then we have WhZ by Corollary 3.30 with W < Z along [z, y] by transitivity of

time-order; hence W B 7 as required. If the second edge is labeled Y E g , then
we must have WhZ by (SO3) and moreover W < Z by Corollary 3.31. Finally, if

the second edge is labeled Y Wz , then Y = Z and we cannot have W 1 Z or
W o Z. If WAZ, then necessarily W < Z by Corollary 3.31 so that W L Zas
needed. If instead W = Z, then we must have W ./ Z by (SO2), so that W Wz
The cases W 2% V' & Z and W 25 ¥ & Z are handled by symmetric arguments
as above. For the case W 2% v %% Z, axiom (SO2) exactly gives W ks Similarly
w2y 2 Z and the alternative with two SE edges, follows from (SO1).
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For the last remaining case W Ly Wz , the domains W and Z cannot be
disjoint because they both contain Y. If WhZ then we necessarily have W < Z

and thus W 5 Z by (SO3). Similarly if W = Z, then (SO1) ensures W W Z and,
symmetrically, W 3 Z leads to W L. O

The labeled directed graph G is a combinatorial object that neither remembers
the points z,y nor the family ) giving rise to it. To emphasize this combinatorial
structure, we will use lowercase letters v € V to denote vertices of G and write
(h¥,d,) € N2 for the label of the vertex. Our goal is, essentially, to count the
number of witness families that give rise to a given labeled graph G.

12.2. Realizing initial subsets. To this end, we say a subset X < V respects the
partial order if there is no directed edge from the complement V\X to X, that is,
if Y € X implies W € X for any directed edge W — Y. For example, the subsets
& and V both respect the partial order.

Given our combinatorial graph G, a subset X respecting the partial order, and
an initial point z € T(X), we say a pair of families 1,9 are equivalent over X if

e cach (; is a WISCL witness family for a segment [z, y;] starting at z,

e the graph G(2;) associated to each family §2; is isomorphic to G via an
isomorphism f;: G — G(;) of labeled directed graphs such that

e for each vertex v € X, the corresponding domains f;(v) € V(G(€%)) = ;
are equal, call it fi(v) = Z = f3(v), and have the same resolution points,
meaning that 22" = 222 and AP =% in T(2).

Definition 12.4. A realization of X relative to an initial point = € 7(X) is an
equivalence class R of families over X. We additionally say a segment [z, y] realizes
R if the equivalence class contains a witness family Q for [z,y]. A realization of
& thus consists of no data, whereas a realization of V roughly consists of a witness
family €2 giving rise to G.

In general, a realization R of X determines for each vertex v € X a domain
Z, = ¥ and a pair of points &, J, € T(Z,). These domains moreover satisfy the

combinatorial conditions that if v > w then ZyhZy, if v W w then Ly T Zy, if

v %5 w then Z, 3 Zy, and that Z,, Z,, are disjoint if there is no edge joining v and
w. Let us write Q(R) = {Z, | v e X} for this set of domains.

Mimicking the notation from §7.1, let us say that v € X minimally contains a
domain U, denoted U =¥ v, if Z, is a topologically minimal element of the set
{Zy |we X and U = Z,,}.

Lemma 12.5. If distinct vertices v, w € X minimally contain U = X, then for every
segment [x,y] realizing R we have U ¢ Y (x,y) and, in particular dy(z,y) < N.

Proof. Let Q be any witness family in R for the segment [z, y]. Then Z,, Z,, € Q(R)
both minimally contain U. By contradiction, let us suppose U € Y(x,y). The
completeness of  then provides an Q-supremum U’ = U which, by Lemma 7.6,
satisfies U’ = Z, and U’ — Z,,. Observe that the domains Z,,, Z,, cannot be nested,
as they both minimally contain U. Thus Z,hZ,, and we may suppose, without loss
of generality, that they are time-ordered Z, < Z,, along [z, y]. The supremum U’ is
an element of €2 nested inside Z, and Z,,, hence it must be subordered with respect
to them. In fact the subordering must be Z, \, U’ /' Z,,, since the alternatives
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v/ Z, < Zy, and Z, < Z,, \, U’ are precluded by (SO2). This means that the
directed graph G(Q) has edges Z, By W Zw. Since Z,, lies in Q(R) and X
respects the partial order, it must be the case that U’ € Q(R) as well. But this
contradicts the assumption that v and w both minimally containing U in X. O

Corollary 12.6. For any domain U = X, the set {my(9,) | U 2% v} has uniformly
bounded diameter in C(U).

Proof. Tt suffices to bound the diameter dy (§y, §,,) for any distinct pair of vertices
v,w € X satisfying both U 2% v and U 2% w. Let Q be any witness family in the
equivalence class R, say for a segment [x,y]. Then by definition Z,, Z,, € Q with
Yo = @(sz and g, = @%w Since U = Z,, the construction of resolution points (Defi-
nitions 8.3 & 8.7) implies that m (§,) = my (§%,) lies within a uniformly bounded
distance of the set {my(z), 7y (y)}. The same holds for 7y (). Since Lemma 12.5
ensures that dy(x,y) < N, the bound on dy (g, §w) is therefore immediate. O

12.3. Realization tuples. We will show that the number of realizations of X" is
controlled by the labels on the vertices of X. The first step is to show that a
realization relative to € T(X) determines a companion point p = pg € T(X).
This point will be built via consistency from a tuple (py) € Hy=xC(U) defined
using only the data of the domains Z, and the points z € 7(X) and §, € T(Z,) for
veX:

Definition 12.7 (Tuples from realizations). Let R be a realization of X relative
to xz € T(X), and define a tuple (py) € Hy=xC(U) as follows: Given U = X, if no
vertices v € X minimally contain U, then we set py = 7y (z), and otherwise we
choose some v € X satisfying U <% v and set pyy = my(§,). Corollary 12.6 ensures
this is coarsely well defined, independent of the chosen vertex v.

We observe the following:

Lemma 12.8. If a segment [z, y] realizes R, then for each domain U = ¥ we have:
o IfU ¢ Y(x,y) then diame )y (pr v my(x) U Ty (y)) tc0.
o IfU € Y(x,y), then dy(pu,y) %c 0 provided its Q-supremum U' = U*
satisfies U' € Q(R), and dy (pu, ) Zc 0 provided U’ € Q(R).

Proof. Let Q be any witness family in R for [z, y]. Notice, as above, that for any
v € X, the projection of ¢, = Q% to the curve complex of any subsurface Y = 7, is
by construction coarsely either 7y (x) or my (y). In particular, by considering any
v € X minimally containing U, we see that py = 7y (§,) is coarsely either 7y (x) or
7y (y). Therefore, if U ¢ Y(x,y) then dy(x,y) < Ny and the first bullet follows.

Now suppose U € Y(x,y) and let U’ = U2, If U’ € Q(R), then U <) U’ so
that by definition py is coarsely given by 7y (5). However, since U’ = U, the
construction in Definitions 8.3-8.7 implies the projection of 7% to C(U) coarsely
agrees with 7y (y). Hence pyy = my (5% is coarsely 7y (y) as claimed.

Suppose, on the other hand, that U’ ¢ Q(R). If there is no vertex of X that
minimally contains U, then py = 77 (2) by definition. However, if U 2% v for some
v € X, then necessarily U’ = Z, by Lemma 7.6 and in fact we must have U’ © Z,
since by assumption Z, € Q(R) but U’ ¢ Q(R). The domains U’, Z, are necessarily
subordered in 2, and the option U’ /' Z, is ruled out by the fact that X =~ Q(R)
respects the partial order. Hence we have Z, N\, U’ so that by Definitions 8.3-8.7
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the projection of the resolution point @% to U is coarsely 7y (). But since U 2% v,
this projection 7y @%@) is by construction the U—coordinate py of our tuple. Thus
pu = mu(§2,) is coarsely 7y (z), as claimed. O

Lemma 12.9. The tuple (py) € HyesC(U) is k—consistent, for some k %c 0.

Proof. Let 2 be a witness family in the equivalence class R, say for a segment
[z,y], so that we identify X with the subset Q(R) < Q. Fix two domains U, W = X
that either cut UhW or are nested U & W or W & U. If either U ¢ Y(z,y) or
W ¢ Y(x,y), then Lemma 12.8 implies (py,pw) is within bounded distance from
either (my(z), mw(x)) or (my(y), 7w (y)) and is hence consistent by Theorem 3.37.

We may therefore suppose U, W € Y(z,y). Let U' = U% e Q and W' = W% e Q
be the Q-suprema guaranteed by completeness. If neither U’ nor W’ is in Q(R),
Lemma 12.8 implies we coarsely have py = 7y (x) and pw = mw (x). If, on the other
hand, U’, W’ both lie in Q2(R), then we coarsely have py = my(y) and pw = mw (y).
In either case, the pair (py, pw ) satisfies the consistency condition by Theorem 3.37.
It therefore suffices to suppose exactly one of U’ or W’ lies in Q(R) so that, without
loss of generality, we suppose U’ € Q(R) and W' ¢ Q(R). In particular, U’ #= W’
and, by Lemma 12.8, dy (py,y) £c 0 and dyy (pw, z) £c 0.

First suppose U’ © W’. The domains U’, W’ are then subordered in Q, and the
fact that X respects the partial order implies the subordering must be U’ ,/ W'.
Note that in this case we must have U &= W or UAW, since the containment
W = U would imply W’ = U’ by Lemma 7.6. Also, the domains U’ and W cannot
be disjoint, as oU projects to both of them, and nor can the be nested W = U’, as
that would again imply W’ = U’ by Lemma 7.6, contrary to our assumption. Thus
either U'dW or U’ &= W. If U’ cuts W, then (SO4) with U’ ,/ W’ = W implies
they must be time-ordered U’ < W along [z,y]. Since dw (0U,0U’) < 2, we thus
obtain the desired bound

dw (pw,0U) Zc dw (z,0U’) <M

by Lemma 3.29. It instead U’ = W, there are two cases: Firstly, if W = W', then
the fact that Q is wide with U’ ,/ W’ gives

dw (pw, 0U) <N dw (z,0U") = dw(z,0U") < Nw <N,

which is the desired condition for consistency. Secondly, if W # W', then evidently
W e Y(x,y) but W ¢ Q. Since we have U’ € Q with U’ = W, (WF3) provides some
Z € Q with U’ © Z and ZaW. We claim that Z and W must be time-ordered
Z < W along [z,y]. Indeed, if Z & W’ then (SO1) implies Z ,/ W’ so that (SO4)
forces Z < W similarly if ZAW’ then we must have Z < W' since the alternative
would give U’ / W' < Z and contradict (SO3) (since U’y Z evidently fails).
Therefore we conclude that dy (py, 0U) Zn dw (z,0Z) < M, as desired.

A completely symmetric argument shows that the assumption U’ 23 W’ leads to
the subordering U’ N\, W’. One finds that either U 2 W or UhW, and U = W' or
UMW, and that in any case dy (py, 0W) Zc dy(y, 9W') is uniformly bounded.

It remains to suppose U'AW’. In this case the fact that X respects the partial
order implies U’ < W’ along [z,y]. We must also have UAW’, since U 2 W’
would give U’ = U 2 W/ and U = W’ would give U’ = W’ by Lemma 7.6.
Similarly we necessarily have UhW, since either alternative U = W or U 2 W
would yield nesting U’ = W’ or U’ = W’ again by Lemma 7.6. Corollary 3.31
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therefore implies that U < W’ and U < W along [z, y] which gives the desired
bound dy (pr, W) %c dy(y, W) < M. O

We also need to account for the potentiality of short curves:

Definition 12.10 (Short multicurve of a realization). Let R be a realization of a
subset X' < G that respects the partial order. The short multicurve associated to
R is the multicurve a consisting of all curves ~ such that there is some v € X’ so
that Z, is an annulus whose core 07, equals v and is short at ¢, € T(Z,).

Lemma 12.11. For any realization R, we have that ag s indeed a multicurve and
that dy (P, ar) Zc 0 for every domain U = X.

Proof. Let ) be an element of the equivalence class R, say for a segment [z,y].
Given any component v of ar, we may choose some v € X so that A = Z, is an
annulus with v = 07, = dA short at the point ¢, € T(A). By construction of this
point g, = §% in Definition 8.7, we necessarily have ¢;, (0A) = £,(0A); therefore
v = 0A is short at y. In particular, since all components of ar are short at the
single point y € T(X), ag is indeed a multicurve, as claimed.

For the second claim, it suffices to bound dy (py,dA) for all U = X. If 04 is
disjoint from U, then dy (v, 0A) = diame(y)(Pr) is bounded. So we may suppose
AMNU or A © U. The fact that dA is in the Bers marking at y implies that
dy (0A,y) < L for all domains Y = X. In particular, since dy (y, 0A4) < L, it suffices
to bound dy (py,y). If dy(z,y) < Ny, then dy(pr,y) %c 0 by Lemma 12.8, as
needed. Hence we may suppose dy(z,y) = Ny, so that U € YT(z,y), and set U’ =
U?. We claim that necessarily U’ € Q(R) so that dy (py,y) Zc 0 by Lemma 12.8.
Otherwise, the fact that X respects the partial order implies that the domains
A, U € © must be related by A ,/ U’ or A < U’. However, the latter option
A < U’ would give dy/(z,0A) < M and, since €2 is wide, the former option would
give dyr (z,0A) < Ny/3. Since dy/(0A,y) < L, either case implies dy (z,y) < Ny
and contradicts our assumption. O

We can now use our realization data to reconstruct a point in Teichmiiller space:

Definition 12.12 (Realization point). Let X < G be a subset respecting the partial
order. To each realization R of X we associate a net point pg € N (X) as follows:
Let ag be the associated short multicurve and (py) € y=xC(U) the associated
tuple from Definition 12.7. By Theorem 3.37 and Lemma 3.10, we can build a
marking 1 on ¥ so that ag < base(u) and so that dy (py, i) Zc 0 for all U © X.
Now let pr € T(X) be a net point that has u as a Bers marking and so that for each
component 7 of ag, the length £, (7) coarsely agrees with 3, (), where v € X is
the vertex so that v = 0Z,, and so that all other components of base(u) coarsely
have length €.

Lemma 12.13. Let R be any realization of the partially ordered set X =V con-
sisting of all vertices of the directed graph G. Then for any segment [x,y] realizing
R we have drs)(pr,v) Zco.

Proof. Consider any domain U = ¥. By Definition 12.12 we have dy (pr,pr) %c
0. Thus if U ¢ Y(z,y), then Lemma 12.8 implies dy(pr,y) Zc 0. If instead
U € Y(z,y), then U has an Q-supremum U’ = U € Q by completeness. Clearly
U’ € Q(R), since our subset V consists of all vertices of G = G(2), and thus again
we find dy (pr,y) £c 0 by Lemma 12.8.



COUNTING FINITE-ORDER MAPPING CLASSES 97

By the Distance formula, or rather Lemma 3.35, it remains to show that pz and
y have the same short curves with coarsely the same lengths. By construction of
pr in Definition 12.12 and ¢, = 37%) in Definition 8.7, each short curve v on pg
is the core of an annulus Z, € Q(R) on which £y, () coarsely agrees with £, (y).
Conversely, for each short curve 8 on y, the annulus A with 0A = [ satisfies
A€ YYx,y). The fact that Q is insulated implies (Lemma 7.13) that Y*(z,y) < €.
Thus A € Q = Q(R) and, again by Definitions 12.12 and 8.7, the length of 8 at y
coarsely agrees with the length of 3 on 7%} and thus with the length of 8 at pg. O

12.4. Extending realizations. Finally, we count how many ways there are to
extend a realization to an enlarged subset that respects the partial order:

Proposition 12.14. There is a constant C' depending only on C such that the
following holds: Let X < V be a subset that respects the partial order, and let
v € WX be a vertex so that X' = X v {v} also respects the partial order. Then
for each realization R of X relative to a point x € T(X), there are at most C' hidy
realizations R’ of X' that extend R.

Proof. The equivalence class R is naturally partitioned into subsets R’ that are
each realizations of the larger set X’. Picking such a R’ that extends R amounts
to specifying a domain Z, = ¥ along with a pair of net points 2,4, € N (Z,). We
will show that there are at most boundedly many options for Z, and &, and that,
once these are specified, at most ehvdv options for ¢,.

Let (pv)ues be the tuple associated to R and pg the realization point. Also let
Q) be a witness family in R, say for a segment [z, y]. Thus we have an identification
of G(92) with G under which v € V corresponds to a domain W € Q and the pair
T4,y are given by the resolution points :?%,ﬂ%, These three pieces of data, W,
7%, and 7%, thus specify the realization R’ = R containing Q.

Claim 12.15. The domain W satisfies dy(pr, 0W) Zc 0 for every domain U = X
and, consequently, the number of such domains W is bounded by Corollary 3.39.

Proof of Claim. Notice that W € T(z,y) so that W has an active interval along
[z,y]. Tt suffices to suppose OW projects to U, that is either W & U or WU, and
to consider dy (py, 0W). If U ¢ Y(x,y), then we have

dv (pr, oW) ¢ dy(x,0W) < dy(x,0W) + dy (0W, y) X dy(z,y) < Np.

by Lemma 12.8 and Corollary 3.27. If instead U € Y(z,y), we let U’ = U’. Note
that the assumptions W = U or WU imply that either W = U’ or WAU'.
Therefore W and U’ are related in the directed graph G(2).

First suppose U’ € Q(R), so that dy(py,y) Zc 0 by Lemma 12.8. Since X
respects the partial order and v ¢ X by assumption, we either have U’ < W along
[z,y] (if UMW) or U/ \, W in Q (if W & U’). In the the former case U'nW we
necessarily have UMW as well (since we cannot have W & U = U’'wW). Therefore
U’ < W implies U < W by Corollary 3.31 so that dy(y,0W) < M as desired. In
the latter case U’ \, W, we get dy(y, W) < N by wideness of Q. If U’ = U this is
the desired bound. If instead U = U’ then evidently U ¢ 2. We claim there is some
W' =2 W so that W’ € Q and W’/ AU. Indeed: if WU we just take W/ = W, and
if W = U such a W’ is provided by (WF3). Now observe that if W/AU’, then we
necessarily have U’ < W’ along [z,y] (since W’ < U’ \{ W is ruled out by (S0O2))
and thus U < W’ by Corollary 3.31. Alternatively, if W/ = U’ then necessarily
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U' N\, W’ by (SO1) so that again we get U < W’ by (SO4). In any case U < W’
along [z,y] and we obtain the desired bound:

o (Pu, W) Zc du(y, oW') < M.

Next suppose U’ ¢ Q(R) so that dy (pr, =) Zc 0 by Lemma 12.8. Since W # U’,
we see that U’ cannot correspond to one of the vertices of X’ = X u {v} in G. Since
X’ respects the partial order, this means that either W < U’ along [z, y] (if WAU")
or W /U inQ (if W= U’). A symmetric argument to the case U’ € Q(R) above
now shows that either U’ = U and dy (0W,z) < N by wideness, or W = W’ < U
for some W’ € Q so that dy (py, OW) *c dy (z,0OW') < M. ]

Claim 12.16. There are only boundedly many options for the net point 3, € N(W).

Proof of Claim. We show that the net point z, = ﬁ% is coarsely determined by
the data captured by the original realization R. Specifically, we will show that for
any domain U = W, if there is a unique vertex u € X satisfying U <% wu, then
du (23, 9.) Zc 0, and otherwise dy (2%, z) %c 0.

Let us first suppose there does not exist a unique vertex u € X that minimally
contains U. If U ¢ Y(x,y), then by construction in Definitions 8.3-8.7 we have
dy (2%, 2) Zc 0, which is the desired bound. If instead U € Y(z,y), then we
consider U’ = U® and note that U’ — W by Lemma 7.6. By completeness, U’ is
the unique domain of Q that minimally contains U. Hence the vertex u € V = G(2)
corresponding to U’ cannot lie in X, as that would contradict our assumption that
X does not have a unique vertex minimally containing U. If u = v, that means
U’ = W and hence that U contributes to W in Q so that dy (3%, ) Zc 0 by
construction. The remaining possibility is u ¢ X’ = X U {v}. In this case, the fact
that X’ respects the partial order means U’ = W must be subordered W \, U’ in
Q. Therefore, by construction, we again have dU(ﬁ}V, z) ¢ 0 as desired.

Now suppose there does exist a unique vertex u € X satisfying U 2% u. We
must show dy (25}, §u) %c 0. Let Z = Z, be the domain in Q corresponding to
u, so that g, = 9% € T(Z). If U ¢ Y(z,y), then by definition diy(5%,y) %c 0
and dy (23}, 2) £c 0. Hence by the triangle inequality dy (23, 9.) c du(z,y) <
Ny %c 0, as needed. If instead U € Y(z,y), we again consider its supremum
U' = U® and note that Z 3 U’ = W by Lemma 7.6. If U’ = Z, that means U
contributes to Z in Q so that dy (3%, y) Zc 0 by construction. Since Z € Q(R) and
W ¢ Q(R), the fact that X respects the partial order implies the nested domains
Z = U' © W are subordered Z ,/ W. Therefore di(Z5,y) %c 0 by construction
and thus dy (7%, 9) £c 0 by the triangle inequality. If U’ & Z, then the fact
that Z minimally contains U in Q(R) means we must have U’ ¢ Q(R). Since X
respects the partial order, the nested domains U’ & Z must therefore be subordered
Z N\, U’ so that by construction dy (7%, ) £ 0. Now we either have U’ = W, or
else U’ ¢ Q(R') and therefore W \, U’ by the fact that X’ respects the partial
order. In either case we have di7 (2%, ) %c 0 by construction. Therefore we again
obtain the desired bound dy (2%, 9.) £c 0 by the triangle inequality.

The above shows that that the curve complex projections 7 (#,) of , = 23, to
domains U = W are coarsely determined by the point = and the data {(Z,,¢,) | u €
X'} captured by the realization R of X. When W is not an annulus, the point Zv\% is
thick by construction and so coarsely determined by its curve complex projections.
When W is an annulus, then by construction in Definition 8.7 the core 0W has
coarsely the same length at x and f%, so that again Z, is coarsely determined by
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the data of x and R. In either case, we conclude there are only boundedly many
options for the net point Z,,. ([

To conclude the proof of the proposition, the claims show that there are uniformly
boundedly many possibilities for the next domain W = Z, and initial point %, €
N(W). To finish specifying a realization R’ of X’ it remains to choose a net point
9y € N(W). But according to the label (h¥,d,) of the vertex v € V, this net point
must satisfy d7(w)(Zv,Jv) < dy. Notice that by definition we have A = hy, unless
W is an annulus with both &, = 732, and §, = 35 €o—thick (Definition 8.8). In any
case, Lemma 3.15, ensures that once I, is specified there are at most Pehide such
net points ¢,. (I

12.5. Finishing the count. With these tools in hand, it is now a simple matter
to complete the proof of Theorem 12.1

Proof of Theorem 12.1. We are given a point x € T (X) and distance » > 0 and
need to count the number of net points y € A (o) so that £(x,y) < r. By definition
of complexity length, for each such point y there is a WISCL witness family €2 for
the segment [z,y] with £(Q) = £(x,y) < r. The corresponding directed graph
G(Q) has exactly || vertices. Since  is limited, this number is bounded || <
A1+ -+ Agx) = A in terms of C. Thus there are uniformly boundedly many
options for the directed graph G(Q2). Each edge has only three possible labels, and
for each vertex v there are boundedly many options for the label ~A%. The remaining
vertex labels d, satisfy >} ., h¥d, = £(Q) < r. Since there are at most I ways
to partition the integer || as a sum of |Q| nonnegative integers, we conclude there
is a constant C” depending only on C such that there are at most C”r® possibilities
for the labeled directed graph G().

Let us now fix such a labeled directed graph G and count the number of points y
producing a witness family 2 with G(2) = G. Using the partial order (Lemma 12.3),
we can enumerate the finite vertex set V = V(G) = {v1, ..., v|q|} so that each initial
list X; = {v1,...,v;} respects the partial order. Let us count the number of possible
realizations R; of each of these sets. For the emptyset Xy = (J, there is exactly
one realization Ry, and for each 1 < i < ||, Proposition 12.14 implies there are
at most C’e"%:% realizations R; of A; extending each realization R;_; of &;_;.

i _h

. *
Thus by induction there are at most (C')'[];_; e i realizations R; of X;. In

particular, we conclude that there are at most

()@ exp (Bl duy + -+ + bE, duys ) < (C)2 exp(r)
realizations of the full vertex set V = &|q|. Furthermore, by Lemma 12.13, each
such realization R determines a point pr that lies within bounded distance of the
original point y; hence there are uniformly boundedly many net points y that admit
a witness family € in the equivalence class R. All together, there are at most kr*e”
potential net points y for which £(x,y) < r, where k, A depend only on C. O

13. PROVING THE MAIN THEOREM

With all the setup in place, it is now fairly straightforward to prove Theorem 1.2.
First observe that by the triangle inequality and fact that Mod(.S) acts isometrically,
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for any points z,y,z’,y’ € T(S) we have

Aso(z,y, R) © Ago (2,3, R+ dys)(@,2") + dr(sy(y,9)) -

Thus it suffices to prove the upper and lower bounds in Theorem 1.2 for one pair
x,y, as it will then follow for any other pair z’,vy’ with increased constants.

13.1. Lower Bound. To prove the lower bound in Theorem 1.2, we find a finite-
order element ¢y with centralizer the finite group generated by ¢g. We thank
Dan Margalit for suggesting this example. Take a 49 + 2 regular polygon P with
opposite sides identified and let ¢y be the rotation of order 4g + 2 of the polygon.
The quotient of P by ¢q is a sphere with 3 marked points corresponding to the
center of P, the identified vertices and the center of the edges. A sphere with 3
marked points has trivial mapping class group and therefore the centralizer of ¢g
is just the group generated by ¢y.

Now we can assume x = y = x¢ is fixed by ¢9. By Theorem 1.1 [ABEM] there
exists K > 0 such that for all sufficiently large R there are at least Ke™s%/2 elements
w € Mod(S) so that the orbit point w(xg) lies in Ball(zq, R/2). The point w(xzq) is
fixed by the finite order element ¢, = wpow !, and, since ¢,, is an isometry,

d(xo, ow(z0)) < d(zo, w(x0)) + d(w(x0), dw(x0)) = 2d(x0, w(20)) < R.

For the lower bound then, it is enough to show that the assignment w — ¢,, is
49 + 2 to 1. Notice that if ¢, = ¢u,, then

1 1
w1gow; = WaoWy ",

or wy "ws is in the centralizer of ¢y. But this means w; ¢} = wy for some j.

13.2. The upper bound. Fix any § > 0 and choose the parameter C sufficiently
large so that Cd > 3. Since there are only finitely many conjugacy classes of finite-
order elements in Mod(S), it suffices to prove the upper bound for each conjugacy
class separately. Let us therefore fix a finite order element ¢y and take x = y = xg
a fixed point. For each conjugate ¢ € [¢g], we let ay, by be the branch points from
Proposition 5.5, so that (xg, ag, bs, d(20)) is strongly ©-aligned. We need:

Claim 13.1. We have £(ay,by) Zc &(x0,a4,by, d(x0)) and, consequently,
L0, ap) + 2L(ag, by) + L(bg, d(20)) Zc L(0, ag,bg, d(x0)) + & (0, ag, by, d(20))

Proof. Note that by Theorem 11.2, the first claim implies second. Recall from
Proposition 5.5(4) that dy (ag,bs) < O for all domains V' = S except possibly some
certain annuli A. By taking C > O, it follows from (7.1) that T(ag,bs) consists
only of annuli. Since annuli are not nested, it follows from (WF2) that in fact
Q= T(ag,by) is the only allowed witness family for [ag, by]. Let us call this set Y.
Notice that by Proposition 5.5(5) each such annulus A satisfies £4,(0A), 4y, (0B) =

€0 and therefore, by construction (Definition 8.7), the resolution points @L b; A
are also ep-thick. In particular, for each such annulus A we use h¥j = 1 when
computing complexity length £(T) (Definition 8.8).

The savings &(zo, ag, by, ¢(x0)) is defined an infimum over WISCL fitness fam-
ilies for the tuple, say realized by Q = (21,2, 3). Since 25 is a witness family
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for [ag,by], necessarily Qs = Y as above. For each annulus A € Q,, we again use
* = 1 for calculating complexity and hence 1 = hs — h¥ for savings. Therefore

3
(w0, ag, by, 6(20)) = 6(Q) = D1 Y (hy — b )droy @1y, )

i=1VeQ;
1 T
> 3 (ha = h5)dr(ay (@54, bs )
AeQls
1 T
= > (2= Ddyay(@g.bs 4) = £(X) = L(ag,by) O
AeY

Using this claim, we now apply Theorem 11.2, which says there is an additive
constant C’' depending only on C so that

C

Let us suppose that £(xo,as) < £(by, #(x0)). If not, we may replace ¢ with
¢~ and, using the same fixed point x4, observe that (zg,as-1,bs-1,¢ " (x0)) is
O-strongly aligned with by—1 = ¢~!(ag) and ay-1 = ¢~ (bs). In this case we have
L(xg,ap-1) = L£(d(x0),by) < £(ag,by) and so proceed in the same way counting
¢~*. Thus by symmetry we may indeed suppose £(zo, as) < £(bgs, ¢(z0)). It follows
that £(zo,a) + £(ag,by) is at most half the quantity above, and hence that
3) dr(s) (w0, ¢(w0))

S(a0.00) + Sapbe) < (hs + & .

Now, applying Corollary 12.2, we obtain a constant k such that the number of
such pairs (ag, by) is at most

L(xo,ap) + 2L(ag, by) + L£(by, d(z0)) < (hs + 3) d7(s) (o, p(0)) +2C".

+C’<(h5+6)§+c’.

& ((hs " 5)§ " C,)k e(hSQM)ReC’ < k'Rke(hS;rS)R,
for some larger constant £’ > k depending only on C, hg, and §. Lastly, Theorem 6.1
provides a polynomial p such that each such pair (a, b) arises as (ag, bs) for at most
p(R) elements ¢ € [¢o] with d7(s)(z0, ¢(20)) < R. Hence the total number of such
¢ is at most P(R) times the the above, and we finally conclude that

| Aso (o, 20, R)| <p(R)k’Rke<hTs+%)R (%SM)R

holds for all sufficiently large R.

<e
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