
LATTICE POINT COUNTING FOR FINITE-ORDER MAPPING

CLASSES

SPENCER DOWDALL AND HOWARD MASUR

We dedicate this paper to the memory of Maryam Mirzakhani.

Abstract. This paper concerns the lattice counting problem for the mapping

class group of a surface S acting on Teichmüller space with the Teichmüller
metric. In that problem the goal is to count the number of mapping classes

that send a given point x into the ball of radius R centered about another point

y. For the action of the entire group, Athreya, Bufetov, Eskin and Mirzakhani
have shown this quantity is asymptotic to ehR, where h is the dimension of the

Teichmüller space. We instead consider only the action of finite-order elements

of the group and show the associated count grows coarsely at the rate of ehR{2,
that is, with half the exponent. To obtain these quantitative estimates, we

introduce a new notion in Teichmüller geometry, called complexity length,

which reflects some aspects of the negative curvature of curve complexes and
also has applications to counting problems.
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1. Introduction

1.1. Lattice point counting. The goal of this paper is to count elements of the
mapping class group via its action on Teichmüller space. When a group G acts on
a metric space X by isometries, counting the number of orbit or “lattice” points in
metric balls of increasing radius gives a measure of growth in the group as reflected
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in the geometry of X. For example, the number of lattice points Zn in a large metric
ball in Euclidean space Rn is approximately the volume of the ball. Relatedly, in
his Ph.D. dissertation, Margulis [Mar] considered the case of a compact negatively
curved Riemannian manifold M and showed that for the isometric action of the
fundamental group π1pMq on the universal cover ĂM , the number of lattice points
in a ball of radius R is asymptotic to a constant times ehR, where h ą 0 is the
topological entropy of the geodesic flow.

This paper concerns a refinement of this classical lattice point counting problem
in the setting of Teichmüller geometry. Fix a connected, orientable surface S of
genus g with p punctures such that the ξpSq “ 3g´ 3` p, termed its complexity, is
positive. We consider the mapping class group ModpSq “ Homeo`pSq{Homeo0pSq
of isotopy classes of orientation-preserving homeomorphisms of S, which acts iso-
metrically and properly discontinuously on the Teichmüller space T pSq of marked
hyperbolic metrics on S equipped with the Teichmüller metric dT pSq.

The geometric and dynamical theory of Teichmüller space bears striking parallels
to that of negatively curved Riemannian manifolds. Motivated by this, Athreya,
Bufetov, Eskin, and Mirzakhani [ABEM] drew on ideas from Margulis [Mar] to
solve the analogous lattice point counting problem. For x, y P T pSq, let us write sx
for the finite cardinality of the stabilizer of x in ModpSq and

Λpx, y,Rq “
 

φ P ModpSq | dT pSqpφpxq, yq ď R
(

for the set of mapping classes that translate x to within distance R of y. The
cardinality |Λpx, y,Rq| then equals sx times the number of orbit points ModpSq ¨ x
in the ball of radius R centered at y. Their result may then be stated as:

Theorem 1.1 (Athreya–Bufetov–Eskin–Mirzakhani [ABEM]). There is a constant
λ ą 0 such that for all x, y P T pSq one has |Λpx, y,Rq| „ λsxe

hSR, where hS “
2ξpSq “ 6g´6`2p is the entropy of the Teichmüller geodesic flow, and the notation
fpRq „ gpRq means that fpRq{gpRq Ñ 1 as RÑ8.

While this completely answers the lattice point counting problem for the full
mapping class group, one might further refine it by considering the growth of certain
naturally distinguished subgroups or subsets. This is related to the question of
determining what a “typical” element of ModpSq looks like.

The famous Nielsen–Thurston classification [Thu] states that every element of
the mapping class group is either finite-order, reducible, or pseudo-Anosov (see
Definition 3.6). Accordingly, we let

Λfopx, y,Rq, Λredpx, y,Rq, and ΛpApx, y,Rq

denote the subsets of Λpx, y,Rq consisting of finite-order, reducible, and pseudo-
Anosov elements, respectively. Building on [ABEM], Maher [Mah1, Mah2] has used
ideas from random walks to show that typical mapping classes are pseudo-Anosov
in the sense that |ΛpApx, y,Rq| „ |Λpx, y,Rq|. In particular, this shows that the
proportion of finite-order and reducible lattice points tends to zero as RÑ8, but
it does not give any indication of the rate of convergence.

The purpose of this paper is to give quantitative estimates for the number of
finite order mapping classes by counting their lattice points. We show:
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Theorem 1.2. For any δ ą 0 and pair of points x, y P T pSq, there are constants
K1,K2, R0 such that for all R ě R0 one has

K1e
hS
2 R

ď |Λfopx, y,Rq| ď K2e
p
hS
2 `δqR.

We remark that the exponents for the upper and lower bound do not quite
coincide because of the δ in the exponent for the upper bound; we do not know if
the δ can be removed. Nonetheless our main theorem shows that the growth rate
of finite order elements is exponential with exponent essentially one half that of the
entire group. In future work, we will use the techniques developed in this paper to
additionally show the number |Λredpx, y,Rq| of reducible elements grows coarsely
at the rate of ephS´1qR, with exponent one less than for the pseudo-Anosovs.

1.2. Heuristics and hazards. Let us describe a naive picture illustrating why one
might expect the finite-order elements to grow at half the exponential rate of the
whole group. The first observation is that there are only finitely many conjugacy
classes of finite-order elements; thus it suffices to count each conjugacy class rφ0s

separately. Since the points x, y may be adjusted at the cost of increasing the
constants K1,K2, we might as well assume x “ y is a fixed point x0 for a given
finite-order element φ0. Now, the result of [ABEM] (Theorem 1.1) says there are
approximately ehSR{2 mapping classes f P ModpSq so that dT pSqpx0, fpx0qq ď R{2.

Further, each of these produces a conjugate φf “ fφ0f
´1 for which the translate

fpx0q is a fixed point. The triangle inequality thus implies this finite-order element
satisfies dT pSqpx0, φf px0qq ď R.

This observation suffices for the lower bound in Theorem 1.2, provided the assign-
ment f ÞÑ φf is uniformly finite-to-one, as is the case when φ0 has finite centralizer.
This argument is carried out in detail in §13.1, where we prove the lower bound by
constructing explicit examples.

For the upper bound, a hope might be that all (or at least most) elements
φ P rφ0s satisfying dT pSqpx0, φpx0qq ď R arise in this manner as fφ0f

´1 for some
element f with dT pSqpx0, fpx0qq ď R{2. While this is, of course, too naive, the
thrust of our argument is that the hope does hold in some moral sense, albeit in a
rather complicated way involving an alternative understanding of distance.

The given element φ P rφ0s can be expressed as a conjugate φ “ fφ0f
´1 in

possibly many ways, and choosing a conjugator f roughly corresponds to identify-
ing a fixed point fpx0q of φ. The hope thus translates into finding a fixed point
xφ with dT pSqpx0, xφq ď R{2. This, however, need not be possible: In §2 we pro-
vide an example of a finite-order φ0 such that for every conjugate φ P rφ0s with
dT pSqpx0, φpx0qq ď R, the closest fixed point xφ satisfies the dual properties that:
1) up to additive error we have dT pSqpx0, xφq ě R, and 2) the geodesic from x0 to
xφ passes through the Teichmüller space T pV q of some subsurface V in such a way
that the geodesic from xφ on to φpx0q “backtracks” through the same Teichmüller
space T pV q, undoing the progress made in going from x0 to xφ.

The reasons why such backtracking is problematic are perhaps too technical to
elaborate upon in this introduction. Suffice it to say that the theory of subsurface
projections developed in [MM1, Raf1] shows that Teichmüller geodesics are gov-
erned by how they move through “thin regions” where the boundary curves BV of
subsurfaces V become short. These regions behave like metric products, in which
the Teichmüller space T pV q of the surface is one factor [Min], and are the main
source of non-negative curvature and many headaches in T pSq.



4 DOWDALL AND MASUR

These two issues—that the closest fixed point may be too far away and that the
piecewise geodesic path from x0 to the fixed point and on to φpx0q may backtrack in
subsurfaces—are the main obstacles. Our proof of the upper bound roughly divides
into two separate parts overcoming these issues. The first part (§5–6) constructs
good fixed points xφ that minimize backtracking and branch points aφ, bφ that
help mitigate it. The second, and much more elaborate, part (§7–12) ultimately
shows, provided backtracking is controlled, that while the Teichmüller distance
dT pSqpx0, xφq may be much larger than R{2, there is a more apt measure of length
that is on the order of R{2. Developing the theory of this length is major component
of the paper, which introduces new ideas and techniques to Teichmüller theory that
we hope may be of independent interest and lead to other applications.

1.3. A new complexity length for Teichmüller space. The impetus for our
construction is the need to count points in a way that incorporates how geodesics
move through Teichmüller spaces of subsurfaces.

For the purposes of counting, it is helpful to discretize T pSq by considering a net
N pSq; this is a c–separated subset whose 2c balls cover T pSq, for some constant c
(see §3.10). Eskin and Mirzakhani introduced nets in [EM] and showed there is a
uniform constant C0 such that a ball or radius R about any thick point x P T pSq
contains at most C0e

hSR net points. When the thickness condition is removed and
arbitrary centers are considered, they show that for any δ ą 0 there is some Cδ
such that all balls of radius R contain at most Cδe

phS`δqR net points. This is one
explanation of where the δ comes from in our main theorem.

The key observation is as follows: If one fixes a thick center point x and moves
distance R to a net point y by only moving in the Teichmüller space T pV q of
a subsurface and not moving in the complement, then Minsky’s product regions
theorem [Min] says this behaves like a Teichmüller geodesic in T pV q and hence
[EM] implies there should only be C0e

hV R such net points y. That is, imposing a
restriction that the geodesic passes through Teichmüller spaces of subsurfaces cuts
down on the number of net points that can be reached in distance R.

Our complexity length Lpx, yq (Definition 11.1) is designed to implement this
observation in a rigorous way that accounts for the fact that geodesics can move
through disjoint subsurfaces simultaneously. Although the construction is compli-
cated, the rough idea is to take all the subsurfaces Z for which the curve complex
projection (§3.11) dZpx, yq is large, determined by a parameter C, and partition
them by picking out a distinguished subfamily Ω, called a witness family (see §7),
with the property that each such Z is minimally contained in a unique element
V of Ω. This family comes with additional combinatorial structure (a suborder-
ing ; Definition 7.14) that allows one to take the curve complex data from all these
subsurfaces Z contributing to V and reassemble it, via the concept of consistency
from [BKMM], into a pair of points pxΩ

V , py
Ω
V P T pV q in the Teichmüller space of V

with the property that dZppx
Ω
V , py

Ω
V q and dZpx, yq coarsely agree (up to only additive

error) for each Z. The complexity length is then defined as

Lpx, yq “
ÿ

V PΩ

hV dT pV qppx
Ω
V , py

Ω
V q.

Since the distances are weighted by the exponents hV used for counting, and since
the pairs pxΩ

V , py
Ω
V encode the data of the original points, we are able to prove the

following analog of Eskin and Mirzakhani’s [EM] net point counting result:
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Theorem 1.3 (c.f. Theorem 12.1). For any sufficiently large parameter C, there ex-
ists k P N such that each x P T pSq has at most krker net points y within complexity
length r ą 0. That is: #

 

y P N pΣq | Lpx, yq ď r
(

ď krker.

As explained in Remark 8.9, our complexity length is not dissimilar to Rafi’s
[Raf1] Distance Formula (Theorem 3.33), which roughly says the Teichmüller dis-
tance dT pSqpx, yq is comparable, with multiplicative and additive error, to the sum
of all large curve complex projections dZpx, yq. In fact, one finds that Lpx, yq and
dT pSqpx, yq also agree up to bounded multiplicative and additive error, since they
both coarsely agree with the sum in the distance formula! However, there are two
key differences between these perspectives:

The first is that the distance formula concerns all subsurfaces with large pro-
jection. The sum may therefore have arbitrarily many terms, and this ultimately
contributes to a multiplicative error. But we cannot afford multiplicative error,
since the distance R appears in the exponent in our main theorem and the whole
point is to calculate the exponent. Throughout the construction we must therefore
be careful to utilize witness families Ω of uniformly bounded cardinality, so that our
sum has boundedly many terms and the various additive errors do not accumulate
into a multiplicative error. By arranging things with great care, we are able to
relate complexity length to Teichmüller distance with only additive error.

The second is that we sum over Teichmüller, rather than curve complex, dis-
tances, which facilitates the above application to counting. Nevertheless, we are
are still able to tap into the hyperbolic geometry of curve complexes in the following
sense. Let us say a triple pa, b, cq in T pSq is θ–aligned if for every subsurface Z the
three pairwise curve complex projections satisfy the reverse triangle inequality:

dZpa, bq ` dZpb, cq ď dZpa, cq ` θ.

Since the curve complex CpZq is hyperbolic, this is equivalent to saying the pro-
jection of b to CpZq lies near the geodesic joining the projections of a and c. Be-
cause of the multiplicative error and arbitrary length of the sum, this inequality
in each term of the distance formula does not translate into a reverse triangle in-
equality for Teichmüller distance: There are θ–aligned triples pa, b, cq for which
dT pSqpa, bq ` dT pSqpb, cq ´ dT pSqpa, cq is arbitrarily large. Complexity length, how-
ever, does satisfy such a reverse triangle inequality. This requires the triple pa, b, cq,
or more generally tuple px0, . . . , xnq, to be strongly θ–aligned (Definition 3.21),
which adds a condition on the lengths of curves at b so that its projection to the
Teichmüller space T pAq of each annuls A lies near the geodesic joining the projec-
tions of a and b. We then have the following key result:

Theorem 1.4 (c.f. Theorem 11.2). For any n ě 1 and sufficiently large parameter
C, there exists K such every strongly C–aligned n-tuple px0, . . . , xnq satisfies

Lpx0, x1q ` ¨ ¨ ¨ ` Lpxn´1, xnq ď
´

hS `
n

C

¯

dT pSqpx0, xnq `K.

In particular Lpx, yq ď K ` phS `
1
C qdT pSqpx, yq for any x, y P T pSq.

1.4. Summary of proof. Theorems 1.3 and 1.4 are the key features that enable
complexity length to overcome the first main issue described in §1.2, namely of the
closest fixed point being too far away. Roughly, the argument is as follows: If we
were able to find a fixed point xφ for φ P rφ0s so that the triple px0, xφ, φpx0qq were
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strongly aligned, then Theorem 1.4 would imply

Lpx0, xφq ` Lpxφ, φpx0qq ď phS `
2
C qdT pSqpx0, φpx0qq `K ď phS ` δqR`K,

provided C is chosen sufficiently large. By symmetry, the two terms on the left are
equal and thus each at most phS ` δqR{2 `K. Theorem 1.3 thus implies that for
large R there are at most ephS`2δqR{2 such fixed points xφ. Since the multiplicity
of the assignment φ ÞÑ xφ is bounded by the uniform finiteness of the stabilizer of
xφ, this gives the desired upper bound on |Λfopx0, x0, Rq|.

Complexity length thus enables the heuristic argument of §1.2 to work regardless
of the distance to the closest fixed point, provided px0, xφ, φpx0qq is strongly aligned.
While this last condition need not hold, we circumvent it by utilizing a sort of
barycenter for the triple px0, xφ, φpx0qq. In fact, for subtle technical considerations
we construct a pair aφ, bφ of points so that px0, aφ, bφ, φpx0qq is strongly aligned.
We then count the number of such pairs aφ, bφ by the argument above, and carry
out a reconstruction argument (Theorem 6.1) to show any pair arises as aφ, bφ for at
most polynomially (in Rq many elements φ P rφ0s satisfying dT pSqpx0, φpx0qq ď R.
Together, these ingredients yield the upper bound on |Λfopx0, x0, Rq|.

1.5. Questions. There are several natural questions prompted by this work. The
most obvious is whether the δ in the upper bound of Theorem 1.2 can be removed.
It arises from various technical considerations that manifest in the additive n

C term
in Theorem 1.4. This is the result of a phenomenon that we term “badness” (§10)
having to do with the fact that the witness family Ω may have pairs of nested
subsurfaces V1 Ă V2 with hV1

` hV2
ą hS for which the distances dT pViqppx

Ω
Vi
, pyΩ
Vi
q

appearing in complexity length correspond to a region during which the main Te-
ichmüller geodesic rx0, xns is simultaneously moving through the Teichmüller spaces
T pV1q and T pV2q. Our construction endeavors to minimizes badness (§10.1), but
it would be nice to find a solution eliminating it entirely. Even if the n

C term from
Theorem 1.4 could be removed, there are still two polynomial factors, coming from
Theorems 1.3 and 6.1, that enlarge the upper bound but are currently absorbed
into the eδR factor in the statement of Theorem 1.2.

A related question is whether complexity length itself satisfies a reverse triangle
inequality Lpa, bq ` Lpb, cq ď Lpa, cq ` K for strongly aligned triples, rather than
the hybrid formulation concerning both L and dT pSq in Theorem 1.4. While this
may likely be the case, proving such a statement appears to be quite difficult.

A third question concerns the fact that our main theorem only provides coarse
bounds with multiplicative error, rather than precise asymptotics as in Theo-
rem 1.1). One reason Theorem 1.2 is so difficult is because it concerns intrinsi-
cally nongeneric phenomenon. In contrast to [ABEM, Mah1], where dynamics and
ergodic theory are the main tools, our lattice points arise with vanishingly small
probability that is undetectable by these tools. We must instead rely on coarse geo-
metric arguments that lead to coarser bounds. Calculating the precise asymptotic
growth of |Λfopx, y,Rq| will require completely different techniques.

Finally, as indicated in §1.2, we prove Theorem 1.2 by counting each conjugacy
class rφ0s of finite order elements separately, and one might wonder whether other
conjugacy classes exhibit similar behavior. That is, for any element ψ P ModpSq
and points x, y P T pSq one may consider the growth of the set

Λψpx, y,Rq “
 

ψ1 P rψs | dT pSqpψ
1pxq, yq ď R

(

.
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Recent work of Han [Han1, Han2] shows that for every Dehn twist ψ, as well as most
multitwists and most pseudo-Anosovs, the quantity |Λψpx, y,Rq| grows coarsely like

ehSR{2. In light of this and Theorem 1.2, we propose the following:

Question 1.5. For any nontrivial element ψ P ModpSq and points x, y P T pSq, do
there exist K1,K2 ą 0 such that K1e

hSR{2 ď |Λψpx, y,Rq| ď K2e
hSR{2 for all large

R? Furthermore, does |Λψpx, y,Rq| {e
hSR{2 converge as RÑ8 and, if so, to what?

Just as Theorem 1.1 parallels Margulis’s result [Mar] that the fundamental group
π1pMq of a compact negatively curved manifold grows at the rate of ehR, a positive
answer to Question 1.5 would parallel work of Parkkonen–Paulin [PP] showing that
each nontrivial conjugacy class in π1pM) essentially grows at the rate of ehR{2.

1.6. Outline. The paper is organized as follows. In §2 we provide an example
of a finite-order element φ0 whose conjugates all have closest fixed points that
are both far away from x0 and exhibit backtracking. In §3 we collect the needed
background material, surveying many of the ideas in the subject of the mapping
class group, Teichmüller geometry, and the curve graph of a surface. Section 4
proves preliminary technical results that are needed in the sequel. This includes
bounds on antichains that are used repeatedly in the construction of complexity
length to control the size of witness families; an explanation of how alignment can
be promoted to strong alignment, and an application of Gromov hyperbolicity of
curve complexes to construct branch points with various properties.

The proof of the upper bound begins in §5, where we construct a good fixed point
xφ for each conjugate φ P rφ0s along with a pair of branch points aφ, bφ for which
the tuple px0, aφ, bφ, φpx0qq is strongly aligned. The key properties enjoyed by these
points are collected in Proposition 5.5. Next, in §6, for each possible pair a, b, we
count the number of conjugates φ with dT pSqpx0, φpx0qq ď R whose branch points
aφ, bφ are a, b. This count turns out to be polynomial in R; this is Theorem 6.1,
the main result of the first part of the paper.

The second part of the paper, spanning §§7–12, is devoted to developing the
theory of complexity length. In §7 we introduce the notion of witness families Ω
with additional structures (wideness, insulation, subordering, and completeness)
that will be needed in our constructions. Section 8 then defines the complexity
LpΩq of a witness family, associated to a strongly aligned tuple px0, . . . , xnq, by

constructing resolution points pxi
Ω
V in the Teichmüller spaces T pV q of each sub-

surface V P Ω. Section 9 then bounds each summand hV dT pV qpzxi´1
Ω
V , pxi

Ω
V q of

complexity length in terms of the Lebesgue measure of a certain contribution set
AΩ
V along the main Teichmüller geodesic rx0, xns. This is perhaps the most intri-

cate part of the argument and is accomplished by judicious use of Minsky’s product
regions (Theorem 3.11). Section 10 then introduces the notion of badness, which
can lead to complexity length being strictly larger than hSdT pSqpx0, xnq, and ex-
plains an iterative procedure for refining witness families and minimizing badness.
It is here where we specify the various parameters of the definition and construct
(in Proposition 10.13) witness families that simultaneously have controlled badness
and uniformly bounded cardinality. In §11 we then define the complexity length
Lpx0, . . . , xnq of a strongly aligned tuple as an infimum of complexities LpΩq of wit-
ness families satisfying certain properties. This culminates in Theorem 11.2 (c.f. 1.4
above) proving the key properties that complexity length satisfies a reverse triangle
inequality and is bounded in terms if Teichmüller distance. Finally, in §12, we come
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back to the application of counting and bound, in Theorem 12.1 (c.f. 1.3 above)
the number of net points within a given complexity length of x.

The proof of the main Theorem 1.2 is finally given in §13. The lower bound is
handled by constructing an explicit example. At this point, with all the tools ready,
the argument for the upper bound is not too difficult and roughly follows the sketch
in §1.4 above. However, there are additional complications involving thin annuli
and a resulting savings in complexity length that is needed to avoid overcounting
the number of pairs aφ, bφ of branch points.
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2. Example

We begin with the example promised in the introduction of a finite order mapping
class φ0 with fixed point at some x0, a conjugate φ “ w ˝φ0 ˝w

´1 with closest fixed
point wpx0q such that

‚ up to additive error dT pSqpx0, φpx0qq “ dT pSqpx0, wpx0qq.
‚ there is backtracking in the Teichmüller space of a subsurface

Let S be genus 7 surface cut into 7 disjoint 1-holed tori Σ1, . . . ,Σ7 and a 7 holed
sphere Z. The map φ0 is of order 7, rotating the tori sending Σi to Σi`1 (Σ7 to
Σ1), and fixes Z. Via the rotation we may identify points in T pΣiq and T pΣi`1q.
These are copies of the hyperbolic plane H2 with the hyperbolic metric. Let f be a
Anosov map on Σ1, Σ3, Σ5 and Σ7. For positive integers j ď n ď m set w “ f pnq

on Σ1, w “ f pmq on Σ3, w “ f p´mq on Σ5 and w “ f pjq on Σ7. Set w to be the
identity on Σ2YΣ4YΣ6YZ. Then let φ “ w ˝φ0 ˝w

´1. With the identification of
each T pΣiq with the hyperbolic plane H2 we assume f is of the form z Ñ λz on the
copies of H2 corresponding to T pΣ1q, T pΣ3q, T pΣ5q, T pΣ7q. Thus the imaginary
axis is fixed by w. We may also choose the fixed point x0 so that the lengths of the
curves αi “ BΣi are moderate and i is the corresponding point in H2. Let µi the
corresponding markings in Σi.

By the Minsky product formula [Min] it is easy to check that up to additive
constants independent of j, n,m

dT pSqpx0, wpx0qq “ dT pSqpx0, φpx0qq “ m log λ.

We now sketch the argument that any other fixed point u of φ, up to additive
constant, satisfies dT pSqpu, x0q ě m log λ. Let νi the Bers marking at u projected

to Σi. Since φpuq “ u we have ν4 “ f p´mqpν3q, ν5 “ f p´mqpν4q, where again
the rotation allows us to identify markings in different Σi. Thus ν3 “ f p2mqpν5q.
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This implies that the projection of u to the curve complex on Σ3 and Σ5 differ by
2m log λ and so by the triangle inequality at least one of the two projections differs
from the projection of x0 by at least log λ. Without loss of generality assume it is
Σ3. There must be interval an interval I (called an active interval in this paper)
along ru, x0s where the boundary loop α3 has length at most ε0 and outside I the
projections to the curve complex of Σ3 only changes by an additive constant. This
means that along I, we can consider all the points to lie in H2ˆT pSzΣ3q. Again by
[Min] we have up to an additive constant |I| ě m log λ. Therefore up to an additive
constant the distance between u and x0 must be at least m log λ and so wpx0q is
the closest fixed point up to additive error.

Next we note that in the curve complex of Σ1, that in going from x0 to wpx0q we
travel distance n log λ and then from wpx0q to φpx0q we backtrack distance j log λ.
We remark that the fixed point wpx0q will be called a good fixed point since there
is not backtracking in some subsurface. In general we will find a good fixed point
for any finite order φ. A second observation is that if we let y be a point with the
same markings as wpx0q except in Σ1 where we set the marking to agree with that
of φpx0q, then the three points x0, y, φpx0q are aligned as moving from x0 to y and
then to φpx0q there is no backtracking in any domain. Another major goal will
be to produce such points in general which we call good branch points. We will
then do two major counts. In the first, given a good branch point, we will count
the number of maps that determine the same branch point. The second count will
be to determine the number of possible branch points. This is where we introduce
complexity functions.

3. Background

Throughout, the term surface will indicate an oriented surface Σ homeomorphic
to a closed surface minus a (possibly empty) finite set of points. The missing points
are called punctures and are in bijective correspondence with the ends of Σ. We
write Sg,p for the connected genus g ě 0 surface with p ě 0 punctures, and define
its complexity to be ξpSg,pq :“ 3g ´ 3 ` p. In general, the complexity of a surface
Σ is the sum ξpΣq :“

ř

i ξpΣiq over the connected components Σi of Σ.
An annulus is a connected surface Σ of complexity ´1 (i.e., Σ “ S0,2). Annuli

are exceptional in several respects, and must be handled with care throughout our
discussion.

The entropy of a connected surface Σ is defined to be hΣ :“ 2 |ξpΣq| provided that
ξpΣq ě ´1 and is defined to be zero otherwise, so that spheres, tori, once-punctured
spheres, and thrice-punctured spheres have entropy equal to 0, and annuli have
entropy 2. As for complexity, the entropy of a disconnected surface Σ is defined as
the sum hΣ “

ř

i hΣi of the entropies of its connected components Σi.

Convention 3.1. For the duration of this paper, we henceforth fix a connected
surface S with ξpSq ą 0.

Notation 3.2. We use the notation A `
ă B or B `

ą A to mean that there is a
universal constant c, depending only on the topology of S, such that A ď B ` c.
The notation A `— B means that A `

ă B and A `
ą B both hold. We instead use the

notation `
ăx, `ąx or `—x to indicate that the implied constant c depends only on S

and the quantity x.
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3.1. Curves. The term “curve” will always refer to an isotopy class of essential
simple closed curves. More precisely, a curve in a non-annular surface Σ is (the
orientation-reversing-and-isotopy class of) an embedding S1 Ñ Σ of the circle that
is neither nullhomotopic nor homotopic into an end of Σ. A curve in an annulus is
rather (the isotopy class of) an embedding of S1 whose complement consists of two
annuli. Notice that each annulus Y has a unique curve; we call this the core of the
annulus and denote it by BY . The set of curves in Σ will be denoted by ΓpΣq.

The intersection number of a pair of curves α, β P ΓpΣq is the minimum ipα, βq
of the quantity

ˇ

ˇapS1q X bpS1q
ˇ

ˇ over all representative embeddings a, b : S1 Ñ Σ.
The curves α, β are disjoint, written α K β, if they admit disjoint representatives,
that is, if ipα, βq “ 0. Otherwise the curves cut each other and we write α&β. A
curve system on Σ is a nonempty set of pairwise disjoint curves in Σ; being a set of
curves, note that the elements of a curve system are necessarily distinct and thus
nonisotopic. Curve systems α and β cut each other, denoted α&β, if α0&β0 for
some α0 P α and β0 P β (that is, if their union is not a curve system). Otherwise
the curve systems are disjoint and we write α K β.

3.2. Subsurfaces. Following [BKMM, §2.1], an (essential) subsurface of Σ is a
subset Y Ă Σ that is itself a surface and has the following structure:

‚ Y is a union of (not necessarily all) complementary components of a (pos-
sibly empty) embedding C : p\ki“1S1q Ñ Σ whose components C1, . . . , Ck
each define curves in Σ. The components of CXY are then pairwise disjoint
or isotopic curves in Σ and so determine a curve system BY on Σ; these are
the boundary curves of Y .

‚ No two components of Y are isotopic (equivalently, no two annuli compo-
nents are isotopic).

‚ No component of Y is a thrice-punctured sphere.

Subsurfaces of Σ are identified when they are isotopic in Σ. We reserve the term
domain for a connected subsurface of Σ. Note that Σ is itself a subsurface of Σ and
has trivial boundary BΣ “ H

Given a subsurface Y of Σ, the inclusion induces an injection ΓpY q ãÑ ΓpΣq that
allows us to identify ΓpY q with the set of curves in Σ that are essential in Y . Note
that a curve of BY lies in ΓpY q Ă ΓpΣq if and only if it is the core of an annulus
component of Y . For any subsurface Y of S we use the notation ΓpY q “ BY YΓpY q
for the set of curves that are essential in Y or homotopic to a boundary component.

On the set of subsurfaces of Σ, define a relation Z Ă Y to mean ΓpZq Ă ΓpY q as
subsets of ΓpΣq. In this case, one may adjust Z by an isotopy so that it is a bona
fide subsurface of Y . The relation Ă may thus be safely read as “is an (essential)
subsurface of,” and we accordingly use the notation Y Ă Σ to mean that Y is a
subsurface of Σ. We also use Z Ĺ Y to mean Z Ă Y and Z ‰ Y .

Lemma 3.3 (Behrstock–Kleiner–Minsky–Mosher [BKMM, Lemma 2.1]). The set
of subsurfaces of Σ (including H) is a lattice with partial order Ă and meet/join
operations (termed “essential union/intersection”) denoted by \ and [:

‚ Subsurfaces Z and Y are isotopic if and only if ΓpZq “ ΓpY q.
‚ Y \ Z is the unique Ă–minimal W so that Y Ă W and Z Ă W ,
‚ Y [ Z is the unique Ă–maximal W so that W Ă Y and W Ă Z.

3.3. Cutting. We extend the binary relation & to the set of all curve systems and
subsurfaces of Σ as follows: We have already defined α&β when α, β are curves
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or curve systems on Σ. A curve system α is said to be disjoint from a subsurface
Y Ă Σ, denoted by α K Y , if their isotopy classes have disjoint representatives;
otherwise they are said to cut and we write α&Y .

Two subsurfaces Y and Z of Σ are said to be disjoint, denoted Y K Z, if they
have disjoint representatives. They are nested if Y Ă Z or Z Ă Y . Otherwise,
Y and Z are said to cut (or intersect transversely), denoted Y&Z. Observe that
Y&Z is equivalent to Y&BZ and Z&BY . We say that Y and Z intersect if they
are not disjoint. We will also need a relative form of cutting:

Definition 3.4 (Relative cutting). Given a subsurface V Ă Σ, we say that two
subsurfaces Y1, Y2 of Σ cut relative to V if Y 11&Y 12 for all subsurfaces Y 1i Ă Yi that
intersect V . In this case we write Y1&V Y2.

Remark 3.5. Note that Y1&V Y2 vacuously holds if either Y1 or Y2 is disjoint from
V ; thus Y1&V Y2 does not necessarily imply Y1&Y2. However, if Y1 and Y2 both
intersect V , then Y1&V Y2 ùñ Y1&Y2.

Relative cutting has the useful property, over cutting, in that it passes to sub-
surfaces. That is, Y&V Z implies Y 1&V Z

1 for all subsurfaces Y 1 Ă Y and Z 1 Ă Z.

3.4. Mapping class group. The mapping class group of a surface Σ is the quotient

ModpΣq :“ Homeo`pΣq{Homeo0pΣq

of the group of orientation-preserving homeomorphisms of Σ by the normal sub-
group Homeo0pΣq of homeomorphisms that are isotopic to the identity. Observe
that ModpΣq acts on the sets of curves, curve systems, and subsurfaces of Σ pre-
serving the relations &, K, and Ă. We write Dα P ModpΣq for the (left) Dehn twist
about a curve α in Σ; see [FM, Chapter 3].

Definition/Theorem 3.6 (Nielsen–Thurston Classification [Thu]). Let Σ be a
connected surface with χpΣq ă 0. An element φ P ModpΣq is said to be:

‚ finite-order if there is an integer k ě 1 such that φk is trivial in ModpΣq,
‚ reducible if it is not finite-order and there is a curve system C on Σ such

that φpCq “ C; any such C is called a reducing system for φ, A canonical
reducing system has the property that for some integer k, for each comple-
mentary component of C, φk fixes the component and is either the identity
or pseudo-Anosov.

‚ pseudo-Anosov if the set tφkpαq | k P Zu is infinite for each curve α in Σ.

Moreover, each φ P ModpΣq falls into exactly one of these categories.

3.5. Curve complexes. Let Σ be a connected surface with ξpΣq ě 1. The curve
graph (or curve complex ) of Σ is the simplicial graph CpΣq with vertex set C0pΣq “
ΓpΣq and edges defined as follows: If ξpΣq ě 2, then two curves α, β in Σ are joined
by an edge in CpΣq if they are disjoint. If ξpΣq “ 1, then Σ “ S1,1 or Σ “ S0,4 and
two curves α, β are joined by an edge if they intersect once in the case of S1,1 or
twice in the case of S0,4; in either case CpΣq is the well-known Farey graph.

The curve graph CpY q of an annular subsurface Y Ă Σ is defined following
[MM1]: The annular cover AY Ñ Σ to which Y lifts homeomorphically admits a

natural compactification ĀY coming from the usual compactification of Σ̃ ” H2.
An (essential) arc in ĀY is an isotopy class, rel endpoints, of properly embedded
arcs whose endpoints lie on opposite components of BĀY . Two such arcs are said to
be disjoint if they have representatives with disjoint interiors. We may then define



12 DOWDALL AND MASUR

the curve graph of Y to be the simplicial graph CpY q whose vertices are arcs in ĀY
with edges joining every pair of disjoint arcs.

Every curve graph is given the path metric in which each edge has length 1.
A geodesic metric space is said to be δ–hyperbolic if each side of every geodesic
triangle is contained in the δ–neighborhood of the union of the other two sides.

Theorem 3.7 (Masur–Minsky [MM2]). There is an integer δ ą 0 depending only
on S such that the curve graph CpΣq of every domain Σ Ă S is δ–hyperbolic.

The number δ may in fact be chosen independently of S [Aou, Bow, CRS, HPW];
e.g., δ “ 17 works. We emphasize that by our convention δ is an integer.

3.6. Markings. Following [MM1], a (clean) marking µ on a connected surface Σ
with ξpΣq “ k ě 1 is a pair µ “ pbasepµq, tq, where basepµq “ pβ1, . . . , βkq is a
maximal curve system on Σ (a so-called pants decomposition) and t “ pt1, . . . , tkq
is a tuple of curves on Σ such that βi and ti intersect minimally (either once or
twice) subject to the condition that βi and tj are disjoint for all i ‰ j. A marking
on an annulus Y Ă Σ is a pair µ “ pbasepµq, tq where basepµq “ β is the core of
Y and t P C0pY q is a vertex of the curve complex of Y . The curve system basepµq
and tuple t are respectively called the base and transversal of the marking µ. (Our
definition of marking is more restrictive than that used in [MM1] but shall suffice
for our purposes).

A marking on a disconnected subsurface Σ Ă S is simply a choice of marking for
each component of Σ. The set of markings on a surface Σ will be denoted M0pΣq.

3.7. Subsurface projections. Let Σ be a connected surface with ξpΣq ě 1 and
Y Ă Σ a domain. We define a map πY : C0pΣq Ñ PpC0pY qq, with codomain the set
of subsets of C0pY q, as follows. For concreteness, fix a complete hyperbolic metric
on Σ and realize Y such that BY is a union of geodesics. First suppose ξpY q ě 1 so
that Y is not an annulus. If α P C0pΣq “ ΓpΣq is disjoint from Y we set πY pαq “ H
and if α P ΓpY q we set πY pαq “ α. Otherwise α&Y and the geodesic representative
of α intersects Y in a collection of proper arcs. For each component ai of α X Y ,
the boundary of a regular neighborhood of ai Y BY in Y determines one or two
curves in Y ; the set of all curves obtained in this way is πY pαq. For an annulus Y
and a curve α P C0pΣq “ ΓpΣq, we still set πY pαq “ H when α is disjoint from Y .
Otherwise α&Y and we let πY pαq be the set of lifts of α that give essential arcs in
the compactified annular cover ĀY .

We extend the domain of πY to sets of curves by adopting the convention that
πY pAq “

Ť

αPA πY pαq for any set A of curves on Σ. We also define the notation

diamY pAq :“ diamCpY qpπY pAqq and dY pA,Bq :“ diamCpY qpπY pAq Y πY pBqq

for any sets or elements A and B in C0pΣq. It is easy to see (e.g., [MM1, Lemma
2.3]) that diamY pαq ď 2 for any curve system α on Σ. In particular, if α0, . . . , αn
is any path in CpΣq such that αi&Y for all i, then dY pα0, αnq ď 2n. There is a
much stronger result for geodesics in CpΣq:

Theorem 3.8 (Bounded geodesic image [MM1]). There is a constant Q ą 0 sat-
isfying the following: Let Σ be a domain in S with ξpΣq ě 1 and let Y Ĺ Σ be a
proper subdomain. If g is a geodesic segment, ray, or biinfinite line in CpΣq with
πY pαq ‰ H for all α P g, then diamY pgq ď Q.
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If µ “ pbasepµq, tq is a marking in Σ, we define πY pµq “ πY pbasepµqq Y πY ptq;
that is, πY pµq is obtained by viewing µ as the set tβ1, . . . , βk, t1, . . . , tku of base
curves and transversals and projecting all these to Y . For any marking µ PM0pΣq
and domain Y Ă Σ, one easily finds that

πY pµq ‰ H with diamY pµq “ diamCpY qpπY pµqq ď 6.

We shall need the following elementary facts.

Lemma 3.9 ([BKMM, Lemma 2.12]). There is a constant k so that the following
holds for any nested domains V Ă W Ă Σ in S. Let α denote any curve system
or marking on Σ. Then πV pαq is nonempty if and only if πV pπW pαqq is nonempty
and, moreover, diamCpV q

`

πV pαq Y πV pπW pαqq
˘

ď k.

Lemma 3.10. For each C ě 1 there exists C 1 ě 1 with the following property. If
µ PM0pΣq is a marking of a subsurface Σ in S and α is a curve system on Σ with
dV pµ, αq ď C for all domains V Ă Σ, then there is a marking µ1 P M0pΣq with
α Ă basepµ1q and dV pµ

1, µq ď C 1 for all domains V Ă Σ.

Proof. We follow the procedure, on page 798, of [BKMM, §2.2] to project the
marking µ of Σ to a new marking µ1 of Σ. Since πV pµq and πV pαq coarsely agree
for all domains V Ă Σ, we may choose the components of α to be base curves in
this inductive construction. This amounts to the following: For each curve a P α,
let A denote the annulus with BA “ a and choose a transversal ta P πApµq Ă CpAq.
Then for each complementary component V of Σzα, project µ to a marking µV of
V as in [BKMM, §2.2]. These fit together to give a full marking (in the sense of
[BKMM]) µ1 of Σ that we may straighten to be a (clean) marking in our sense. The
uniform bound on dV pµ, µ

1q is then a consequence of [BKMM, Lemma 2.10] �

3.8. Teichmüller space. The Teichmüller space T pΣq of a connected surface Σ
with ξpΣq ě 1 is the set of isotopy classes of marked hyperbolic structures on Σ.
More precisely, T pΣq is the space of pairs pX, fq, where f : Σ Ñ X is a homeo-
morphism between Σ and a complete, finite-area hyperbolic surface X, up to the
equivalence relation pX, fq „ pY, gq if there is an isometry Ψ: X Ñ Y with Ψ ˝ f
isotopic to g. Observe that the mapping class group ModpΣq naturally acts on
T pΣq by changing the marking: φ ¨ pX, fq “ pX, f ˝ φ´1q. This action is properly
discontinuous and isometric with respect to the Teichmüller metric given by

dT pΣqppX, fq, pY, gqq :“ inf
 

1
2 log QCpΦq | Φ „ g ˝ f´1

(

,

where the infimum is over all quasiconformal maps homotopic to g˝f´1 and QCpΦq
denotes the maximum dilatation of Φ. It is known that dT pΣq is a complete metric

on T pΣq and that the induced topology is homeomorphic to RhΣ (e.g., see [FM]).
Moreover, T pΣq is a unique geodesic metric space: every pair of points x, y P T pΣq
are connected by a unique geodesic segment, which we denote by rx, ys.

For a point x P T pΣq and curve α P ΓpΣq, we write `xpαq for the length of the
geodesic representative of α in the hyperbolic metric x. For any given ε ą 0, the
ε–thick part of Teichmüller space is defined to be the subset

TεpΣq “ tx P T pΣq | `xpαq ě ε for all α P ΓpΣqu

consisting of those metrics for which all curves have length at least ε. It is known
that ModpΣq acts cocompactly on TεpΣq for every ε ą 0.
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The conformal structure of an annulus is determined its modulus, and the usual
notion of the Teichmüller space of the annulus is accordingly R`. In this paper we
also include curve complex distance and so formally define the Teichmüller space
of an annulus A Ă S with core α “ BA to be the upper half plane

T pAq “ T pαq “ H2 “ tx` iy | y ą 0u

equipped with the hyperbolic metric ds2 “
dx2

`dy2

4y2 of curvature ´4. In this defi-

nition 1{y represents the hyperbolic length of the core BA and x measures twisting
about A; so the thick part in this case is TεpAq “ tx ` iy | 0 ă y ď 1

ε u. However,
due to their role in Minsky’s product regions (Theorem 3.11 below), for annuli we
are more concerned about the thin part T ďε pαq “ tx` iy | y ě 1

ε u. Note that T pAq
is homeomorphic to RhA “ R2.

3.9. Product regions. Given any ε ą 0 and curve system α on Σ, write Hε,αpΣq “
tx P T pΣq | `xpaq ă ε, @a P αu for the set of hyperbolic metrics in which the curves
in α are all shorter than ε. Let PpΣ|αq denote the product space

PpΣ|αq :“
ź

VĂΣzα

T pV q ˆ
ź

aPα

T pαq,

where the first product is over the connected components V of Σzα, equipped with
the sup metric dPpΣ|αq “ maxV,atdT pV q, dT pαqu.

By using Fenchel–Nielsen coordinates adapted to the curve system α (see [Min]),
one obtains a natural homeomorphism

Φα : T pΣq Ñ PpΣ|αq

under which the T pαq component of Φαpwq is ταpwq `
i

`αpwq
, where τα is the FN

twist parameter of w for the curve α. The following foundational result of Minsky
says that, for sufficiently small ε, the restriction of Φα to Hε,αpΣq distorts distances
by a bounded additive amount:

Theorem 3.11 (Minsky, [Min]). There exists D0 ě 0, depending only on S, such
that the following holds for all sufficiently small ε ą 0: For any domain Σ Ă S and
any curve system α on Σ, all pairs of points x, y P Hε,αpΣq satisfy

ˇ

ˇdT pΣqpx, yq ´ dPpΣ|αqpΦαpxq,Φαpyqq
ˇ

ˇ ď D0.

Moreover for every component V Ă Σzα and essential curve γ P ΓpV q, the length
of γ in x and in the T pV q–component of Φαpxq have ratio in rD´1

0 ,D0s.

3.10. Volumes and nets. The Teichmüller space T pΣq admits a holonomy mea-
sure m defined as the push forward of the Masur–Veech measure on the space of
unit area quadratic differentials; see [Mas, Vee]. Let us write Ballpx, rq Ă T pΣq for
the metric ball of radius r ą 0 centered at x P T pΣq. We shall need two facts about
m. Firstly, Eskin and Mirzakhani [EM, Lemma 3.1] have shown that there exists a
constant c such all balls of radius c ď r ď 2c have volume mpBallpx, rqq uniformly
bounded above and below. Secondly, Athreya, Bufetov, Eskin and Mirzakhani have
calculated the volumes of large balls centered in the thick part:

Theorem 3.12 ( [ABEM, Theorem 1.3]). There exists a constant C1 ě 1 such
that for every domain Σ Ă S, thick point x P Tε0pΣq and radius r ą 0, one has
mpBallpx, rqq ď C1e

hΣr.
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Note that these results in [ABEM] and [EM] are stated for closed surfaces of genus
at least 2, but the proofs in fact hold for surfaces with ξpΣq ě 2 (see, e.g., [Mah1]).
When ξpΣq “ ˘1 and thus hΣ “ 2, for Σ “ S0,4 or S1,1 or S0,2, the Teichmüller
space T pΣq is isometric to the hyperbolic plane with constant curvature ´4 and
these calculations are elementary. For annuli A Ă S we will primarily be concerned
with thin regions T ďε pAq consisting of points x with `xpBAq ď ε, whose volumes
may be estimated as follows:

Lemma 3.13. There exists C2 so that if A is an annulus and x P Tε0pAq is thick,
then the ε “ e4cε0 thin region within r ą 0 of x has m

`

Ballpx, rqXT ďe4cε0pAq
˘

ď C2e
r.

Proof. We use the disc model of hyperbolic space with the metric |dz|2

4p1´|z|2q2 .

We take the horocycle |z ´ 1
2 | “

1
2 centered at 1

2 of Euclidean radius 1
2 . Its

interior is the horoball H. We want to bound the area of the intersection of H with
the disc of Euclidean radius r centered at 0.

For sake of simplicity assume r is of the form r “ 1 ´ 1
2n for some large n. For

a fixed j0 and j “ j0, . . . , n´ 1 consider the points in the horoball intersected with
annulus Aj “ tz : 1´ 1

2j ď |z| ď 1´ 1
2j`1 We want to find the set of θ such that

|
1

2
`

1

2
eiθ| ě 1´

1

2j
.

We find

cos θ ě 2p1´ 1{2jq2 ´ 1 ě 1´ 1{2j´1.

For j large enough, |θ| ď 1
2 and so

θ2 ď 1{p2j´4q

or θ ď θ0 “
1

2j{2´2 . Using the origin as base point we write the point 1{2 ` 1{2eiθ

as seiφ and we see that

|φ| ď |θ| ď θ0.

The total area of the annulus Aj is of order 2j and so the bound |φ| ď θ0 implies

the area of Aj X H is at most C2j{2 for a constant C, and so is bounded by a
multiple of the square root of the total area of Aj . We sum over j ď n to get the
desired inequality. �

Definition 3.14 (Fixed Nets). For each domain Σ Ă S, we henceforth fix a pc, 2cq–
net N pΣq in T pΣq; this is a subset such that the c–balls centered on N pΣq are all
disjoint but the 2c–balls cover T pΣq. We additionally write Nε0pΣq “ N pΣqXTε0pΣq
for the set of thick net points and, for annuli A Ă S, write Nď

ε pAq “ N pAqXT ďε pAq
for the set of thin net pints.

Since c and 2c balls have uniformly controlled volumes, one finds, as in equation
(17) of [EM], that the volume of any ball is comparable to the number of net points
it contains. Thus Theorem 3.12 and Lemma 3.13 immediately give

Lemma 3.15. There is a uniform constant P ą 0 such that for any domain Σ Ă S,
thick point x P Tε0pΣq, and radius r ą 0, one has # |N pΣq X Ballpx, rq| ď PehΣr.

Furthermore, if Σ is an annulus, then #
ˇ

ˇ

ˇ
Nď

e4cε0
pAq X Ballpx, rq

ˇ

ˇ

ˇ
ď Per.
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3.11. Projecting to curve complexes. Every point x P T pΣq admits a Bers
marking µx P M0pΣq constructed as follows: Greedily choose a shortest pants
decomposition basepµxq on the hyperbolic surface x, then choose a shortest-possible
transversal ti for each base curve βi P basepµxq. There is a universal Bers constant
L0 ą 0, depending only on S, such that any Bers marking µx of any point x P T pΣq
in the Teichmüller space of any non-annular domain Σ Ă S satisfies `xpβq ď L0 for
all β P basepµxq. For an annulus, the Bers marking of a point x P T pAq is just a
pair pBA, tq where the transversal t P C0pAq records the horizontal component of x.

Given any domain V Ă Σ, the projection of x P T pΣq to CpV q is defined as

πV pxq :“
ď

 

πV pµxq | µx is a Bers marking on x
(

.

The projection distance in V of a pair of points x, y P T pΣq is then defined to be

dV px, yq :“ diamCpV q
`

πV pxq Y πV pyq
˘

.

This projection is coarsely Lipschitz for nonannuli: There is a constant L ě 1,
depending only on S, such that for all domains Σ Ă S and x, y P T pΣq one has

(3.16) dV px, yq ď LdT pΣqpx, yq ` L for all nonannular subdomains V Ă Σ.

We caution that πA : T pΣq Ñ CpAq is not coarsely Lipschitz for annuli A Ĺ Σ, as
is evident from the Distance Formula Theorem 3.33. However, we at least have the
following coarse continuity for every domain V Ă Σ and point x P T pΣq:

(3.17) diamCpV q

˜

ď

yPU

πV pyq

¸

ď L for some neighborhood U Ă T pΣq of x

In particular diamCpV qpπV pxqq “ dV px, xq ď L for any x P T pΣq, meaning that all
potential Bers markings on x have coarsely the same projection to CpV q. For any
set F of curves on Σ and any x P T pΣq, we also adopt the notation

dV pF, xq “ diamCpV q
`

πV pF q Y πV pxq
˘

.

3.12. Alignment. We say that points in Teichmüller space are aligned if they do
not backtrack when projected to curve complexes of subdomains. More precisely,
for θ ě 0 an n–tuple px0, . . . , xnq in T pΣq is said to be θ–aligned in a domain V Ă Σ
if for all indices 0 ď i ď j ď k ď n we have

dV pxi, xjq ` dV pxj , xkq ď dV pxi, xkq ` θ.

The tuple is moreover θ–aligned if it is θ–aligned in every subdomain of Σ. This
leads to the following easy consequence of hyperbolicity:

Lemma 3.18. For any domains V Ă Σ Ă S, if a triple px, z, yq in T pΣq is θ–
aligned in V , then πV pzq is contained in the pθ{2 ` 4δ ` Lq–neighborhood of any
CpV q–geodesic connecting πV pxq to πV pyq.

Proof. Let g “ pγ0, . . . , γkq be any geodesic with γ0 P πV pxq and γk P πV pyq. We
will show that πV pzq lies within θ1 “ θ{2 ` 4δ ` L of g. To this end, choose any
β P πV pzq and let α be a closest point to β along g. If dV pβ, αq ď 2δ we are done.
Otherwise, we may choose α1 on a geodesic from β to α with dV pα

1, αq “ 2δ. Since
α1 is not within δ of g, applying δ–hyperbolicity to the geodesic triangles 4pγ0, α, βq
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and 4pγk, α, βq ensures there are points βx and βy on geodesics rγ0, βs and rβ, γks,
respectively, such that dV pβx, α

1q, dV pβy, α
1q ď δ. Whence

dV px, yq ď 2L` dV pγ0, γkq

ď 2L` dV pγ0, βxq ` dV pβx, βyq ` dV pβy, γkq

ď 2L` dV pγ0, βq ` dV pβ, γkq ` 2δ ´ pdV pβx, βq ` dV pβ, βyqq

ď 2L` dV px, yq ` θ ` 2δ ´ pdV pβx, βq ` dV pβ, βyqq

by (3.16) and alignment. Since dV pβ, αq ď dV pβ, βxq ` 3δ and similarly for βy, the
claimed inequality now follows:

2dV pβ, αq ď dV pβx, βq ` dV pβ, βyq ` 6δ ď p2L` θ ` 2δq ` 6δ “ 2θ1. �

The following result of Rafi says that Teichmüller geodesics are uniformly aligned:

Theorem 3.19 (Rafi, [Raf2]). There is a constant B such that for any domain
Σ Ă S with ξpΣq ě 1, any consecutive triple of points a, b, c along a geodesic in
T pΣq is B–aligned, that is: dV pa, bq ` dV pb, cq ď dV pa, cq ` B for all V Ă Σ.

This easily implies that Teichmüller geodesics project to within bounded Haus-
dorff distance of geodesics in curve graphs:

Lemma 3.20. For any subdomains V Ă Σ Ă S and any geodesic rx, ys Ă T pΣq,
the projection πV prx, ysq Ă CpV q has Hausdorff distance at most B` 8δ ` 3L from
any geodesic g connecting πV pxq to πV pyq.

Proof. Let g “ pγ0, . . . , γkq be any geodesic in CpV q with γ0 P πV pxq and γk P πV pyq.
Theorem 3.19 and Lemma 3.18 show that πV prx, ysq lies within B0 “ B{2` 4δ ` L
of g. Conversely, the fact that πV is coarsely continuous (3.17) implies there is a
subset tp0, p1, . . . , pnu Ă πV prx, ysq with p0 “ γ0, pn “ γk and dV ppi, pi`1q ď 2L
for all 0 ď i ă n. Let qi P g be a closest point to pi. Then dV ppi, qiq ď B0 by the
above, and hence dV pqi, qi`1q ď 2B0`2L. Since q0 “ γ0 and qn “ γk, we see that g
lies in the B0 ` L neighborhood of the set tq0, . . . , qnu. The claim now follows. �

3.13. Strong alignment. While our above notion of alignment (§3.12) only con-
cerns curve complex data, the construction of complexity length in §8.2 will require
aligned tuples in which lengths of short curves vary roughly convexly. The precise
condition is as follows:

Definition 3.21. We say that a tuple px0, . . . , xnq in T pΣq is strongly θ–aligned,
where θ ě 1, if it is θ–aligned and for every domain V Ă Σ, there exist points
xV0 , . . . , x

V
n appearing in order along rx0, xns such that for each 0 ď i ď n we have

‚ dV pxi, x
V
i q ď θ, and

‚ if V is an annulus then mintε0, `xipBV qu{mintε0, `xVi pBV qu lies in r 1θ , θs.

This is in fact only a minor strengthening of alignment, in that any aligned tuple
may be superficially modified to achieve it:

Lemma 4.7. For any θ ě 1 there exists θ1 ě θ with the following property: For any
θ–aligned tuple px0, . . . , xnq in T pΣq, there is a strongly θ1–aligned tuple py0, . . . , ynq
such that x0 “ y0, xn “ yn, and such that for all 0 ď i ď n we have

dV pxi, yiq
`
ăθ 0 for every domain V Ă Σ.
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While the proof is not difficult, the formulation of strong alignment—involving
separate tuples for all domain—leads to a somewhat technical and involved argu-
ment. As such, we defer the proof until §4.2 below. We note that, along the way,
Corollary 4.4 will show the first bulleted condition of strong alignment is redundant,
in that any aligned tuple automatically satisfies it for some larger constant.

3.14. Active intervals. The subsurface projection values dV px, yq are closely re-
lated to the manner in which the Teichmüller geodesic rx, ys interacts with product
regions. This relationship is conveyed by the following results of Rafi.

In [Raf1, Theorem 3.1], Rafi proves that for all sufficiently small ε ą 0 there
exists ε ą ε1 ą 0 such that for any curve α P ΓpΣq, every Teichmüller geodesic rx, ys
in T pΣq has a possibly empty subinterval I such that `zpαq ď ε for all z P I and
`zpαq ě ε1 for all z P rx, yszI. For a subsurface Y Ă Σ, intersecting the intervals for
the components of BY (see [Raf1, Corollary 3.4]) produces a corresponding interval
for Y that enjoys the following property:

Theorem 3.22 (Rafi [Raf1, Proposition 3.7]). For each sufficiently small ε ą 0,
there exist constants 0 ă ε1 ă ε and Mε ě 0 such that for any domain Σ Ă S, any
Teichmüller geodesic rx, ys P T pΣq, and any subdomain V Ă Σ, there is a (possibly

empty) connected interval ĨεV Ă rx, ys such that

(1) `zpαq ă ε for all z P ĨεV and all α P BV .

(2) for all z P rx, yszĨεV , some component β of BV has `zpβq ě ε1.

(3) dV pw, zq ď Mε for every subinterval rw, zs Ă rx, ys with rw, zs X ĨεV “ H.

Remark 3.23. Notice that item (1) implies ĨεV lies in the thin region Hε,BV pΣq
and hence, via Minsky’s theorem, projects to a path in the T pV q–factor of the
product region PpΣ|BV q. In a later result [Raf2, Theorem 5.3], Rafi produces for
non-annular domains a related interval, defined in terms of expanding annuli, that
satisfies (1) and (3) and additionally fellow travels a unit-speed Teichmüller geodesic
in T pV q. Since we will not need this latter property and must deal with annuli, we
work the more rudimentary intervals from [Raf1] instead.

Recall that there is a universal Margulis constant such that on any complete
hyperbolic surface, every pair of curves with hyperbolic length at most this value are
disjoint. Hence, for small ε, if domains U, V Ă Σ have BV&BU then Theorem 3.22(1)

implies ĨεV and ĨεU are disjoint. But it may be that ĨεV and ĨεU overlap when V&U .

To correct this, we will use a slight variation of ĨεV .

Definition 3.24 (Uniform constants). Fix once and for all a constant ε0 ą 0
smaller than the Margulis constant and small enough for Theorems 3.11 and 3.22
to hold for ε0. Let ε10 ă ε0 be the companion constant in Theorem 3.22. Define

M “ 100pMε0 ` δ ` L` B` Q` k` Kq,

where Mε0 is from Theorem 3.22, δ is from Theorem 3.7, L is from (3.16), B is
from Theorem 3.19, Q is from the Bounded Geodesic Image Theorem 3.8, k is from
Lemma 3.9, and K is from the consistency Theorem 3.37 below.

Definition 3.25 (Active Intervals). For any geodesic rx, ys Ă T pΣq, where Σ Ă S
is a domain, define the active interval of a subdomain V Ă Σ along rx, ys as follows:

‚ For V is annular, IV “ Ĩε0V .
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‚ For V nonannular, IV is the intersection of all subintervals ra, bs Ă rx, ys
satisfying both dV px, aq ď 2Mε0 ` 5L and dV pb, yq ď 2Mε0 ` 5L.

Our active intervals have the following properties:

Lemma 3.26. Let rx, ys be a geodesic in T pΣq and V Ă Σ a subdomain. Then

(1) If dV px, yq ě M, then IV is a nonempty, nondegenerate subinterval of rx, ys.

(2) IV Ă Ĩε0V , and for all z P IV we have that `zpαq ă ε0 for each component
α of BV and that BV Ă basepµzq for every Bers marking µz of z.

(3) If rw, zs is a subinterval of rx, yszIV , then dV pw, zq ă M{3.
(4) If Y Ă Σ is a domain with Y&V , then IY XIV “ H. Moreover, if IY ‰ H,

then IU X IV “ H for every subdomain U Ă Y with BU&V .

Proof. For (1), if V is annular then IV “ Ĩε0V by definition; hence IV is an interval,
and it being either empty or degenerate would imply dV px, yq ď 2Mε0 ` L ă M by
Theorem 3.22(3) and (3.17). Next suppose V is nonannular. Since dV px, yq ě M
and projections change coarsely continuously (3.17), we may find a nondegenerate
subinterval rw, zs Ă rx, ys so that the distances dV px,wq and dV pz, yq are both
within L of 2Mε0`7L`B. Then every point u P rw, zs satisfies dV px, uq ě dV px,wq´
B ą 2Mε0 ` 6L by Theorem 3.19, and similarly dV pu, yq ě 2Mε0 ` 6L. Thus each
subinterval ra, bs in Definition 3.25 contains rw, zs. As an intersection of intervals
that contain rw, zs, IV is thus indeed a nonempty, nondegenerate interval.

For (2), first observe that IV Ă Ĩε0V ; for annuli this is by definition, and for

nonannuli it holds since Theorem 3.22(3) implies Ĩε0V qualifies as one of the intervals
in the intersection defining IV . Now for z P IV , Theorem 3.22(1) ensures that
`zpαq ă ε0 for each component α of BV . If µz is a Bers marking at z whose pants
decomposition basepµzq fails to contain some component α P BV , then we must
have α&β for some β P basepµzq. Since basepµzq is a shortest pants decomposition
on z, it must be that `zpβq ď `zpαq ă ε0. Since ε0 is smaller than the Margulis
constant, this forces α and β to be disjoint; a contradiction. Therefore (2) holds.

For annuli, (3) follows immediately from Theorem 3.22(3). If V is not an annulus,
then IV X rw, zs “ H can only occur if rw, zs is disjoint from some interval ra, bs,
as in Definition 3.25, of the intersection yielding IV . Without loss of generality, we
may assume rw, zs is contained in rx, as. Two applications of Theorem 3.19 then
give dV pw, zq ď dV px, aq ` 2B ď Mε0 ` 5L` 2B ă M{3.

For (4), we may assume IY is nonempty, for else the needed conclusions are
immediate or vacuous. Thus it suffices to prove the ‘moreover’ conclusion for a
subdomain U Ă Y satisfying BU&V (which could possibly be nested in V ), since
then we may apply it with Y “ U . If V is an annulus, then the assumption BU&V
reduces to BU&BV . Similarly if Y is an annulus then necessarily U “ Y and now
Y&V reduces to BU&BV . In either case, the needed conclusion IUXIV “ H would
follow from (2) and ε0 being chosen smaller than the Margulis constant. Thus we
may assume that neither V nor Y is an annulus. Finally, we also assume IU is
nonempty, for else there is nothing to prove, and write it as IU “ ra, bs.

Since BV projects to Y and all points of Ĩε0V contain BV in their Bers marking
by Theorem 3.22(1) (and the choice of ε0), we observe that

dY pw, zq ď 2L for all w, z P Ĩε0V .

If Ĩε0Y were contained in Ĩε0V , then Theorem 3.22(3), together with (3.17), would
evidently imply dY px, yq ď 2Mε0 ` 4L. Thus rx, xs and ry, ys would both be valid
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intervals in the intersection from Definition 3.25 that, since Y is nonannular, defines
IY . As IY is nonempty, Ĩε0Y therefore cannot be contained in Ĩε0V . Hence we may

choose some point w P Ĩε0Y outside of Ĩε0V and suppose, without loss of generality,

that w lies in the same component of rx, yszĨε0V as x, so that dV px,wq ď Mε0 by

Theorem 3.22(3). The points b P IU and w P Ĩε0Y now respectively contain BY and
BU in their Bers markings by (2) and Theorem 3.22(1). Since BU , BY are disjoint
and both project to V , it follows using the triangle inequality that

dV px, bq ď dV px,wq ` dV pw, bq ď Mε0 ` dV pBY, BUq ď Mε0 ` 2.

By coarse continuity (3.17), this shows that dV px, b
1q ď Mε0 ` 3L for some point b1

immediately to the right of b. This means rb1, ys qualifies for the intersection defining
IV (recall that we have supposed V is nonannular). Therefore IV is contained in
rb1, ys and hence disjoint from ra, bs “ IY , as desired. �

This also leads to the following analog of the bounded geodesic image theorem,
which roughly says that if Teichmüller points x, y have a large projection to a
domain Z, then in any other domain V that cuts BZ, the CpV q–geodesic from
πV pxq to πV pyq must pass near BZ:

Corollary 3.27 (BGIT for Teichmüller space). For all domains Z, V Ă Σ Ă S, if
Z has a nonempty active interval IZ along a geodesic rx, ys in T pΣq, so in particular
if dZpx, yq ě M, then dV px, BZq ` dV pBZ, yq ď dV px, yq `M{3.

Proof. This is contentless when BZ is disjoint from V , since in that case dV pw, BZq “
diamCpV qpπV pwqq ď L for all w. By Lemma 3.26(2), the hypothesis provides a point
z P IZ Ă rx, ys whose Bers markings all contains BZ. Hence Theorem 3.19 gives

dV px, BZq ` dV pBZ, yq ď dV px, zq ` dV pz, yq ď dV px, yq ` B ă dV px, yq `M{3. �

3.15. Time order. The fact that cutting domains necessarily have disjoint active
intervals (Lemma 3.26(4)) allows for the following definition:

Definition 3.28 (Time order). Given a Teichmüller geodesic rx, ys in T pΣq and a
pair U, V Ă Σ of domains, we write U ă̈ V or V ą̈ U , and say U is time-ordered
before V along rx, ys, to mean that U&V and that IU and IV are nonempty along
rx, ys with IU occurring before IV when traveling from x to y.

While the geodesic in question and its orientation are both omitted from our
notation, we will strive to make these clear from context so that the meaning of U ă̈
V is unambiguous in our discussion of time-ordering. The following characterization
of time-ordering follows immediately from Lemma 3.26:

Lemma 3.29 (Characterizing time-order). Let rx, ys be a geodesic in T pΣq and let
U, V Ă Σ be subdomains with U&V . Then U ă̈ V implies dV px, BUq ă M{3 and
dU py, BV q ă M{3. Accordingly, if dU px, yq and dV px, yq are at least M, then the
following are equivalent:
(1) U ă̈ V , (2) dV px, BUq ă M{3, (4) dU px, BV q ě 2M{3,

(3) dV pBU, yq ě 2M{3, (5) dU pBV, yq ă M{3.

Corollary 3.30 (Triple time-order and relative cutting). If U, V,W Ă Σ are sub-
domains with dV px, yq ě M and U ă̈ V ă̈W along rx, ys, then U&VW .
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Proof. If the conclusion fails, we may find subdomains U 1 Ă U and W 1 Ă W that
intersect V but have BU 1 K BW 1. In particular, πV pBU

1q ‰ H ‰ πV pBW
1q. Since

every curve system projects to a set of diameter at most 2 in CpV q, this implies

dV pBU, BW q ď dV pBU, BU
1q ` dV pBU

1, BW 1q ` dV pBW
1, BW q ď 6 ă M{3.

With Lemma 3.29, this gives dV px, yq ď 2M{3` 6, contradicting dV px, yq ě M. �

Corollary 3.31 (Time-ordering subsurfaces). Suppose U, V Ă Σ satisfy U ă̈ V
along a geodesic rx, ys in T pΣq. If dV px, yq ě M, then U 1 ă̈ V for all U 1 Ă U with
IU 1 ‰ H and U 1&V . Symmetrically, dU px, yq ě M implies U ă̈ V 1 for all V 1 Ă V
with IV 1 ‰ H and U&V 1.

Proof. Let U 1 Ă U be a subdomain with IU 1 ‰ H and U 1&V . If U ă̈ V ă̈ U 1, then
Corollary 3.30 would give U&V U

1. As this is clearly false, we must have U 1 ă̈ V as
claimed. The proof for V 1 Ă V is similar. �

We also have the following basic observation.

Lemma 3.32. Let U, V Ĺ Y Ă Σ be domains with U ă̈ V along a geodesic
rx, ys P T pΣq. Then dY px, BUq ď dY px, BV q `M{3.

Proof. Choose points u P IU and v P IV and note these respectively contain BU ,
BV in their Bers markings. Since U ă̈ V forces u P rx, vs, Theorem 3.19 implies

dY px, BUq ď dY px, uq ď dY px, vq ` B ď dY px, BV q ` L` B. �

3.16. Distance estimates. The following distance formula of Rafi [Raf1] says that
Teichmüller distance can be estimated, with controlled multiplicative and additive
error, in terms of projection distances:

Theorem 3.33 (Distance Formula; [Raf1]). For each sufficiently large threshold
T , there exists K ě 1 such that for every domain Σ Ă S and all x, y P Tε0pΣq,

1

K
dT pΣqpx, yq ´K ď

ÿ

V

rdV px, yqsT `
ÿ

A

rlog dApx, yqsT ď KdT pΣqpx, yq `K,

where the first summand is over all non-annular domains V Ă Σ, the second over
all annular domains A Ă S, and where rwsT equals 0 when w ă T and otherwise
equals w. Moreover, the rightmost inequality above holds for all x, y P T pΣq.

While the full strength of this result is generally off limits to us, as we cannot
afford multiplicative errors, we do make frequent use of the following consequence:

(3.34) x, y P Tε0pΣq, dV px, yq ď T for all domains V Ă S ùñ dT pΣqpx, yq
`
ăT 0.

In the case that x and y have short curves but are close in all curve complexes, we
have the following variation based on Minsky’s product regions.

Lemma 3.35. Given w, z P T pΣq, let σw (resp. σz) denote the multicurve con-
sisting of all curves on w (resp. z) of length at most ε0. Partition σw “ δw \ γw
into those curves δw that are disjoint from σz and those γw that cut σz. Partition
σz “ δz \ γz similarly. Set R “ maxtR1, R2u where

R1 “ max
αPδwYδz

1

2

ˇ

ˇ

ˇ

ˇ

log
mint`wpαq, ε0u

mint`zpαq, ε0u

ˇ

ˇ

ˇ

ˇ

, R2 “ max
αPγw,βPγz

α&β

1

2

ˆ

log
ε0

`wpαq
` log

ε0
`zpβq

˙

.

(1) If k ě 1 is such that 1
k ď

`wpαq
`zpαq

ď k for all α P σw Y σz, then R ď log k.
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(2) dT pΣqpw, zq
`
ą R

(3) If dV px, yq ď T for all domains V Ă Σ then dT pΣqpw, zqq
`
ăT R.

Proof. Suppose the hypothesis of (1) holds. For every α P δw Y δz we then have
mint`wpαq, ε0u ď mintk`zpαq, ε0u ď kmint`zpαq, ε0u, so that the α–term in the
max defining R1 is at most 1

2 log k. Hence R1 ď log k. Now consider α P γw and
β P γz with α&β. Since α and β cannot both be short on z, we have `zpαq ě ε0
and the hypothesis gives `wpαq ě ε0{k. Similarly `zpβq ě ε0{k. Hence R2 ď log k.

For (2), if x, y P T pΣq are two points for which `xpαq, `ypαq ď ε0, then Minsky’s
Product Regions Theorem 3.11 implies

dT pΣqpx, yq ` D0 ě
1

2

ˇ

ˇ

ˇ

ˇ

log
`xpαq

`ypαq

ˇ

ˇ

ˇ

ˇ

since Φαpxq,Φαpyq P PpΣ|αq have at least this distance in the T pαq–factor of the
product. Now let α P δw Y δz realize the max in R1. If α P σw X σz then the
above inequality implies dT pΣqpw, zq ě R1´D0. If α P σw but α R σz, then we may
choose a point y P rw, zs with `ypαq “ ε0 and apply the above to get dT pΣqpw, zq ě
dT pΣqpw, yq ě R1´D0. The symmetric reasoning applies if α P σzzσw. Now consider
any α P γw and β P γz with α&β. The geodesic rw, zs has to lengthen α to at least
ε0 before the intersecting curve β can become short; hence there are ordered points
w1, z1 along rw, zs with `w1pαq “ `z1pβq “ ε0. Now the above observation bounds
dT pΣqpw,w

1q ` D0 below by 1
2 log ε0

`wpαq
and symmetrically for dT pΣqpz

1, zq. Adding

these together and taking a max over all such α, β proves dT pΣqpw, zq ě R2 ´ 2D0.
For (3), we first claim there is a constant k so that `zpαq ď k for all α P δwzσz.

To see this, let z1 be the thick point obtained by lengthening every curve in σz to
have length ε0 (this can be done in Fenchel–Nielsen coordinates by, for example,
adjusting the vertical component of Φσz pzq in each H2 factor of the product region
PpΣ|σzq). This adjustment changes neither subsurface projections nor the lengths
of curves in δwzσz, since any such α is disjoint from and unequal to the curves in
σz whose lengths are modified in the adjustment. Do the same to build w1. Then
dV pw

1, z1q `ă T for all V so (3.34) implies dT pΣqpw
1, z1q `ăT 0. Now for α P δwzσz

we have `zpαq, `z1pαq, and `w1pαq “ ε0 coarsely agree by construction of z1 and the
fact that w1, z1 have bounded distance. Hence `zpαq is bounded, proving the claim.

By moving w and z a bounded distance, we may now assume all curves α P δwzσz
have `zpαq “ ε0 and similarly that all β P δzzσw have `wpβq “ ε0. Therefore, letting
Y be the multicurve δw Y δz, we have `wpαq, `zpαq ď ε0 for all α P Y. Hence by
Minsky’s theorem, dT pΣqpw, zq agrees up to additive error with the distance between
ΦYpwq,ΦYpzq in PpΣ|Yq “ T pΣzYqˆ

ś

Y T pαq. Since the projections dαpw, zq are
bounded, the distance in the

ś

Y T pαq factor is by definition coarsely given by R1.
We compute the distance in T pΣzYq. Using the identification of this factor with

the product PpΣzY|γwq, simultaneously lengthen all the curves in γw until they
achieve length ε0; for each α P γw this takes distance 1

2 log ε0
`wpαq

. Parameterizing

this path as xptq P PpΣ|Yq for t ą 0, let us write γtw Ă γw for the curves that
are still shorter than ε0 at time t. The same argument as in the claim above
shows that if β P γz is disjoint from γtw, then β has uniformly bounded length at
xptq. Hence as soon as β P γz becomes disjoint from γtw we may begin shortening

β until it has length `zpβq, which takes time 1
2 log

`xptqpβq

`zpβq
`
ă 1

2 log ε0
`zpβq

. In this

way we build a path of length, up to additive error, R2 from ΦYpwq to a new
point z1 so that `z1pβq “ `zpβq for all β P γz. As this procedure does not change
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subsurface projections, we see that z1,ΦYpzq P PpΣ|Yq have bounded distance in
the T pΣzYq–factor. (To see this, look in the product PpΣzY|γzq and note that for
each component V of ΣzpY Y γzq these points are thick in T pV q and hence close
by (3.34); further they are close in T pβq for β P γz by construction). Thus the
distance from ΦYpwq to ΦYpzq in the T pΣzYq–factor is equal up to additive error
to R2. �

3.17. Consistency. By “undoing” the projection maps πV , one may use curve
complex data of subsurfaces to build points in Teichmüller space. This is accom-
plished by the work of Behrstock–Kleiner–Minsky–Mosher [BKMM] on consistency.

Definition 3.36 (Consistency). Given a number θ ě 1 and a connected surface Σ,
we say that a tuple pzV q P

ś

VĂΣ CpV q is θ–consistent if the following holds for all
pairs of domains U, V Ă Σ:

(1) U&V ùñ min
 

dU pzU , BV q, dV pzV , BUq
(

ď θ, and

(2) U Ă V ùñ min
 

dU pzU , πU pzV qq, dV pzV , BUq
(

ď θ.

(Observe that if πU pzV q “ H in (2), then zV is disjoint from U and BU so that
dV pzV , BUq ď 1 ď θ is automatic).

The following result says that, up to bounded error, the consistent tuples in
ś

VĂΣ CpV q are exactly those obtained by projecting points in the Teichmüller
space T pΣq. It was proven for the case of markings as Lemmas 4.1–4.2 and Theorem
4.3 of [BKMM]. However, since every marking µ PM0pΣq may be realized as the
Bers marking of some thick point, the result holds for Teichmüller space as well:

Theorem 3.37 (Consistency and Realization [BKMM]). There is a constant K ě 1
and function C : R` Ñ R` so that the following holds for every domain Σ Ă S:

‚ For every x P T pΣq, the projection tuple pπV pxqqVĂΣ is K–consistent.
‚ Conversely, every θ–consistent tuple pzV q P

ś

VĂΣ CpV q has a realization
point z P T pΣq with dV pπV pzq, zV q ď Cpθq for all domains V Ă Σ. In fact
we may assume z P Nε0pΣq is a thick net point.

Using consistency, one can easily see that the length of a curve α P ΓpΣq at a
point x P T pΣq is related to the projection distances dV px, αq for domains V Ă Σ:

Lemma 3.38. For any non-annular domain Σ Ă S, curve α P ΓpΣq, and point
x P Tε0pΣq, if dV px, αq ď k for every domain V Ă Σ, then `xpαq

`
ăk 0.

Proof. Let Y Ă Σ be a component of Σzα. Define a tuple pzV q P
ś

VĂY CpV q by
zV “ πV pxq for each V Ă Y . This tuple pzV q is K–consistent by Theorem 3.37, and
hence is realized by a point xY P Tε0pY q. Do this for each component of Σzα, and
choose a point xα P T pαq on the horocycle y “ 1{ε0 and with twist parameter so that
παpxαq “ παpxq. These choices define a point in the product z1 P PpΣ|αq, and we let
z “ Φ´1

α pz
1q P T pΣq be the corresponding point under Minsky’s homeomorphism.

Note that z is thick by construction and has `zpαq “ ε0.
We claim dV px, zq

`
ăk 0 for every domain V Ă Σ. Indeed, if V K α then either

V is the annulus with core α or V Ă Y for some component Y of Σzα; in either
case πV pzq “ πV pxY q coarsely agrees with πV pxq by construction. If instead V&α,
then the fact that α is in every Bers marking at z implies dV pz, αq ď L. Thus
dV px, zq ď dV px, αq ` dV pα, zq ď k ` L. This proves the claim and accordingly
bounds dT pΣqpx, zq by (3.34) since x and z are thick. Since α has length ε0 at z, it
follows that `xpαq is bounded. �
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Corollary 3.39. For any k ě 1, domain Σ Ă S, and point x P Tε0pΣq, we have

#
 

Z Ă Σ | dV px, BZq ď k for all domains V Ă Σ
(

`
ăk 0

Proof. By Lemma 3.38, there is a number L such that if Z satisfies dV px, BZq ď k
for all V Ă Σ, then each component α of BZ has `xpαq ď L. On any hyperbolic
surface y, there are only finitely many curves of length at most L. Varying y over
a compact fundamental domain for the action of ModpΣq on Tε0pΣq, we obtain a
number F “ F pk, ε0q so that every point x P Tε0pΣq has at most F curves of length
at most L. Thus the number of subsurfaces Z Ă Σ whose boundary curves have
length at most L on x is bounded in terms of F . �

4. Preliminaries – antichains, strong alignment, and branch points

4.1. Antichains. If Σ is a domain in S and Ω is a collection of subdomains of Σ,
we typically write Ω for the set of topologically maximal domains in Ω (that is,
maximal with respect to the partial order Ă on Ω). Taking active intervals into
account, for each geodesic rx, ys in T pΣq we may also consider the partial order
ărx,ys on domains in Σ defined by

V ărx,ys W ðñ V Ă W and IV Ă IW along rx, ys.

We then write Ωyx for the set of domains in Ω that are maximal with respect to
ărx,ys. Since the order ărx,ys is more restrictive than Ă, we note that Ω Ă Ωyx.

For any collection Ω of domains and given integer i, we additionally write

|Ω|i “ #tV P Ω | ξpV q “ iu

for the number of domains in Ω with complexity i. The following is a variation of
Rafi and Schleimer’s bound on the cardinality of an antichain [RS, Lemma 5.1]. As
the statement we need does not follow directly from the result in [RS], we include
a proof in the same spirit as their argument.

Lemma 4.1. Consider a domain Σ Ă S and a sequence of thresholds Tj, for
j P t´1, . . . , ξpΣq ` 1u, satisfying M ď TξpΣq`1 ď TξpΣq ď ¨ ¨ ¨ ď T´1. For any
geodesic rx, ys in T pΣq and any domain W Ă Σ, the collections PpW q and PyxpW q
of topologically maximal and ărx,ys–maximal domains in the set

PpW q “ tV Ă W | dV px, yq ě TξpV qu

satisfy |PpW q|j ď |P
y
xpW q|j ď p3Tj`1q

ξpW q´j for each j P t´1, . . . , ξpΣqu.

Proof. Fix some j P t´1, . . . , ξpΣqu. It suffices to prove the bound on |PyxpW q|j .
Since PpW q contains at most one domain (namely W ) of complexity ξpW q or
greater, it is clear that |PyxpW q|j “ 0 when j ą ξpW q and that |PyxpW q|j ď 1 “

p3Tj`1q
0 when j “ ξpW q. We may therefore assume j ă ξpΣq and restrict to

domains W Ă Σ with ξpW q ą j.
Given any domain W Ă Σ, write ΩyxpW q for the set of ărx,ys–maximal domains

in the collection
ΩpW q “ tV Ă W | dV px, yq ě Tj`1u.

We claim that ΩyxpW q contains every domain of PyxpW q of complexity j. Indeed,
if V P PyxpW q has ξpV q “ j, then we must have V P ΩpW q since V Ă W and
dV px, yq ě Tj ě Tj`1 by definition of PpW q. Thus if V R ΩyxpW q, it must be
that V ărx,ys Z for some distinct Z P ΩpW q. This implies V Ĺ Z, and hence
ξpZq ě j`1 and TξpZq ď Tj`1 by monotonicity of the thresholds. Therefore, the fact
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Z P ΩpW q gives Z Ă W and dZpx, yq ě Tj`1 ě TξpZq. But this implies Z P PpW q,
contradicting the maximality of V in PpW q. This proves |PyxpW q|j ď |ΩyxpW q|j .

It thus suffices to prove |ΩyxpW q|j ď p3Tj`1q
ξpW q´j for every geodesic rx, ys and

domain W Ă Σ with ξpW q ą j.
The proof of this proceeds by induction on the complexity k “ ξpW q of the do-

main W : For each each k “ j, . . . , ξpΣq, we will prove that |ΩyxpW q|j ď p3Tj`1q
k´j

for every domain W with ξpW q ď k. We have already seen that this bound is
immediate for k “ j.

Let us therefore fix k ą j and assume that |ΩyxpZq|j ď p3Tj`1q
k´1´j whenever

ξpZq ă k. Let W Ă Σ be any domain with ξpW q ď k and choose curves α P πW pxq
and β P πW pyq realizing the distance dCpW qpα, βq “ dW px, yq. Fix also a geodesic
α “ γ0, . . . , γm “ β joining α to β in CpW q.

We claim that every domain V P ΩpW q with V ‰ W is disjoint from one of the
curves γi. This is immediate if α or β is disjoint from V . Otherwise, letting µx be a
Bers marking on x with α P πW pµxq, Lemma 3.9 implies that πV pαq Ă πV pπW pµxqq
lies within k of πV pµxq. Hence dV pα, xq ď k` 2L and similarly for dV pβ, yq. Thus

dV pα, βq ě dV px, yq ´ 2k´ 4L ě Tj`1 ě M´ 2k´ 4L ą Q

by the specification of M in Definition 3.24. We may now invoke the Bounded
Geodesic Image Theorem 3.8 to conclude πV pγiq “ H for some i, as claimed.

We moreover claim that if V P ΩyxpW q Ă ΩpW q is disjoint from γi, then

i ă 1
2Tj`1 or m´ i ă 1

2Tj`1.

Indeed, if this is not the case then necessarily dW px, yq “ m ě Tj`1. Therefore
W P ΩpW q by definition. For any point v P IV , the Bers marking µv contains BV ,
which is disjoint from γi. Hence dW pv, γiq ď L` 2 ď 3L. On the other hand

dW px, γiq ě dW pα, γiq “ i and dW py, γiq ě dW pβ, γiq “ m´ i.

As these quantities are both at least 1
2Tj`1, we therefore see that

dW px, vq, dW py, vq ě
1
2Tj`1 ´ 3L ě 1

2M´ 1
7M ą 1

3M.

But by Lemma 3.26, this is only possible if v P IW . Thus we evidently have
IV Ă IW , contradicting the ărx,ys–maximality of V in ΩpW q.

Therefore every V P ΩyxpW q satisfies V “W or else V Ă Z for some Z in the set

Z “ tZ | Z is a component of W zγi for some i with maxti,m´ iu ă 1
2Tj`1u.

Further, since ΩpZq Ă ΩpW q, every V Ă Z that is ărx,ys–maximal in ΩpW q is also
ărx,ys–maximal in ΩpZq. Thus we have

ΩyxpW q Ă
 

W
(

Y
ď

ZPZ
ΩyxpZq.

In particular, |ΩyxpW q|j ď
ř

ZPZ |Ω
y
xpZq|j ď |Z| p3Tj`1q

k´1´j ď p3Tj`1q
k´j by our

induction hypothesis and the fact that |Z| ď 4p1` 1
2Tj`1q ď 3Tj`1. This concludes

the induction and the proof of the lemma. �

4.2. Promoting alignment to strong alignment. Here we prove Lemma 4.7
and show that aligned tuples may be transformed into a strongly aligned ones by
merely adjusting the lengths of certain curves while not affecting curve complex
projections. We first show how to find, for each domain V , the ordered points xVi
along the geodesic rx0, xns required in the Definition 3.21 of strong alignment.
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Lemma 4.2. If px0, . . . , xnq is θ–aligned in T pΣq, then for each domain V Ă Σ
and 0 ď i ď n there is a point wi P rx0, xns so that dV pxi, wiq ď pθ`Mq{2. Clearly
we may take w0 “ x0 and wn “ xn.

Proof. Let g be any CpV q geodesic from πV px0q to πV pxnq. Lemmas 3.18 and 3.20
show that πV pxiq lies within θ{2` 4δ` L of g and that g lies within B` 8δ` 3L of
πV prx0, xnsq. Whence there is a point wi P rx0, xns so that dV pxi, wiq ď θ{2` B`
12δ ` 4L ă pθ `Mq{2. �

Lemma 4.3. Let px0, . . . , xnq be θ–aligned in T pΣq, let V Ă Σ be a domain, and
let w0, . . . , wn P rx0, xns be points such that dV pxi, wiq ď T for each 0 ď i ď n. If σ
is a permutation of t0, . . . , nu such that the points wσp0q, . . . , wσpnq appear in order

along rx0, xns, then dV pxi, wσpiqq ď 4T ` 3pθ`Bq
2 for each 0 ď i ď n.

Proof. Set yi “ wσpiq for each i. We fix 0 ď j ď n and bound dV pxj , yjq. By the

pigeonhole principle, we may pick some i ď j so that j ď σ´1piq. Similarly, there is
some k ě j so that σ´1pkq ď j. Thus the points wk “ yσ´1pkq, yj , and yσ´1piq “ wi
appear in order along rx0, xns. Since wk appears before wi when traveling from x0

to xn, two applications of Theorem 3.19 then give

dV px0, wkq ` 3dV pwk, wiq ` dV pwi, xnq

ď dV px0, wiq ` dV pwk, wiq ` dV pwk, xnq ` 2B

ď dV px0, xiq ` dV pxi, xkq ` dV pxk, xnq ` 4T ` 2B,

where for the last inequality we have used the assumption that dV pxi, wiq and
dV pxk, wkq are both at most T . By θ–alignment and the triangle inequality, the
right hand side above at most

dV px0, xnq ` 2θ ` 4T ` 2B

ď dV px0, wkq ` dV pwk, wiq ` dV pwi, xnq ` 2θ ` 4T ` 2B.

Subtracting the beginning and end of this string of inequalities now gives

dV pwk, wiq ď θ ` B` 2T.

On the other hand, using θ–alignment and Theorem 3.19, we have that

2dV pyj , xjq ď
`

dV pyj , wiq ` dV pwi, xiq ` dV pxi, xjq
˘

`
`

dV pyj , wkq ` dV pwk, xkq ` dV pxk, xjq
˘

ď
`

dV pwk, yjq ` dV pyj , wiq
˘

` 2T `
`

dV pxi, xjq ` dV pxj , xkq
˘

ď dV pwk, wiq ` B` 2T ` dV pxi, xkq ` θ

ď 2dV pwk, wiq ` B` 4T ` θ

Combining this with the previous inequality proves dV pyj , xjq ď 4T ` 3pθ`Bq
2 . �

Corollary 4.4. If px0, . . . , xnq is θ–aligned in T pΣq and V Ă Σ is a domain, then
there are ordered points y0, . . . , yn along rx0, xns so that dV pxi, yiq ď 4pθ `Mq.

We next determine which curves require adjusted lengths. To this end, given a
tuple px0, . . . , xnq in T pΣq, let us say an annulus A Ă Σ length-constrains xi if the
following holds for both y “ x0 and y “ xn:

dApxi, yq ě 5pθ `Mq or `ypBAq ă ε10.
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Observe that in this case A has a nonempty active interval IA “ Ĩε0A along rx0, xns
(c.f. Theorem 3.22 and Definition 3.25). Indeed, if `x0pBAq or `xnpBAq is less than
ε10 this is obvious. Otherwise dApxi, x0q, dApxi, xnq ě 5pθ `Mq so that alignment
implies dApx0, xnq ě 10M` 9θ, showing that IA is nonempty by Lemma 3.26.

Lemma 4.5. Let px0, . . . , xnq be θ–aligned. If annuli A,B Ă Σ both length con-
strain xi, then the curves BA, BB are disjoint.

Proof. By contradiction, suppose BA&BB. Since A and B both have active inter-
vals along rx0, xns, they are time-ordered and without loss of generality we may
assume A ă̈ B. Thus dApBB, xnq, dBpx0, BAq ď M{3 by Lemma 3.29. Evidently

`xnpBAq ě ε10, since xn R Ĩε0A “ IA; hence the definition of length constraining gives
dApxi, xnq ě 5pθ `Mq. Similarly dBpx0, xiq ě 5pθ `Mq. It follows that

dApxi, BBq ě dApxi, xnq ´ dApBB, xnq
dBpBA, xiq ě dBpx0, xiq ´ dBpBA, x0q

*

ě 5pθ `Mq ´M{3 ě 3M ą K.

But this contradicts Theorem 3.37. �

Lemma 4.5 implies that the core curves of the annuli that length constrain xi
form a (possibly empty) multicurve. The next lemma says this multicurve is close
to the Bers marking µxi in all subsurfaces.

Lemma 4.6. Let px0, . . . , xnq be θ–aligned. If A Ă Σ length constrains xi, then
dV pxi, BAq

`
ăθ 0 for every domain V Ă Σ.

Proof. Let V Ă Σ be arbitrary. It suffices to suppose BA projects to V , for else
dV pxi, BAq “ diamCpV qpπV pxiqq

`
ă 0. Since A has a nonempty thin interval along,

we may choose a point y P rx0, xns such that `ypBAq ă ε0. Thus BA is contained in
every Bers marking at y. If dV px0, xnq ď M, then two applications of the triangle
inequality followed by θ–alignment and Theorem 3.19 imply

2dV pBA, xiq ď 2dV py, xiq ď dV px0, yq ` dV py, xnq ` dV px0, xiq ` dV pxi, xnq

ď 2dV px0, xnq ` B` θ ď 2M` B` θ,

as desired. Hence it remains to suppose dV px0, xnq ą M, which ensures V has a
nonempty active interval IV along rx0, xns.

First suppose A&V and, by symmetry, that A ă̈ V along rx0, xns. Then evi-
dently xn R IA and so (as in Lemma 4.5) the length constraint hypothesis implies
dApxi, xnq ě 5pθ`Mq. Time order also gives dApBV, xnq ď M{3. Therefore we have
dApxi, BV q ě 5pθ`Mq´M{3 ą K. Consistency of the point xi (Theorem 3.37) now
implies the desired bound dV pxi, BAq ď K.

Otherwise we necessarily have A Ă V . Since BA P πV pwq for all w P IA, the
entire interval projects to a set of diameter at most 2L in CpV q. In particular, we
cannot have IA “ rx0, xns, as that would put us in the case dV px0, xnq ď 2L ă M
dispensed with above. By Lemma 4.2, we may choose a point z1 P rx0, xns with
dV pxi, z

1q ď θ ` M. Since IA ‰ rx0, xns and IA projects to a set of diameter at
most 2L, we may by (3.17) choose some z P rx0, xnszIA with dV pz, z

1q ď 3L. The
point z either lies before or after IA, let us suppose it is the former (the opposite
possibility being symmetric). Then Lemma 3.26 gives dApx0, zq ď M{3. This also

implies x0 R Ĩε0A “ IA (since IA connected) and hence dApxi, x0q ě 5pθ `Mq since
A length constrains xi. Combining these we find dApxi, zq ě 4pθ `Mq ą M. By
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the bounded geodesic image theorem (specifically Corollary 3.27), we now conclude
the desired bound

dV pxi, BAq ď dV pxi, zq `M{3 ď dV pxi, z
1q ` 3L`M{3 ď θ ` 2M` 3L. �

Using these results, we can now transform any aligned tuple into a strongly
aligned one by modifying the lengths of core curves of length constraining annuli.

Lemma 4.7. For any θ ě 1 there exists θ1 ě θ with the following property: For any
θ–aligned tuple px0, . . . , xnq in T pΣq, there is a strongly θ1–aligned tuple py0, . . . , ynq
in N pΣq such that x0 “ y0, xn “ yn, and such that for all 0 ď i ď n we have

dV pxi, yiq
`
ăθ 0 for every domain V Ă Σ.

Moreover, for every annulus A Ă S and 0 ă i ă n, we have `yipBAq ě ε0 unless
each y P tx0, xnu satisfies dApxi, yq ě 5pθ `Mq or `ypBAq ă ε0

1.

Proof. We may assume that θ ě M. Let A Ă Σ be any annulus. Let uA P rx0, xns be
the rightmost point satisfying dApx0, u

Aq ď 18θ and let vA P rx0, xns the leftmost
point satisfying dApv

A, xnq ď 18θ. Define a (possibly empty) subinterval JA Ă

rx0, xns as follows:

‚ If `x0
pBAq, `xnpBAq ă ε10, set JA “ rx0, xns.

‚ If `x0
pBAq ă ε10 and `xnpBAq ě ε10, set JA “ rx0, v

As

‚ If `x0
pBAq ě ε10 and `xnpBAq ă ε10, set JA “ ru

A, xns.
‚ If `x0pBAq, `xnpBAq ě ε10, then set JA “ ru

A, vAs provided that uA occurs
before vA along rx0, xns, and otherwise set JA “ H.

It is easy to see that JA Ă IA “ Ĩε0A : This is immediate in the first case above.
In the second case, if vA “ x0 it is immediate, and if vA ‰ x0 then necessarily
dApv

A, xnq ě 18θ ´ L ą 17M showing that IA intersects rvA, xns so that indeed
rx0, v

As Ă IA. The third case is similar. In the final case, if JA ‰ H one similarly
finds that IA intersects both rx0, u

As and rvA, xns so that again JA Ă IA.
Notice that if w R JA, then either w P rx0, u

As and we necessarily have both
`x0pBAq ě ε10 and dApx0, wq ď dApx0, u

Aq ` B ď 19θ, or else w P rvA, xns and we
similarly have both `xnpBAq ě ε10 and dApw, xnq ď 19θ. On the other hand, if
w P JA (which recall is contained in IA), then for both z “ x0 and z “ xn we have

(4.8) `wpBAq ă ε0 and
”

dApz, wq ě 18θ or `zpBAq ă ε10

ı

.

Let x0 “ xA0 , x
A
1 , . . . , x

A
n “ xn be the ordered sequence of points along rx0, xns

provided by Corollary 4.4 satisfying dApxi, x
A
i q ď 8θ for each i. Next define new

points yAi as follows: If xAi P JA, then set yAi “ xAi . If instead xAi R JA, then define
yAi “ x0 provided xAi P rx0, u

As; if this fails, then necessarily xAi P rv
A, xns and

we set yAi “ xn. With these definitions, we note that x0 “ yA0 , y
A
1 , . . . , y

A
n “ xn

appear in order along rx0, xns. Furthermore, if yAi ‰ xAi , then either yAi “ x0 with
xAi P rx0, u

As or yAi “ xn with xAi P rv
A, xns. Hence the previous paragraph implies

dApx
A
i , y

A
i q ď 19θ for all 0 ď i ď n.

Claim 4.9. If yAi P JA then A length constrains xi.

Proof. If yAi P JA, then by definition yAi “ xAi and hence dApxi, y
A
i q ď 8θ. Since

(4.8) holds for w “ yAi , for both z “ x0 and z “ xn we conclude that either
dApz, xiq ě 18θ ´ 8θ ě 5pθ `Mq or `zpBAq ă ε10. Thus A length constrains xi. �
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For 0 ă i ă n, fix a Bers marking µi at xi, and let αi be the set of core
curves of annuli A Ă Σ that length constrain xi. Lemma 4.5 implies that αi is a
multicurve in Σ, and Lemma 4.6 implies that dV pµi, αiq

`
ăθ 0 for every V Ă Σ.

Lemma 3.10 therefore provides a new marking νi of Σ such that αi Ă basepνiq and
dV pµi, νiq

`
ăθ 0 for every domain V Ă Σ.

We now construct points in T pΣq by picking lengths for the curves of basepνiq.
Specifically, use Fenchel–Nielsen coordinates to build a point yi P T pΣq such that
νi is a Bers marking at yi and such that for each curve γ P basepνiq: if γ “ BA
for an annulus A Ă Σ with yAi P JA then declare `yipγq “ `yAi pBAq, and if not

then declare `yipγq “ ε0. Notice that every curve γ P basepνiq satisfies `yipγq ď ε0;
thus by the Margulis lemma, every γ R basepνiq satisfies `yipγq ě ε0. Note that
y1, . . . , yn´1 immediately satisfy the final “moreover” conclusion of the lemma since
the only potentially short curves on yi are cores of annuli that length-constrain xi.
To complete the notation, also set y0 “ x0 and yn “ xn.

Notice that every annulus A Ă Σ now satisfies

ε10
ε0
ď

mintε0, `yipBAqu

mintε0, `yAi pBAqu
ď
ε0
ε10
.

Indeed, the claim is immediate for i P t0, nu, and for 0 ă i ă n we consider two
cases: First suppose yAi R JA. Then by construction `yAi pBAq ě ε10 and regardless

of whether or not BA P basepνiq we also have `yipBAq ě ε0. Next suppose yAi P JA.
Then A constrains xi by Claim 4.9; hence BA P αi Ă basepνiq by construction and
consequently `yipBAq “ `yAi pBAq by fiat.

It remains to show the new tuple py0, . . . , ynq satisfies the conclusion of the
lemma. For every domain V Ă Σ we have

dV pxi, yiq ď dV pxi, µiq ` dV pµi, νiq ` dV pνi, yiq
`
ăθ L` 0` L

as required. Since px0, . . . , xnq is θ–aligned, this also proves py0, . . . , ynq is θ1–aligned
for some θ1 depending only on θ. Furthermore, for every annulus A Ă Σ we have

dApyi, y
A
i q ď dApyi, xiq ` dApxi, x

A
i q ` dApx

A
i , y

A
i q

`
ăθ 0` 8θ ` 19θ.

This, together with the previous paragraph, shows that, after increasing θ1 if nec-
essary, both bullets of Definition 3.21 are satisfied for annuli. Finally, Corollary 4.4
ensures the first bullet also holds for nonannuli. �

4.3. Branch points. Fix some domain Σ Ă S. For any triple of points y, x, z P
T pΣq and domain V Ă Σ, hyperbolicity of CpV q implies that geodesics from πV pxq
to πV pyq and πV pzq fellow travel for distance roughly equal to the Gromov product

(4.10) py|zqVx “
1

2
pdV px, yq ` dV px, zq ´ dV py, zqq ď mintdV px, yq, dV px, zqu.

More precisely, since πV p˚q always has diameter at most L, it is a basic exercise in
hyperbolic geometry (using, e.g. [ABC`, Proposition 2.1]) to prove the following:

Lemma 4.11. If γy and γz are any CpV q–geodesics from πV pxq to πV pyq and
πV pzq, then each p P γy with dV pπV pxq, pq ď py|zq

V
x ` c lies within 8δ ` 4L ` c of

γz. �

Hyperbolicity of CpV q (again, see [ABC`]) additionally implies that

(4.12) py|zqVx ě mintpy|wqVx , pw|zq
V
x u ´ 5δ ´ 3L for all x, y, z, w P T pΣq, V Ă Σ.
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These observations allows us to perform the following construction to any collection
of geodesics in T pΣq with a common endpoint:

Lemma 4.13. Consider any points x, y1, . . . , yn P T pΣq. For each domain V Ă S,
there is a “branch point” ζV P CpV q so that ζV lies within 8pδ ` Lq of any geodesic
from πV pxq to πV pyiq. Further, if pyj |ykq

V
x ď minl,mpyl|ymq

V
x ` c, then ζV lies

within 24pδ ` Lq ` c of any geodesic from πV pyjq to πV pykq.

Proof. For β, γ, µ P CpV q let us write 2pβ|γqµ “ dV pµ, βq`dV pµ, γq´dV pβ, γq. Fix
curves α P πV pxq and αi P πV pyiq for each i “ 1, . . . n. Now let G “ minpyl|ymq

V
x

and fix indices l,m achieving this minimum. Let ζV P CpV q be the point on a
geodesic from α to αl with

dpα, ζV q “ pαl|αmqα ď pyl|ymq
V
x ` L “ G` L.

Therefore dV px, ζV q ´ 2L ď G is smaller than any Gromov product pyl|yiq
V
x and so

Lemma 4.11 implies ζV lies within 8δ ` 6L of any geodesic from πV pxq to πV pyiq.
Now suppose pyj |ykq

V
x ď G` c and, by the above, pick a point β on a geodesic

from α to αj with dV pζV , βq ď 8δ ` 6L. Then

dV px, βq ` 8δ ` 7L ě dV pα, ζV q “ pαl|αmqα ě G´ 2L ě pyj |ykq
V
x ´ 2L´ c.

Since dV px, yjq “ pyj |ykq
V
x `px|ykq

V
yj and β lies on a geodesic from πV pxq to πV pyjq,

the above implies that

dV pyj , βq ď dV px, yjq ´ dV px, βq ` 2L ď px|ykq
V
yj ` 8δ ` 11L` c.

Thus Lemma 4.11 implies β lies within 16δ ` 15L` c of any geodesic from πV pyjq
to πV pykq. Since dV pζV , βq ď 8δ ` 6L, the claim follows. �

The next step is to show that the tuple pζV q of branch points is consistent:

Lemma 4.14. The tuple pζV q P
ś

VĂΣ CpV q is 7M–consistent.

Proof. Let us call V “large” if dV px, yiq ě M for all i “ 1, . . . , n and call V “small”
otherwise. Note that dV px, ζV q ď 2M whenever V is small; this is because ζV lies
within 8pδ`Lq ď M of any geodesic from πV pxq to any πV pyiq and therefore satisfies
dV px, ζV q ď dV px, yiq `M for some i “ 1, . . . , n.

Fix two domains V,W Ă Σ. We must establish the inequalities in Definition 3.36
for the constant 7M. If V and W are both small, then dV px, ζV q, dW px, ζW q ď 2M
and the claim follows from the fact that pπZpxqqZĂΣ is K–consistent (Theorem 3.37).
Hence we may assume one of V,W is large.

First suppose W&V with V and W both large, then they are time-ordered along
each geodesic rx, yis. The characterization (Lemma 3.29) implies that W ă̈ V along
rx, yis iff dV px, BW q ă M{3. Hence we may suppose W ă̈ V along each geodesic
rx, yis (the alternate possibility V ă̈ W along each rx, yis being symmetric). Now
time-ordering implies dW pyi, BV q ď M{3 for each i. The fact that ζW lies within M
of some geodesic from πW pyjq to πW pykq, which evidently has length at most 2M{3,
thus implies dW pζW , yjq ď 2M for some j. Therefore dW pζW , BV q ď dW pζW , yjq `
dW pyj , BV q ď 3M and we are done in this case.

Next suppose that V is small and W large with BW projecting to CpV q. In this
case dV px, ζV q ď 2M and we may pick i so that dV px, yiq ă M. Since dW px, yiq ě M
mean, Corollary 3.27 implies that

dV pζV , BW q ď 2M` dV px, BW q ` dV pBW, yiq ď dV px, yiq ` 3M ă 4M.
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This establishes consistency when W Ă V with V small and W large, and (by
symmetry) when W&V with at least one domain large.

Finally suppose W Ă V with V large. If dV pBW, ζV q ď 7M we satisfy consistency,
so it suffices to assume dV pBW, ζV q ą 7M. Fix curves α P πV pxq and αi P πV pyiq
that each project to W (which we can do by Lemma 3.9). For each i, additionally
fix a geodesic gi in CpV q from α to αi and a point βi P gi with dV pζV , βiq ď M.
Fixing indices j, k realizing minpyj |ykq

V
x , we also take a geodesic g from αj to αk

that contains a curve β with dV pζV , βq ď M. Note that every curve within 6M of
ζV cuts W (since BW is too far away); hence all curves within 5M of β or any βi
also cut W . In particular, Theorem 3.8 gives dW pζV , βiq, dW pζV , βq ď Q.

We consider two subcases: Firstly suppose dW pζV , αq ą 2Q. Then for each i
we have dW pβi, αq ą Q, which by Theorem 3.8 implies that some curve along gi
between α and βi is disjoint from W . This means every curve along gi from βi to
αi cuts W ; indeed, the curves missing W have diameter 2 in in CpV q and all lie
distance at least 5M from βi, thus such curves cannot occur along gi both between
α and βi and between βi and αi. Therefore the Bounded Geodesic Image Theorem
gives dW pβi, αiq ď Q. Since dW pαi, yiq ď k` L by Lemma 3.9, we conclude

dW pyi, ζV q ď dW pyi, αiq ` dW pαi, βiq ` dW pβi, ζV q ď 2Q` k` L ă M

for each i. The fact that ζW lies within M of some geodesic from πW pymq to πW pylq,
and that this geodesic evidently has length at most 2M, implies dW pζW , ymq ď 3M.
Therefore the triangle inequality gives dW pζW , ζV q ď 4M as needed.

The final subcase is dW pζV , αq ď 2Q. First observe that either dW pαj , βq ď Q
or dW pαk, βq ď Q, since otherwise the Bounded Geodesic Image Theorem would
imply that g has curves missing W both between αj and β and between β and
αk. By symmetry let us suppose dW pαj , βq ď Q so that the triangle inequality
gives dW pα, αjq ď 4Q. Since dW pα, xq, dW pαj , yjq ď k`L by Lemma 3.9, this gives
dW px, yjq ď M and implies dW pζW , xq ď mini dW px, yiq `M ď 2M. Therefore

dW pζW , ζV q ď dW pζW , xq ` dW px, αq ` dW pα, ζV q ď 2M` k` L` 2Q ď 3M,

which concludes the proof of the Lemma. �

Lemma 4.15 (Barycenters). There is a constant B ě 2M such that for any do-
main Σ Ă S, every ordered triple y, x, z P T pΣq has a barycenter b P Nε0pΣq so
that px, b, yq, py, b, zq, pz, b, xq are each B–aligned. Additionally, for any θ ě 2M
there exist annular-split barycenter y1, z1 P N pΣq such that py, y1, xq, px, z1, zq, and
py, y1, z1, zq are each B–aligned, and so that for every domain V Ă Σ:

‚ If V is an annulus and py|zqVx ą θ, then

dV py, y
1q ď B and dV pz

1, zq ď B.

‚ Otherwise diamCpV q πV ptb, y
1, z1uq ď B with both py, z1, xq and px, y1, zq B–

aligned in V .

Thus y1 and z1 coarsely agree with the branch point b in all domains, except for
certain annuli for which y1 and z1 instead agree with y and z.

Proof. Let pβV q P
ś

VĂΣ CpV q be the 7M–consistent branch tuple from Lem-
mas 4.13–4.14. Theorem 3.37 then gives b P Nε0pΣq so that dV pb, βV q ď Cp7Mq
for every V Ă Σ. Since py|zqVx ď mintpy|yqVx , pz|zq

V
x u`M{2 by (4.12), Lemma 4.13

ensures that βV lies within M of any geodesic joining a pair of πV pxq, πV pyq and
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πV pzq. These observations imply the triples px, b, yq, px, b, zq, and py, b, zq are, for
example, each 2pCp7Mq `Mq–aligned.

Now define pξV q, pζV q P
ś

VĂΣ CpV q so that ξV “ ζV “ βV except for annuli A
with py|zqAx ą θ, in which case instead set ξA “ πApyq and ζA “ πApzq.

Claim 4.16. pξV q and pζV q are R–consistent, for R “ 2Cp7Mq ` 11M.

Proof. We prove the claim for pξV q, as the proof for pζV q is symmetric. Since pβV q
is 7M–consistent, it suffices to check consistency for pairs A, V involving a domain
A with dApξA, βAq ą 4M. In this case A must be an annulus with py|zqAx ą θ. Since
βA lies within M of any geodesic from πApyq to πApzq, we note that

dApξA, βAq “ dApy, βAq ď dApy, βAq ` dApβA, zq ď dApy, zq ` 2M.

Thus dApy, zq ą 2M, and additionally mintdApy, xq, dApx, zqu ą py|zq
A
x ą θ ě 2M

by (4.10). It follows that at least two of the quantities dApy, bq, dApx, bq, dApz, bq
must be larger than M, since otherwise the triangle inequality would bound the
minimum of dApy, xq, dApx, zq, dApy, zq by 2M. Without loss of generality, let
suppose dApy, bq, dApz, bq ą M, in which case Corollary 3.27 implies

dV py, zq ` 2dV pb, BAq ď dV py, BAq ` dV pBA, bq ` dV pb, BAq ` dV pBA, zq

ď dV py, bq ` dV pb, zq ` 2M{3

ď dV py, zq ` 2pCp7Mq `Mq ` 2M{3.

Thus dV pβV , BAq ď dV pb, BAq ` Cp7Mq ď 2pCp7Mq `Mq. If dV pξV , βV q ď 4M, this
bounds dV pξV , BAq and proves the claimed consistency. Otherwise dV pξV , βV q ą
4M which again means V is an annulus with ξV “ πV pyq. Therefore

mintdApξA, BV q, dV pξV , BAqu “ mintdApπApyq, BV q, dV pπV pyq, BAqu ď K ď M

by Theorem 3.37, and the required inequality is satisfied. �

Let y1, z1 P Nε0pΣq be the thick net points provided by Theorem 3.37 realizing the
R–consistent tuples pξV q, pζV q. Then for annuli A with py|zqAx ą θ the claim implies
dApy, y

1q, dApz, z
1q ď CpRq which immediately gives 2CpRq–alignment of py, y1, z1, zq,

py, y1, xq and px, z1, zq in A. For all other domains V , dV py
1, βV q and dV pβV , z

1q are
at most CpRq, which gives dV py

1, z1q ď 2CpRq. Since βV is a M–barycenter of
tπV pxq, πV pyq, πV pzqu, it also implies the three tuples above and py, z1, xq, px, y1, zq
are all 4pCpRq `Mq–aligned in V , as desired. �

Lemma 4.17. The constant B and net points y1, z1 P N pΣq from Lemma 4.15
can moreover be chosen so that py, y1, z1, zq is strongly B–aligned. Further, if y, z P
Tε0pΣq, then any annulus A with dApy

1, z1q ą B satisfies `y1pBAq, `z1pBAq ě ε0.

Proof. Let B and y0, z0 P N pSq be provided by Corollary 4.15 so that py, y0, z0, zq
is B–aligned. Next apply Lemma 4.7 to obtain a new constant B1 ą B and net
points y10, z

1
0 P N pSq such that py, y10, z

1
0, zq is strongly B1–aligned and so that

maxtdV py0, y
1
0q, dV pz0, z

1
0qu ď B1 for all domains V Ă S. This latter property

implies these points y10, z
1
0 additionally satisfy all the conclusions of Lemma 4.15

with the bound B replaced by pB` 2B1q.
If a domain V Ă S now satisfies dV py

1
0, z

1
0q ą pB` 2B1q, then it must be that V

is an annulus with py|zqVx ą θ and, consequently,

maxtdV py, y0q, dV pz0, zqu ď B ă 5pB`Mq
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by construction in Lemma 4.15. Hence, if y, z are thick, the construction in
Lemma 4.7 ensures we necessarily have `y10pBV q ě ε0 and `z10pBAq ě ε0. �

5. Finding good points

We now commence with the proof of the upper bound in Theorem 1.2. Since
there are only finitely many conjugacy classes of finite-order elements in ModpSq,
it suffices to perform the count for each conjugacy class separately:

Convention 5.1. We henceforth fix a finite-order element φ0 P ModpSq and a
point x0 P T pSq such that φ0px0q “ x0; the existence of such a point was proven
by Nielsen [Nie]. Let m0 ě 2 be the order of φ0. Since there are only finitely many
conjugacy classes of finite-order elements, we note that m0 is universally bounded
depending only on S and may furthermore suppose ε0 is chosen so that x0 P Tε0pSq

Our first objective is to find fixed points for elements of the conjugacy class rφ0s

that enjoy certain nice properties. To begin, let x1φ be any fixed point for φ P rφ0s;

for example, if φ “ fφ0f
´1 we may take x1φ “ fpx0q. Now apply Lemmas 4.13–4.14

to the points x1φ, φpx0q, . . . , φ
m0px0q to get a 7M–consistent branch tuple pζV q and

corresponding thick point w P Tε0pSq provided by Theorem 3.37. Since φ fixes x1φ
and the set tφpx0q, . . . , φ

m0px0qu, it follows that φpwq and w both coarsely satisfy the
branch condition of Lemma 4.13 for the list x1φ, φpx0q, . . . , φ

m0px0q. In particular,

for any domain V Ă S, if indices j, k are chosen to achieve minj,kpφ
jpx0q|φ

kpx0qq
V
x1φ

,

then for y “ w and y “ φpwq the triples

px1φ, y, φ
jpx0qq, pφjpx0q, y, φ

kpx0qq, and pφkpx0q, y, x
1
φq

are each p2Cp7Mq ` Mq–aligned in V . By Lemma 3.18 it follows that if 4 is a
CpV q geodesic triangle with vertices in πV px

1
φq, πV pφ

jpx0qq and πV pφ
kpx0qq, then

πV pwq and πV pφpwqq both lie within Cp7Mq `M of each side of 4. The set of such
points has uniformly bounded diameter, hence we conclude dV pw, φpwqq

`
ă 0. Since

w, φpwq are thick, the distance formula (3.34) now implies that dT pSqpw, φpwqq
`
ă 0.

Definition 5.2 (Good fixed point). Apply Durham’s result [Dur, Theorem 1.3] to
the point w to obtain a fixed point xφ for φ with dT pSqpw, xφq

`
ă 0. Since w is

uniformly thick, we may again adjust ε0 if necessary so that xφ P Tε0pSq.

By definition of the Gromov product, for each domain V Ă S we have

dV px0, xφq ` dV pxφ, φpx0qq “ dV px0, φpx0qq ` 2px0|φpx0qq
V
xφ
.

We thus view V as “backtracking” for φ if px0|φpx0qq
V
xφ

is large, since in this case

px0, xφ, φpx0qq is poorly aligned in V , and the CpV q–geodesics from x0 to xφ and
then to φpx0q fellow travel for a large distance. While in general it may be impossible
to eliminate backtracking entirely, as in the example described in §2, our good fixed
point xφ minimizes it in the sense that there cannot be backtracking in the full orbit
tφipV q | i P Zu of any domain.

Lemma 5.3. There exists Λ ě 2M, depending only on S, such that for every

domain V Ă S we have that px0|φpx0qq
φipV q
xφ ď Λ for some i P Z.

Proof. Let G “ minj,kpφ
jpx0q|φ

kpx0qq
V
x1φ

and choose 1 ď j, k ď m0 realizing this

minimum. Observe that if pφipx0q|φ
i`1px0qq

V
x1φ
ą G1 for all i P Z, then |k ´ j| ď m0
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applications of (4.12) would imply pφjpx0q|φ
kpx0qq

V
x1φ
ą G1 ´ m0p5δ ` 3Lq; hence

there exists i so that pφipx0q|φ
i`1px0qq

V
x1φ
ď G ` m0M{2. By its construction in

Lemma 4.13, the branch point ζV thus lies within 24pδ`Lq`m0M{2 ď m0M of any
geodesic from πV pφ

ipx0qq to πV pφ
i`1px0qq. Since dV pw, ζV q ď Cp7Mq, it follows

that pφipx0q, w, φ
i`1px0qq is 2pCp7Mq `m0Mq–aligned in V , which is equivalent to

saying pφipx0q|φ
i`1px0qq

V
w ď Cp7Mq `m0M. Since xφ is fixed, the uniform bound

dV pw, xφq
`
ă 0 now implies px0|φpx0qq

φ´ipV q
xφ “ pφipx0q|φ

i`1px0qq
V
xφ

`
ă 0. �

Next apply Lemma 4.17 with constant θ “ Λ to obtain the annular-split barycen-
ters aφ, bφ P N pSq for the ordered triple px0, xφ, φpx0qq. We summarize the key
features of this construction as follows. To streamline notation, we define

(5.4) RφV :“ dV pxφ, bφq for each domain V Ă S and element φ P rφ0s.

Proposition 5.5 (Good point properties). There is a constant Θ ě 9M, depending
only on S, such that for each φ P rφ0s there exist points xφ, aφ, bφ P T pSq such that

(1) xφ P Tε0pSq is fixed by φ, and aφ, bφ P N pSq are net points;
(2) the tuple px0, aφ, bφ, φpx0qq is strongly Θ–aligned;
(3) each tuple px0, aφ, xφq and pxφ, bφ, φpx0qq is Θ–aligned;
(4) unless V Ă S is an annulus with px0|φpx0qq

V
xφ
ą Λ, we have dV paφ, bφq ď Θ

and px0, bφ, xφq, pxφ, aφ, φpx0qq are Θ–aligned in V ;
(5) if dV paφ, bφq ą Θ, then V is an annulus and `aφpBV q, `bφpBV q ě ε0;

(6) for each V Ă S there exists j P Z so that RφφjpV q ď Θ;

(7) if RφφpV q ě 7RφV ` 7Θ, then dV px0, bφq ě 6Θ ą M;

(8) for any annulus V Ă S with RφV ą Θ, we have dV pbφ, φpx0qq ď Θ;

(9) for any nonannular V Ă S, we have RφV
`
ăΘ m0LdT pSqpx0, φpx0qq.

Proof. We take Θ “ 4Λ ` 4B ` 9M. Then items (1)–(5) are immediate from
Definition 5.2 and the construction of aφ, bφ in Lemmas 4.15–4.17.

For (6), Lemma 5.3 provides some j P Z so that px0|φpx0qq
φjpV q
xφ ď Λ. Therefore

the construction in Lemmas 4.15–4.17 implies that pxφ, bφ, x0q, pxφ, bφ, φpx0qq and
px0, bφ, φpx0qq are all B–aligned in the domain V 1 “ φjpV q. Thus

2RφV 1 “
`

dV 1pxφ, bφq ` dV 1pbφ, x0q
˘

`
`

dV 1pxφ, bφq ` dV 1pbφ, φpx0qq
˘

´
`

dV 1px0, bφq ` dV 1pbφ, φpx0qq
˘

ď dV 1pxφ, x0q `B` dV 1pxφ, φpx0qq `B´ dV 1px0, φpx0qq

“ 2px0|φpx0qq
V 1

xφ
` 2B ď 2Λ` 2B ď 2Θ.

For (7), since pxφ, bφ, φpx0qq is Θ–aligned and xφ is fixed, the hypothesis implies

dV px0, xφq “ dφpV qpφpx0q, xφq ě dφpV qpbφ, xφq ´Θ ě 7dV pxφ, bφq ` 6Θ.

Thus by the triangle inequality we have

dV px0, bφq ě dV px0, xφq ´ dV pbφ, xφq ě 6Θ ą M.
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For (8), we consider an annulus V with dV pxφ, bφq “ RφV ą Θ. If dV paφ, bφq ď B,
then B–alignment of pxφ, aφ, x0q and pxφ, bφ, φpx0qq implies

2px0|φpx0qq
V
xφ
“ dV px0, xφq ` dV pxφ, φpx0qq ´ dV px0, φpx0qq

ě dV px0, aφq ` dV paφ, xφq ` dV pxφ, bφq ` dV pbφ, φpx0qq ´ 2B

´ pdV px0, aφq ` dV paφ, bφq ` dV pbφ, φpx0qqq

“ dV paφ, xφq ` dV pxφ, bφq ´ dV paφ, bφq ´ 2B

ě 2dV pbφ, xφq ´ 2dV paφ, bφq ´ 2B ą 2pΘ´ 2Bq ą 2Λ.

Otherwise we evidently have dV paφ, bφq ą B. In either case, the construction in
Lemmas 4.15–4.17 implies that dV pbφ, φpx0qq ď B ď Θ.

Finally for (9), recall that by construction px0, bφ, φpx0qq, pxφ, bφ, x0q and pxφ, bφ, φpx0qq

are each B–aligned in all nonannular domains. Hence for all nonannular Y we have

RφφpY q “ dφpY qpxφ, bφq ď dφpY qpxφ, φpx0qq `B “ dY px0, xφq `B

ď dY px0, bφq ` dY pbφ, xφq `B

ď dY px0, φpx0qq `R
φ
Y ` 2B.

Now fix a nonannulus V and let 0 ď j ă m0 be the smallest integer so that
dφ´jpV qpxφ, bφq ď Θ, which necessarily exists by (6). Applying the above estimate

recursively with Y “ φ´1pV q, . . . , φ´jpV q we find

RφV ď

˜

j
ÿ

n“1

dφ´npV qpx0, φpx0qq ` 2B

¸

`Θ `
ăΘ

m0
ÿ

i“1

dφipV qpx0, φpx0qq.

Since V is nonannular, the Lipschitz bound (3.16) implies each term dφipV qpx0, φpx0qq

is at most LdT pSqpx0, φpx0qq ` L. Thus this estimate gives the desired bound. �

We remark that the failure of the Lipschitz estimate (3.16) for annuli in (9) is
the entire reason we have utilized the adjusted barycenters aφ, bφ from Lemma 4.15
and the alternate conclusion (8).

6. Bounding the multiplicity of branch points

Recall that we have fixed an order m0 ă 8 element φ0 P ModpSq and point x0 P

Tε0pSq with φ0px0q “ x0. For each φ P rφ0s, we have produced in Proposition 5.5 a
fixed point xφ for φ along with net points aφ, bφ satisfying various properties.

In this section we bound the multiplicity of any given pair pa, bq P N pSq:

Theorem 6.1. There is a polynomial p such that that for any ordered pair pa, bq P
N pSq and r ě 0, there are at most pprq finite order elements φ of rφ0s for which
dT pSqpx0, φpx0qq ď r and paφ, bφq “ pa, bq.

6.1. Agreement. We shall prove this by using curve complex data to effectively
build-up a map φ on larger and larger subsurfaces. More precisely, we will bound
the indicated subset of rφ0s by partitioning into smaller and smaller subfamilies
that agree on larger and larger subsurfaces.

We begin by establishing some general topological statements that will be useful.

Definition 6.2. We say φ, ψ P ModpSq agree in a subsurface A Ă S if for each
component Y of A we have φpY q “ ψpY q and φ|Y “ ψ|Y up to isotopy. So in
particular φpAq “ ψpAq as subsurfaces and, after adjusting say ψ by an isotopy,
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ψ´1φ pointwise fixes A and its boundary BA. In the case of an annular component
Y , we additionally require

Remark 6.3. When Y is an annulus with φ|Y “ ψY up to isotopy, we may always
precompose with Dehn twists TnBY in Y so that ψ and φ ˝ TnBY agree in Y . The
key point is that given any two curves α, β cutting Y we can choose n P N so
that dY pα, T

n
Y pβqq ď 1. Now, fix some curve α with α&Y and choose n so that

dY pα, T
n
Y ψ

´1φpαqq ď 1. We claim that dY pβ, ψ
´1φTnY pβqq ď 3 for every curve β. ,

so that ψ and φTnY agree on Y . Indeed, choose k P N so that dY pT
k
Apβq, α0q ď 1.

Then, since TY and ψ´1φ commute, we have

dY pβ, ψ
´1φTnApβqq “ dY pT

k
Y pβq, T

k
Y ψ

´1φTnY pβqq “ dY pT
k
Y pβq, T

n
Y ψ

´1φpT kY pβqqq

ď dY pT
k
Y pβq, α0q ` dY pα0, T

n
Y ψ

´1φpα0qq

` dY pT
n
Y ψ

´1φpα0q, T
n
Y ψ

´1φpT kY pβqq ď 1` 1` 1 “ 3.

Annular components in A will be used to ensure mapping classes do not differ by
Dehn twists about boundary components. For example, if Y Ă S is a torus with one
boundary component, then agreement on Y conveys no information about twisting
in Y ; indeed the maps φ˝TnBY for n P Z all agree on Y . If we let A be be the union of
Y with a disjoint annulus parallel to BY , then agreement on A additionally concerns
Dehn twists about BY so that the maps φ ˝ TnBY , n P Z, no longer all agree in A.

Lemma 6.4. For each k ą 0 there exists a constant k1 with the following property:
For a given point w P T pSq and pair of subsurfaces A,B Ă S, let F Ă ModpSq
be a set of mapping classes such that for all φ, ψ P F we have φpAq “ B and
dW pφpwq, ψpwqq ď k for each domain W Ă B. Then, up to agreement on A, the
collection tφ|A : A Ñ B | φ P Fu has cardinality at most k1. That is, F may be
partitioned into at most k1 subfamilies in which all maps agree on A.

Proof. There is a universal bound, depending on ξpSq, on the number of components
of A and the number of boundary components of each component. Hence, after
partitioning F into boundedly many subfamilies, we may assume ψ´1φ fixes up to
isotopy each component and boundary component of A for all φ, ψ P F . To prove
the lemma, we must partition F to achieve agreement in each component Y of A.

First suppose Y is non-annular. Fix some φ P F . Then for all ψ P F , the
projections πV pψ

´1φpwqq and πV pwq coarsely agree in CpV q for each domain V Ă Y .
If w1 P Tε0pY q is a thick point realizing the consistent tuple pπV pwqqVĂY , it follows
that dV pψ

´1φpw1q, w1q `ăk 0 for all such V and hence that dT pY qpψ
´1φpw1q, w1q is

bounded by the distance formula. By proper discontinuity of the action on T pY q,
there are boundedly many mapping classes Y Ñ Y that coarsely fix w1.

Now suppose Y is an annulus. Fix φ P F , set V “ φpY q, and let β P µw be a
curve in the short marking with β&Y . The assumption implies that each ψ P F
satisfies dV pφpβq, ψpβqq ď k and hence that there exists n P Z with |n| ď k so
that dV pT

n
V ψpβq, φpβqq ď 1. Letting Fn Ă F denote those ψ that work with a

given power n, we thus get a decomposition F “ F´k Y ¨ ¨ ¨ Y Fk into at most
2k ` 1 subsets. By the triangle inequality, all ψ,ψ1 P Fn satisfy dV pψpβq, ψ

1pβqq “
dV pT

n
V ψpβq, T

n
V ψ

1pβqq ď 2. Now, for any other curve α, we may pick j so that
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dY pT
j
Y pαq, βq ď 1. Note that φ1T jY “ T jV φ

1 for all φ1 P F . Then all ψ,ψ1 P Fn have

dV pψpαq, ψ
1pαqq “ dV pT

j
V ψpαq, T

j
V ψ

1pαqq “ dV pψT
j
Y pαq, ψ

1T jV pαqq

“ dV pψT
j
Y pαq, ψpβqq ` dV pψpβq, ψ

1pβqq ` dV pψ
1pβq, ψ1T jV pαqq

ď 1` 2` 1 “ 4.

Hence we have partitioned into boundedly many subsets that each agree on Y . �

6.2. Backtracking domains. Recall the streamlined notation RφV “ dV pxφ, bφq

from (5.4). We view RφV as a measure of backtracking in V since, aside from the
exceptional annuli in Proposition 5.5(4), it coarsely agrees with the Gromov product
px0|φpx0qq

V
xφ

and measures alignment of the triple px0, xφ, φpx0qq in V .
Let f : R` Ñ R` be the function defined by

fptq “ 7t` 7Θ

where Θ ě 9M is from Proposition 5.5. We say that a sequence V, φpV q, . . . , φjpV q
jumps for φ P rφ0s if for all 0 ď i ď j

RφφipV q ą f
´

Rφ
φ´1pV q

¯

.

Remark 6.5. If 0 ă i ă j are such that V, . . . , φipV q and φi`1pV q, . . . , φjpV q are
both jump sequences, then the concatenation V, . . . , φjpV q is also a jump sequence
since for all i` 1 ď k ď j the monotonicity of f evidently implies

Rφ
φkpV q

ě f
`

RφφipV q
˘

ě f2
`

Rφ
φ´1pV q

˘

.

Definition 6.6. The set of backtracking domains Dpφq for φ P rφ0s is the union
of all jump sequences for φ, that is, the set of domains φipV q for which there
is a sequence tV, φpV q, . . . , φipV q, . . . , φjpV qu that jumps for φ. Remark 6.5 and
Proposition 5.5(6) imply that for every Z P Dpφq there exists 0 ď i ă m0 such that
tφ´ipZq, . . . , Zu is a jump sequence contained in Dpφq and φ´i´1pZq R Dpφq. We
call this i the backtracking index of Z in Dpφq.

While each Y P Dpφq satisfies RφY ą 7Θ by definition, the converse need not hold

since there may exist domains Y with RφY ą 7Θ but whose orbit tφipY q | i P Zu
does not contain a jump sequence. Nevertheless, we have:

Lemma 6.7. Every domain Z P Dpφq satisfies RφZ “ dZpxφ, bφq ą 7Θ. Dually,

the collection Dpφq contains every domain Z Ă S with RφZ ą fm0´1pΘq.

Proof. The first claim follows immediately from the definition of jumping. We now

suppose Z R Dpφq and show RφZ ď fm0´1pΘq. If RφZ ď Θ there is nothing to prove,

so we assume RφZ ą Θ. Let us write Zk “ φkpZq for k P Z. We may choose an

integer ´m0 ă k ă 0 so that RφZk ď Θ and RφZj ą Θ for all k ă j ď 0.

For any k ď j ă 0, the sequence tZj`1, . . . , Z0u evidently does not jump for φ;

hence there is some j ă j1 ď 0 so that RφZj1 ď fpRφZj q. Starting with k0 “ k and

recursively using this observation to set kj`1 “ k1j produces a sequence integers

k “ k0 ă ¨ ¨ ¨ ă kn “ 0 such that RφZkj`1
ď fpRφZkj

q for each j. Since RφZk0
ď Θ

and n ď k ă m0, applying these inequalities inductively implies that

RφZ “ RφZkn ď f˝npRφZk0
qq ď fm0´1pΘq. �
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For each Y P Dpφq, let i ě 0 be the index of Y and define a constant CY by

CY :“ 6Rφ
φ´i´1pY q

` 3Θ` 2M.

Also set C0 “ fm0pΘq. Since φ´i´1pY q R Dpφq by definition of the index, we note
that 9M ď Θ ď CY ď C0´2M by Lemma 6.7 and the definition of f . In particular,
CY is uniformly bounded.

Definition 6.8 (Orders on Dpφq). For φ P rφ0s we define four asymmetric relations
Ci on the set Dpφq of backtracking domains as follows. For V, Y P Dpφq,

‚ V C0 Y if there exists j ě 1 so that tV, φpV q, . . . , φjpV q “ Y u Ă Dpφq.
‚ V C1 Y if V&Y and V ă̈ Y along rbφ, xφs.
‚ V C2 Y if V Ĺ Y with dY pbφ, BV q ă CY .
‚ V C2̃ Y if V Ĺ Y with dY pbφ, BV q ă CY `M.
‚ V C3 Y if V Ľ Y with dV pbφ, BY q ě C0 ` 2M.

Thus C2̃ is a weaker version of C2; it will serve a minor technical role. Notice that
C0 and C1 are non-reflexive partial orders; in particular they are transitive.

In general, for any subcollection W Ă Dpφq and i P t0, 1, 2, 2̃, 3u, we write Wi

for the set of domains in W that are minimal with respect to the order Ci, that is:

Wi “ tZ PW | EY PW with Y Ci Zu .

We also write W: “W1 XW2 XW3 and W‹ “W0 XW:.

Lemma 6.9. Let W be any subcollection of Dpφq. If U P W1 is such that the
subcollection U “ tZ PW | Z Ĺ Uu is nonempty, then W1 Ą U1 ‰ H.

Proof. Since U is nonempty and finite and C1 is transitive, U1 is nonempty. Now
consider some Y P U1 and take any Z PW with Z&Y . Then either Z Ĺ U and we
have Y ă̈ Z by virtue of Y P U1, or else Z&U and hence U ă̈ Z, since U P W1,
and consequently Y ă̈ Z by Corollary 3.31. Thus Y PW1 as claimed. �

Lemma 6.10. Let W be a subcollection of Dpφq. If V PW1zW3, then there exists
some Y PW: with Y Ľ V .

Proof. The assumption V RW3 implies that

Ω “
 

Z PW | Z Ľ V and dZpbφ, BV q ě C0 `M
(

is nonempty. Hence we may choose a domain Y P Ω maximizing the quantity ξpY q.
We note that dY pbφ, BV q ě C0 `M. We claim Y P W:. To see this, we consider
any Z PW and show that Z Ci Y fails for each of i “ 1, 2, 3.

First consider the cases Z&Y and Z Ĺ Y . Then the the multicurve BZ projects
to CpY q. If BZ is disjoint from BV , then we have dY pBZ, BV q ď 2 and hence
dY pbφ, BZq ě dY pbφ, BV q´2 ą C0`M´2 ą CY . When Z&Y , this ensures Y ă̈ Z,
and when Z Ĺ Y it precludes Z C2 Y . If, instead, BZ and BV are not disjoint,
then Z&V and hence V ă̈ Z by the assumption that V PW1. If Z&Y this implies
Y ă̈ Z by Corollary 3.31, and if Z Ĺ Y it implies via Corollary 3.32 that

dY pbφ, BZq ě dY pbφ, BV q ´M{3 ě C0 ` 2M{3 ą CY .

In either case, we may conclude that Y PW1 XW2.
It remains to suppose Z Ľ Y . Since by construction Y is the largest complexity

surface in Ω, we must have Z R Ω. Hence dZpbφ, BV q ă C0 ` M. On the other
hand, the containment V Ĺ Y gives dZpbφ, BY q ď dZpbφ, BV q ` 1 ă C0` 2M which
precludes Z C3 Y and consequently shows Y PW3. �
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Lemma 6.11. Let W Ă Dpφq. If V P W1, then there exists Y P W: such that
either Y Ą V or else Y Ĺ V with Y C2̃ V .

Proof. If V R W3, then Lemma 6.10 provides a domain satisfying the conclusion.
We may henceforth assume V PW3. If V PW2, then V PW: and the claim holds.
Otherwise V RW2 and we have V 1 C2 V for some V 1 PW. In particular,

V “ tZ PW | Z Ĺ V u

is nonempty. The subcollection V1 is then nonempty, and we may choose a domain
Y 1 P V1 minimizing the quantity ξpY 1q. Firstly observe that Y 1 PW1 by Lemma 6.9.
Secondly, observe that Y 1 PW2. Indeed, otherwise

Y “ tZ PW | Z Ĺ Y 1u “ tZ P V | Z Ĺ Y 1u

is nonempty and hence contains some element Z P Y1. But then Z P Y1 Ă V1 by
Lemma 6.9 with ξpZq ă ξpY 1q, contradicting the choice of Y 1.

Next observe that some Y Ą Y 1 satisfies Y P W:. Indeed, if Y 1 P W3 we take
Y “ Y 1 and if not then Lemma 6.10 provides such a Y . The domains Y and V
cannot be disjoint, since they both contain Y 1, and nor can we have Y&V , as then
they could not both be minimal with respect to time order. If Y satisfies Y Ą V ,
then the lemma is verified. The only remaining possibility is Y Ĺ V , in which case
we must show Y C2̃ V . To see this, recall that we have V 1 C2 V . If the multicurves
BY and BV 1 are disjoint, it follows that dV pbφ, BY q ă dV pbφ, BV

1q ` 1. Otherwise
Y&V 1 and we must have Y ă̈ V 1 along rbφ, xφs, by virtue of Y lying in W1; thus
dV pbφ, BY q ď dV pbφ, BV

1q `M{3 by Corollary 3.32. In either case, we conclude

dV pbφ, BY q ď dV pbφ, BV
1q `M{3 ă CV `M,

which shows that Y C2̃ V , as desired. �

We also have the following observation relating C1 and C2̃ to C0:

Lemma 6.12. Suppose Y, Z P Dpφq and that Y C1 Z or Y C2̃ Z. If a chain
φ´jpY q, . . . , Y is contained in Dpφq, then the corresponding chain φ´jpZq, . . . , Z is
also contained in Dpφq. That is, φ´jpY qC0 Y implies φ´jpZqC0 Z.

Proof. Suppose not. Let i ě 0 be the index of Z, so that tφ´ipZq, . . . , Zu Ă Dpφq
is a jump sequence but φ´i´1pZq R Dpφq. Set Y 1 “ φ´i´1pY q and Z 1 “ φ´i´1pZq.
The assumption implies i ă j, so we have Y 1 P Dpφq but Z 1 R Dpφq.

We know that BY projects to CpZq and hence that

dZpbφ, xφq ď dZpbφ, BY q ` dZpBY, xφq.

Now if Y C1 Z, then Y ă̈ Z along rbφ, xφs and hence dZpbφ, BY q ă M{3 by
Lemma 3.29. If instead Y C2̃ Z then dZpbφ, BY q ă CZ ` M by assumption. In
either case we have

(6.13) RφZ “ dZpbφ, xφq ă dZpBY, xφq ` CZ `M.

We similarly know that BY 1 projects to CpZ 1q. Since Y 1 P Dpφq, by Lemma 6.7,
dY 1pxφ, bφq ě 7Θ ě M and so Y 1 has an active interval along rxφ, bφs. Thus we
may choose a point t P rxφ, bφs containing BY 1 in its Bers makings and apply
Theorem 3.19 to conclude that

dZpBY, xφq “ dZ1pBY
1, xφq ď dZ1pxφ, BY

1q ` dZ1pBY
1, bφq

ď dZ1pxφ, tq ` dZ1pt, bφq ď dZ1pxφ, bφq ` B “ RφZ1 ` B.
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Combining with (6.13) and using Z 1 “ φ´i´1pZq R Dpφq, we now conclude

RφZ ă dZpBY, xφq ` CZ `M ď RφZ1 ` 2M` CZ

“ RφZ1 ` 2M` 6RφZ1 ` 3Θ` 2M

ă f
´

Rφ
φ´i´1pZq

¯

.

But this exactly means tφ´ipZq, . . . , Zu does not jump for φ, a contradiction. �

6.3. Initial domains for compatible subsurfaces. In the spirit of “building
up” our maps on larger and larger subsurfaces, for φ P rφ0s and a possibly empty
subsurface A Ă S, we write

DApφq “ tY P Dpφq | Y Ă φpAqu

for the backtracking domains whose preimages do not land in A. We emphasize
that if Y P Dpφq is an annulus, then Y Ă φpAq if and only if either Y is isotopic
to an annular component of φpAq or else Y Ĺ V for some component V of φpAq.
Notice that for the empty subsurface we have DHpφq “ Dpφq and for the whole
surface A “ S we have DSpφq “ H. We view DApφq as the backtracking domains
that we still need to account for once we “know” φ on A.

We use the notation Di
Apφq “ pDApφqq

i for minimal elements as in Definition 6.8.

Definition 6.14 (Initial domains). Given φ P rφ0s, we say a domain V Ă S is

φ–initial for a subsurface A Ă S if V P D‹Apφq “
Ş3
i“0D

i
Apφq. Note that we do not

require minimality with respect to C2̃.

We will consider subsurfaces A that are constructed by successively adding initial
domains, as follows:

Definition 6.15 (Compatible). A subsurface A Ă S is compatible with φ P rφ0s if
either A “ S or else A “ φ´1pZ0\¨ ¨ ¨\Zmq for some sequence H “ Z0, Z1, . . . , Zm
in which each Zi`1, with 0 ď i ă m, is a φ–initial domain for Ai “ φ´1pZ0\¨ ¨ ¨\Ziq
(Recall from Lemma 3.3 that Z0 \ ¨ ¨ ¨ \ Zi is the subsurface filled by Z0, . . . , Zi).

The next two lemmas explain how subsets DApφq and relations Ci interact:

Lemma 6.16. If A Ă S is compatible with φ P rφ0s and domains Y,Z P Dpφq
satisfy Y C1 Z and Y P DApφq, then Z P DApφq as well.

Proof. If A “ S then DApφq is empty and the statement is vacuous. So assume
A Ĺ S and letH “ Z0, . . . , Zm be the sequence of domains witnessing compatibility
of A, so that φpAq “ Z0\ ¨ ¨ ¨\Zm, and set B “ φpAq. We must prove Z P DApφq,
which is equivalent to saying Z Ă B. By means of contradiction, let us suppose
Z Ă B. Since Y&Z but Y Ă B, we must have Y&B. Since the Zj fill B, it must be
that Y&Zj for some j (otherwise the subsurface B would be contained in SzBY ).

By definition of compatibility, Zj is φ–initial for Aj´1 “ φ´1pZ0 \ . . . \ Zj´1q.
Since Y P DApφq Ă DAj´1

pφq, the Definition 6.14 of initial ensures Zj ă̈ Y along
rbφ, xφs. Since Y ă̈ Z along rbφ, xφs by assumption, it follows that dY pBZj , BZq ě
dY pbφ, xφq ´ 2M{3. However, as BZ and BZj are both disjoint from BB, we also
have dY pBZ, BZjq ď 4. But this contradicts the estimate dY pbφ, xφq ě 7Θ from
Lemma 6.7. �

Lemma 6.17. Let A Ă S be compatible for φ P rφ0s and let Y,Z P DApφq. If
Z P D0

Apφq and Y Ci Z for i “ 1 or i “ 2̃, then Y P D0
Apφq as well.
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Proof. By means of contradiction, suppose Y R D0
Apφq, meaning that there exists

some Y 1 P DApφq with Y 1 C0 Y . Hence by definition Y 1 “ φ´jpY q for some j ě 1
with tφ´jpY q, . . . , Y u Ă Dpφq. By Lemma 6.12 it follows that tφ´jpZq, . . . , Zu Ă
Dpφq as well and therefore that Z 1 “ φ´jpZqC0 Z.

To obtain a contradiction, it suffices to show Z 1 P DApφq. Since Y 1, Z 1 P Dpφq,
we know that Y 1 and Z 1 both determine active intervals on rbφ, xφs. First suppose
Y C1 Z. Then Y 1&Z 1 and dY 1pBZ

1, xφq “ dY pBZ, xφq ď M{3. By Lemma 3.29
this forces Y 1 ă̈ Z 1 along rbφ, xφs and hence implies Y 1 C1 Z

1. Since Y 1 P DApφq,
Lemma 6.16 therefore implies Z 1 P DApφq as well. If instead Y C2̃Z, then Y 1 Ĺ Z 1.
Since Y 1 P DApφq, we have Y 1 Ă φpAq and consequently Z 1 Ă φpAq as well. Thus
Z 1 P DApφq as required. �

The next lemma ensures φ–initial domains exists whenever DApφq is nonempty.

Lemma 6.18 (Initial domains exist). Let A Ă S be a compatible subsurface for
φ P rφ0s. If DApφq is nonempty, then D‹Apφq is nonempty as well.

Proof. Choose a domain Z 1 P DApφq maximizing the quantity ξpZ 1q. Since C0

restricts to a partial order on the finite set DApφq, there exists Z P D0
Apφq with

Z “ Z 1 or Z C0 Z
1. By definition of C0, we have Z “ φ´jpZ 1q for some j ě 0.

Case 1: Z P D1
Apφq: Let Y P D:Apφq be the domain provided by Lemma 6.11.

If Y Ą Z then we must have Y “ Z P D0
Apφq by the maximality of ξpZq. Hence

Y P D‹Apφq and we are done. Otherwise Y Ĺ Z with Y C2̃ Z. Since Z P D0
Apφq,

Lemma 6.17 now implies Y P D0
Apφq and we again conclude Y P D‹Apφq.

Case 2: Z R D1
Apφq: Since C1 is a partial order on DApφq, there necessarily

exists some V P D1
Apφq with V C1Z. Notice that V P D0

Apφq by Lemma 6.17. Since

V P D1
Apφq, we may invoke Lemma 6.11 to obtain a domain Y P D:Apφq. If Y Ĺ V

with Y C2̃ V , then the fact V P D0
Apφq with Lemma 6.17 implies that Y P D0

Apφq
and hence Y P D‹Apφq. If instead Y Ą V , then the fact V&Z ensures we cannot
have Y K Z or Y Ă Z. But Z Ă Y is also ruled out by the maximality of ξpZq.
The only remaining possibility is Y&Z. Since V ă̈ Z, Corollary 3.31 implies that
Y ă̈ Z, which is to say Y C1 Z. Therefore Y P D0

Apφq by Lemma 6.17 and we have
found the desired domain in D‹Apφq. �

The next lemma says, in light of Corollary 3.39, that there are uniformly bound-
edly many options for the image φpAq of a compatible subsurface.

Lemma 6.19 (Bounded compatibility). If A Ă S is a compatible subsurface for
φ P rφ0s, then B “ φpAq satisfies dV pbφ, BBq

`
ăΘ 0 for every domain V Ă S.

Proof. If A “ S then BS is empty and there is nothing to prove. So suppose
A Ĺ S and let H “ Z0, . . . , Zm be the domains witnessing the compatibility of
A. If V Ă B or V K B there is nothing to prove, since then dV pbφ, BBq is just
diamCpV q πV pbφq ď L. Hence we assume BB projects to V . Since B is filled by the
Zi, we may choose 1 ď j ď m such that BZj projects to V . As the multicurves
BZj and BB are evidently disjoint, it thus suffices to bound dV pbφ, BZjq. Setting
Bj “ Z0 \ ¨ ¨ ¨ \ Zj´1, by definition of compatibility we then know that Zj P Dpφq
is initial for Aj “ φ´1pBjq.

Let us first suppose V P Dpφq. Then it must be that V P DApφq since V Ă φpAq
was excluded above. Since Aj Ă A, we also have V P DApφq Ă DAj pφq. As Zj is
initial for Aj , if V&Zj , then the failure of V C1 Zj implies Zj ă̈ V along rbφ, xφs
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and hence dV pbφ, BZjq ď M. If instead Zj Ĺ V , the failure of V C3 Zj implies
dV pbφ, BZjq ď C0 `M. We are thus done in this case, as V K Zj and V Ă Zj are
precluded by BZj projecting to V .

Next suppose V R Dpφq so that dV pxφ, bφq “ RφV ď fm0pΘq by Lemma 6.7.
Since Zj P Dpφq ensures Zj has an active interval along rxφ, bφs, there is a point
t P rbφ, xφs with BZj Ă basepµtq and consequently (by Theorem 3.19)

dV pbφ, BZjq ď dV pbφ, tq ď dV pbφ, tq ` dV pt, xφq
`
ă dV pbφ, xφq

`
ă 0. �

6.4. Coherence. Recall that our goal in Theorem 6.1 is to bound the number
elements φ P rφ0s producing a common pair of points paφ, bφq.

Definition 6.20 (Coherence). Given a subsurface A Ă S, we say a family F Ă rφ0s

is A–coherent if for all pairs φ, ψ P F
‚ A is compatible with φ and ψ,
‚ φ and ψ agree on A, and
‚ aφ “ aψ and bφ “ bψ.

The displacement of the family is rpFq “ maxtdT pSqpx0, φpx0qq | φ P Fu.

Definition 6.21 (Pre-initial). Let F Ă rφ0s an A–coherent family. We say a
domain Y Ă S is pre-initial for F if it is the preimage of some initial domain, that
is, if Y “ φ´1pZq some element φ P F and domain Z P Dpφq that is φ–initial for A.

Lemma 6.22 (Boundedly many pre-initial domains). There is a degree 1 polyno-
mial q1 such that for any subsurface A Ă S and A–coherent family F Ă rφ0s, the
cardinality of the set of pre-initial domains for F is at most q1prpFqq.

Proof. Let P “ tY1, Y2, . . . u be the set of pre-initial domains, and for each i choose
φi P F such that Yi “ φ´1

i pZiq for some φi–initial domain Zi P Dpφiq. Let ki ă m0

be the index of Zi, that is, the minimal ki ě 0 so that φ´ki´1
i pZiq R Dpφiq. For

each, k let Pk be the subset of pre-initial domains Yi for which ki “ k´1. This gives
a partition P “ P1 \ ¨ ¨ ¨ \ Pm0 . Restricting to one subcollection Pk we henceforth
assume k “ ki ` 1 for all i.

Let us write Vi “ φ´ki pZiq so that Vi R Dpφiq. Then for each i we have
φipViq, . . . , φ

k
i pViq P Dpφiq, with Zi “ φki pViq being φi–initial. TheC0–minimality of

Zi in DApφiq implies that φipViq, . . . , φ
k´1
i pViq R DApφiq. Thus for all 0 ď n ď k´2

we have φn`1
i pViq P DpφiqzDApφiq, meaning φn`1

i pViq Ă φpAq or equivalently
φni pViq Ă A. By assumption, all the maps φ P F agree on A; let us write ψ : AÑ B
for this common restriction to A. With this notation we conclude that

Yi “ φ´1
i pZiq “ ψk´1pViq

for all i. Since the domains Yi are all distinct by assumption, it follows that the
domains Vi and Vj are distinct whenever i ‰ j.

By coherence, the points aφ, bφ for φ P F all agree; let us call these common
points a, b. By Definition 6.6 of backtracking, having Vi R Dpφiq and φipViq P Dpφiq
means that

RφiφipViq ě fpRφiViq “ 7RφiVi ` 7Θ,

which by Proposition 5.5(7) implies dVipx0, bq ě 6Θ. Fixing i “ 1 and considering
the element φ1, we know the triple px0, b, φ1px0qq is Θ–aligned in all domains.
Therefore, for all j ě 1 we have

dVj px0, φ1px0qq ě dVj px0, bq ´Θ ě 5Θ.
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We note that we may choose Θ large enough so that logpΘq is a valid threshold
in the distance formula (Theorem 3.33). From this the number of domains U Ă S
with dU px0, φ1px0qq ě Θ is bounded linearly in terms of dT pSqpx0, φ1px0qq ď rpFq,
which finishes the proof of the lemma. �

6.5. Supercoherence. We next consider coherent families with additional data:

Definition 6.23 (Supercoherence). A family F Ă rφ0s will be called supercoherent
for a subsurface A Ă S and domain Y Ă S if F is A–coherent and for all φ, ψ P F :

‚ Zφ “ φpY q is φ–initial for A,
‚ φpA1q “ ψpA1q where A1 is the subsurface filled by A and Y ,
‚ if Y is nonannular, then dZφpbφ, xφq “ dZψ pbψ, xψq,
‚ if Y is annular, then dZφpbφ, φpx0qq “ dZψ pbψ, ψpx0qq.

Note that Zφ being initial implies Zφ Ă φpAq and thus Y Ă A. Also note that the
subsurfaces B “ φpAq and B1 “ φpA1q (filled by B and Zφ) are independent of φ.
We also allow Y to denote the empty domain and say F is pA,Hq–supercoherent
to mean that it is A–coherent but that DApφq is empty for each φ P F .

Lemmas 6.19 and 6.22 allow us to easily partition coherent families into bound-
edly many supercoherent ones:

Lemma 6.24. There is a degree 2 polynomial q2 such that for any subsurface
A Ă S, any A–coherent family F Ă rφ0s may be partitioned into at most q2prpFqq
subfamilies F 1 that are each pA, Y 1q–supercoherent for some domain Y 1.

Proof. The elements φ P F for which DApφq is empty comprise a subset of F that
is pA,Hq–supercoherent. Excising these, we henceforth suppose each φ P F has
DApφq nonempty and, in particular, that A ‰ S. Accordingly, for each φ P F
we may use Lemma 6.18 to choose some initial domain Zφ P D

˚
Apφq. We then set

Yφ “ φ´1pZφq and let B1φ denote the subsurface filled by Zφ and B “ φpAq. As

φ´1pB1φq is clearly compatible for φ by construction, Lemma 6.19 and Corollary 3.39

provide a uniform bound k0 (depending only on Θ) on the number of domains
B1φ produced in this way. Similarly Lemma 6.22 says there are at most q1prpFqq
possibilities for the domain Yφ. Hence after partitioning into k0q1prpFqq subfamilies
we may assume Y “ Yφ and B1 “ B1φ are independent of φ.

Now, if Y (and thus each Zφ) is nonannular, then Proposition 5.5(9) pro-

vides a uniform constant k1 so that each integer dZφpbφ, xφq “ RφZφ is at most

k1dT pSqpx0, φpx0qq ` k1. Thus we may further partition into at most k1rpFq ` k1

subfamilies so that dZφpbφ, xφq is independent of φ. If instead Y is annular, then

for all φ P F we have RφZφ ą 7Θ by Lemma 6.7 since Zφ P Dpφq. Therefore Propo-

sition 5.5(8) says dZφpbφ, φpx0qq ď Θ and we may further partition into at most Θ
subfamilies so that dZφpbφ, φpx0qq is independent of φ. Each subfamily F 1 produced
in this way is then pA, Y q–supercoherent, where Y “ Yφ for any φ P F 1. �

6.6. Extending supercoherence. The previous section shows that A–coherent
families can be refined into pA, Y q–supercoherent ones. The remaining ingredient
is to show that each pA, Y q–supercoherent family can be further refined into A1–
coherent families for the enlarged subsurface A1 filled by Y and A, or A1 “ S in the
case Y “ H. This is the heart of our reconstructive argument.
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Proposition 6.25. There is a constant q3 such that every pA, Y q–supercoherent
family F Ă rφ0s can be partitioned into at most q3 subfamilies F 1 that are each
A1–coherent, where A1 “ S when Y is the empty domain and otherwise A1 is the
subsurface filled by A and Y . In particular, in the latter case ξpA1q ą ξpAq.

Proof. Since F is A–coherent, we know aφ “ aψ and bφ “ bψ for all φ, ψ P F ; let
us write a “ aφ and b “ bφ for these common points. The definition of superco-
herence ensures A1 is compatible with each φ P F ; indeed, if Y “ H and A1 “ S
compatibility is automatic, and otherwise it follows from the compatibility of A
(Definition 6.15) and fact that Zφ “ φpY q is φ–initial for A. Supercoherence also
gives φpA1q “ ψpA1q for all φ, ψ P F ; let us call this common subsurface B1. Hence
proving A1–coherence amounts to establishing agreement on A1. This is equivalent
to showing the subset tpφψ´1q|B1 | φ, ψ P Fu of ModpB1q has uniformly bounded
cardinality. By Lemma 6.4, for this it suffices to prove that

(6.26) dW pφψ
´1pbq, bq `ăΘ 0 for all φ, ψ P F and all domains W Ă B1.

To set notation, for W Ă B1 and φ, ψ P F we will write V “ φ´1pW q Ă A1 and
W 1 “ ψpV q Ă B1. Note that then

(6.27) dW pφψ
´1pbq, bq “ dV pφ

´1pbq, ψ´1pbqq “ dW 1pb, ψφ´1pbqq;

hence we are free to bound either of these three quantities. We first dispense with
the case that Y is empty and, accordingly B1 “ S “ A1:

Claim 6.28. If Y “ H, then dW pφψ
´1pbq, bq `ăΘ 0 for all W Ă B1 and φ, ψ P F .

Proof. First suppose W P Dpφq. Since DApφq “ H by definition of supercoherence,
evidently W R DApφq which means W Ă φpAq and hence V Ă A. Since φ and ψ
agree on A, we may apply the equal isometries φ “ ψ : CpV q Ñ CpW q to conclude

dV pφ
´1pbq, ψ´1pbqq “ dφpV qpφφ

´1pbq, ψψ´1pbqq “ dW pb, bq ď L.

If W 1 P Dpφq we similarly conclude dV pφ
´1pbq, ψ´1pbqq ď L.

It remains to suppose W R Dpφq and W 1 R Dpψq. By Lemma 6.7, this gives

dV pφ
´1pbq, xφq “ dW pb, xφq

`
ăΘ 0 and dV pψ

´1pbq, xψq “ dW 1pb, xψq
`
ăΘ 0.

Hence by the triangle inequality it suffices to bound dV pxφ, xψq. Observe that there
exists n ě 0 so that φ´npV q R Dpφq and ψ´npV q R Dpψq; if n`1 “ m0 is the order
of φ0 (and thus of φ and ψ as well), then the condition is satisfied for φ´npV q “W
and ψ´npV q “ W 1. Thus we may let n ě 0 be the smallest integer so that both
φ´npV q R Dpφq and ψ´npV q R Dpψq.

We claim that φ´ipV q “ ψ´ipV q for each 0 ď i ď n. Indeed, when 0 ď i ă n
either φ´ipV q P Dpφq and hence φ´ipV q Ă φpAq “ B, or else ψ´ipV q P Dpψq and
hence ψ´ipV q Ă ψpAq “ B. In either case, inductively assuming φ´ipV q “ ψ´ipV q,
the fact that the maps φ´1, ψ´1 agree on B implies that φ´i´1pV q “ ψ´i´1pV q.

Let us write Vi “ φ´ipV q “ ψ´ipV q for 0 ď i ď n. The facts that Vn R Dpφq
and Vn R Dpψq now, by Lemma 6.7, give

dVnpxφ, xψq ď dVnpxφ, bq ` dVnpb, xψq “ RφVn `R
ψ
Vn
ď 2fm0pΘq `ăΘ 0.

As we have seen, the maps φ, ψ agree on each domain Vn, . . . , V1, V . Successively
applying the isometries φ “ ψ : CpVi`1q Ñ CpViq therefore gives the desired bound

dV pxφ, xψq “ dV1
pxφ, xψq “ ¨ ¨ ¨ “ dVnpxφ, xψq

`
ăΘ 0. �
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We henceforth assume that Y is nonempty and thus, by supercoherence, that
Zθ “ θpY q Ă B1 is initial in DApθq for each θ. After partitioning into at most m0

subfamilies, we may additionally assume each of these initial domains Zθ has the
same index k in Dpθq. By definition, this means tθ´kpZθq, . . . Zθu Ă Dpθq but that
θ´k´1pZθq R Dpθq. Recalling that θ´1pZθq “ Y , the fact that Zθ is initial now
forces θ´k`1pY q, . . . , Y R DApθq, which means θ´npY q Ă A for each 1 ď n ď k.
Since the elements θ P F all agree on A, it follows that for each 1 ď n ď k the
common domain Yn “ θ´npY q and map θ : Yn Ñ Yn´1 are independent of θ P F .

The fact that Yk “ θ´kpY q “ θ´k´1pZθq R Dpθq implies by Lemma 6.7 that

(6.29) dYkpxθ, bq ď fm0pΘq for all θ P F .
Since the numbers dYkpxθ, bq are discrete and uniformly bounded, after further
partitioning into at most fm0pΘq subfamilies we may assume these distances all
agree and hence that RθYk “ dYkpxθ, bq is independent of θ. By definition, the

constants CZθ “ 6RθYk ` 3Θ` 2M are therefore also independent of θ P F .
For any elements φ, ψ P F , by (6.29) and the triangle inequality we have

dYkpxφ, xψq ď dYkpxφ, bq ` dYkpb, xψq ď 2fm0pΘq.

Successively applying the isometries φ|A “ ψ|A : CpYkq Ñ ¨ ¨ ¨ Ñ CpY q thus gives

(6.30) dY pxφ, xψq “ ¨ ¨ ¨ “ dYkpxφ, xψq ď 2fm0pΘq for all φ, ψ P F .
Using this, we next establish (6.26) for the domain W “ Zφ:

Claim 6.31. dZφpφψ
´1pbq, bq ă 3dY pxφ, xψq ` 3Θ `

ăΘ 0 for all φ, ψ P F .

Proof. We know from Proposition 5.5(3) that pxψ, b, ψpx0qq is Θ–aligned; hence:

dZψ pxψ, bq ` dZψ pb, ψpx0qq ď dZψ pxψ, ψpx0qq `Θ

Applying the isometry ψ´1 : CpZψq Ñ CpY q thus gives

dY pxψ, ψ
´1pbqq ` dY pψ

´1pbq, x0q ď dY pxψ, x0q `Θ.

We may swap xψ for xφ at the cost of dY pxψ, xφq and then apply φ : CpY q Ñ CpZφq
to conclude pxφ, φψ

´1pbq, φpx0qq is p2dY pxφ, xψq `Θq–aligned in Zφ:

dZφpxφ, φψ
´1pbqq ` dZφpφψ

´1pbq, φpx0qq ď dZφpxφ, φpx0qq ` 2dY pxψ, xφq `Θ.

Since pxφ, b, φpx0qq is Θ–aligned (Proposition 5.5(3)), Lemma 3.18 now implies that

πZφpbq and πZφpφψ
´1pbqq respectively lie within Θ

2 ` 4δ ` L and dY pxφ, xψq `
Θ
2 `

4δ ` L of any geodesic from πZφpφpx0qq to πZφpxφq.
If Y is nonannular, then supercoherence implies the distances

dZφpφψ
´1pbq, xφq “ dY pψ

´1pbq, xφq, and

dZφpb, xφq “ dZψ pb, xψq “ dY pψ
´1pbq, xψq

differ by at most dY pxφ, xψq. Otherwise Y is annular and the distances

dZφpb, φpx0qq and dZφpφψ
´1pbq, φpx0qq “ dY pψ

´1pbq, x0q “ dZψ pb, ψpx0qq

agree by supercoherence. In either case, these estimates and the fact that πZφpbq
and πZφpφψ

´1pbqq both lie within controlled distance of a CpZφq geodesic from xφ
to φpx0q now imply the desired bound

dZφpφψ
´1pbq, bq ď 3dY pxψ, xφq ` 2Θ` 16δ ` 5L ă 3dY pxφ, xψq ` 3Θ. �

This finishes the proof of Claim 6.31.
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We continue with the proof of (6.26). Now let A0 “ A1{A and B0 “ B1{B. Since
all maps in F send A to B and A1 to B1, it follows that θpA0q “ B0 for all θ P F .
After partitioning into boundedly many subfamilies, we additionally assume, for all
θ, θ1 P F , that θ1θ´1 preserves each component and boundary component of B, B1,
and B0. Note that if A K Y then A1 is just the union of A and Y so that A0 “ Y
and B0 “ θpY q “ Zθ for each θ P F .

Since we already know all φ, ψ agree on A, to prove agreement on A1 it suffices to
establish agreement on A0 and on the boundary components of A that are essential
in A1. The next claim essentially provides agreement on these boundary components

Claim 6.32. dβpBZφ, BZψq
`
ăΘ 0 for each boundary component β of B.

Proof. Let U be the annulus with core BU “ β. By assumption φψ´1pβq “ β and
φψ´1pBZψq “ BZφ. If BZφ is disjoint from β there is nothing to prove, so we assume
BZφ&β, in which case BZψ&β as well. Thus Zφ&U and Zψ&U .

If U Ă B (that is, if B has an annular component isotopic to U) then agreement
on A (coming from A–coherence) immediately implies the claim. So we suppose
U is not a component of B. We claim that dU pb, BZφq

`
ăΘ 0 and, symmetrically,

dU pb, BZψq
`
ăΘ 0. The claim will then follow from the triangle inequality.

By means of contradiction, suppose dU pb, BZφq ą fm0pΘq`M. Since Zφ P Dpφq
satisfies dZφpb, xφq ě M, Corollary 3.27 implies that dU pb, BZφq ď dU pb, xφq `M{3.
Therefore dU pb, xφq ą fm0pΘq and consequently U P Dpφq by Lemma 6.7. Since
U Ă B “ φpAq, it follows that U P DApφq. Now the fact that Zφ is initial in DApφq
forces Zφ C1 U in Dpφq, meaning that Zφ is time ordered before U along rb, xφs.
But this implies dU pb, BZφq ď M{3 contradicting our above assumption. �

Now consider an arbitrary domain W Ă B0. Since B1 is filled by B and Zφ, and
W is disjoint from B, it cannot be that Zφ and W are disjoint. Further, Zφ Ă W
occurs only in the case W “ Zφ, which has been dealt with in Claim 6.31 above.
Thus we may assume W Ĺ Zφ or W&Zφ. Let us deal with these two possibilities
separately.

Claim 6.33. If W Ĺ Zφ (and hence W 1 Ĺ Zψ), then dW pφψ
´1pbq, bq `ăΘ 0.

Proof. First suppose W P Dpφq. Since W Ă B0, we have W Ă B “ φpAq and
consequently W P DApφq as well. Since Zφ is initial in DApφq, it cannot be that
W C2 Zφ. Thus by definition of C2 it must be that

dZφpb, BW q ě CZφ “ 6dYkpb, xφq ` 3Θ` 2M.

Since dYkpxφ, bq “ dYkpxψ, bq by our assumption, the triangle inequality implies
dYkpxφ, xψq ď 2dYkpxφ, bq. From Claim 6.31 we also know that

dZφpφψ
´1pbq, bq ă 3dYkpxφ, xψq ` 3Θ.

Combining these yields dZφpb, BW q ą dZφpφψ
´1pbq, bq ` M. The BGIT (Corol-

lary 3.27) therefore implies the bound dW pb, φψ
´1pbqq ă M `

ă 0. If W 1 P Dpψq the
same reasoning bounds dW 1pψφ´1pbq, bq.

It remains to suppose W R Dpφq and W 1 R Dpψq which, by Lemma 6.7, implies

dV pφ
´1pbq, xφq “ dW pb, xφq ď fm0pΘq, dV pψ

´1pbq, xψq “ dW 1pb, xψq ď fm0pΘq.

Hence in order to bound dV pφ
´1pbq, ψ´1pbqq it suffices to bound dV pxφ, xψq. For

each 1 ď j ď k, we have that φ´jpW q Ă Yj´1 Ą ψ´jpW 1q. Since φ´1pW q “
V “ ψ´1pW 1q by construction and φ´1 agrees with ψ´1 on Yj´1 Ă B, it follows



COUNTING FINITE-ORDER MAPPING CLASSES 47

by induction that φ´j´1pW q “ ψ´j´1pW 1q for each 1 ď j ď k and that φ agrees
with ψ on this domain, which for brevity we denote Vj “ φ´jpV q “ φ´j´1pW q.
Applying the equal maps φ “ ψ to Vj for 1 ď j ď k thus gives

dVkpxφ, xψq “ ¨ ¨ ¨ “ dV pxφ, xψq.

Hence it suffices to bound dVkpxφ, xψq.
If dVkpxφ, bq, dVkpb, xψq ď M we are done by the triangle inequality. Supposing

instead dVkpxφ, bq ą M, then Corollary 3.27 implies dYkpxφ, BVkq ď dYkpxφ, bq `M.
As dYkpxφ, xψq ď 2dYkpb, xφq, we thus also have dYkpxψ, BVkq ď 3dYkpb, xφq ` M.
Similar reasoning applies if dVkpxψ, bq ą M, so that in either case we may assume

dYkpxφ, BVkq ď 3RφYk `M and dYkpxψ, BVkq ď 3RψYk `M.

As the leftmost quantity above is invariant under applying φ, this gives

(6.34) dφpYjqpxφ, BφpVjqq “ dYkpxφ, BVkq ď 3RφYk `M for all 0 ď j ď k,

On the other hand, the fact that tφpYkq, . . . , φpY qu is a jump sequence for φ ensures

dφpYjqpb, xφq ě fpRφYkq “ 7RφYk ` 7Θ for all 0 ď j ď k.

Since pxφ, b, x0q and pxφ, b, φpx0qq are Θ–aligned in Yj by Proposition 5.5(4) (as
Vj Ĺ Yj ensures Yj is nonannular), we claim this implies

dφpVjqpb, x0q, dφpVjqpb, φpx0qq ď M for all 0 ď j ď k.

Indeed if, say, dφpVjqpb, x0q ą M then we may choose u P rb, x0s containing BφpVjq
in is Bers marking and use alignment to conclude

dφpYjqpxφ, BφpVjqq ` L ě dφpYjqpxφ, uq ě dφpYjqpxφ, x0q ´ dφpYjqpx0, uq

ě dφpYjqpxφ, bq ` dφpYjqpb, x0q ´ dφpYjqpx0, uq ´Θ

ě dφpYjqpxφ, bq ` dφpYjqpb, uq ´Θ´ B ě 7RφYk ` 5Θ,

contradicting (6.34). A similar contradiction arises if dφpVjqpb, φpx0qq ą M. By the
triangle inequality, for each 0 ď j ď k we now deduce

dVj pxφ, x0q “ dφpVjqpxφ, φpx0qq ď dφpVjqpxφ, x0q ` 2M.

Applying this inductively for j “ k, . . . , 1 therefore gives

dVkpxφ, x0q ´ 2kM ď dV pxφ, x0q “ dW pxφ, φpx0qq ď dW pxφ, bq `M.

Since k ă m0 and dW pxφ, bq ď fm0pΘq by virtue of W R Dpφq, we conclude that

dVkpxφ, x0q ď fm0pΘq ` 2m0M.

A symmetric argument yields dVkpxψ, x0q ď fm0pΘq`2m0M. The triangle inequal-
ity therefore gives dVkpxφ, xψq

`
ăΘ 0 and completes the proof of the claim. �

Claim 6.35. If W&Zφ (and hence W 1&Zψ) then dW pφψ
´1pbq, bq `ăΘ 0.

Proof. Observe first that dW pxφ, BZφq “ dV pxφ, BY q. If this quantity is larger

than 3M
2 , then, since dZφpb, xφq ě M, Corollary 3.27 implies that dW pxφ, bq ě

dW pxφ, BZφq ´M{3 ą M. Therefore W has an active interval and is time-ordered
before Zφ along rxφ, bs. In this case dZφpxφ, BW q ď M{3 and so

dZφpb, BW q ě dZφpb, xφq ´ dZφpBW,xφq ě fpRφYkq ´
M
3
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by the fact that Zφ satisfies the jumping criterion to be inDpφq. Recalling Claim 6.31,

the assumption dYkpb, xψq “ dYkpb, xφq “ RφYk , and the definition of f , we also have

dZφpφψ
´1pbq, bq ď 3dYkpxφ, xψq ` 3Θ ď 6RφYk ` 3Θ ă fpRφYkq ´ 2M.

Therefore applying φ´1 to the left side of the previous two displayed inequalities
gives

dY pφ
´1pbq, BV q ě dY pψ

´1pbq, φ´1pbqq `M.

By Corollary 3.27, it follows that we must have dV pφ
´1pbq, ψ´1pbqq ă M `

ăΘ 0.
This proves the claim in the case that dW pxφ, BZφq “ dV pxφ, BY q ě

3M
2 . The same

reasoning applies when dW 1pxψ, BZψq “ dV pxψ, BY q ě
3M
2 .

Now suppose W P Dpφq. Since W is disjoint from B “ φpAq, we necessarily
have W P DApφq. The fact that Zφ is initial in DApφq thus implies Zφ C1 W
in Dpφq. That is, W is time-ordered before Zφ along rxφ, bs and so dW pxφ, BZq ě
dW pxφ, bq´dW pBZ, bq ě 7Θ´M{3 ą 6M and we are done by the previous paragraph.
The same conclusion holds if W 1 P Dpψq.

It remains to suppose dV pxφ, BY q, dV pxψ, BY q ă
3M
2 and W R Dpφq, W 1 R Dpψq.

In particular dV pxφ, xψq ď dV pxφ, BY q ` dV pxψ, BY q ă 3M. Furthermore,

dV pxφ, φ
´1pbqq “ dW pxφ, bq and dV pxψ, ψ

´1pbqq “ dW 1pxψ, bq

are both bounded by fm0pΘq. Hence by the triangle inequality, dV pφ
´1pbq, ψ´1pbqq

is bounded by 2fm0pΘq plus dV pxφ, xψq and therefore by 2fm0pΘq ` 3M `
ăΘ 0. �

With these claims in hand, we may now complete the proof of the proposition.
When Y is empty and B1 “ S, Claim 6.28 shows dW pφψ

´1pbq, bqq `ăΘ 0 for all
φ, ψ P F . Thus by Lemma 6.4 we may partition into boundedly many subcollections
to achieve agreement on A1 “ S. When Y is nonempty, we as above set A0 “ A1{A
and B0 “ B1zB and partition so that all maps send A to B and A0 to B0 inducing
the same bijection of boundary components. By assumption we know all maps
agree on A. Claims 6.31, 6.33 and 6.35 together with Lemma 6.4 imply that up to
partitioning into boundedly many subfamilies we may assume all maps A0 Ñ B0

agree as well. If Y is disjoint from A, then A1 is the disjoint union of A and A0

and agreement on A1 definitionally follows from agreement on A and A0. Otherwise
Y&A and B1 is obtained by gluing B and B0 along certain boundary components β
of BB that are essential in B1. All of our maps φψ´1 : B1 Ñ B1 preserve these curves
and are the identity on the complement B1zBB “ B \ B0. These compositions
φψ´1 thus lie in the kernel of ModpB1q Ñ ModpB1zBBq “ ModpBq ˆ ModpB0q

and therefore consist of Dehn twists about these curves β. Finally, Claim 6.32
dβpφψ

´1pBZψq, BZψq “ dβpBZφ, BZψq
`
ăΘ 0 shows that only boundedly many Dehn

twists about β arise among these compositions. Therefore pairs φ, ψ P F produce
only boundedly many maps φψ´1 : B1 Ñ B1 and we may again partition so that all
pairs agree as maps A1 Ñ B1. �

We can now prove the main theorem of this section

Proof of Theorem 6.1. Given a pair points a, b, we consider the family F0 Ă rφ0s

consisting of those φ for which aφ “ a and bφ “ b with dT pSqpx0, φpx0qq ď r. Let
A0 “ H. The family F0 is trivially A0–coherent with displacement rpF0q ď r.

By induction, suppose we are given a subsurface Ak and subcollection Fk Ă F0

that is Ak–coherent. If Ak “ S, then all elements of Fk agree on S. Otherwise
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we apply Lemma 6.24 and subdivide Fk into at most q2prpFkqq ď q2prq subfamilies
F 1k Ă Fk that are each pAk, Y

1
kq–supercoherent for some domain Y 1k. Now apply

Proposition 6.25 to further partition each F 1k into q3 subfamilies Fk`1 that are each
Ak`1–coherent, where Ak`1 is S when Yk is empty and is otherwise the subsurface
filled by Ak and Yk.

Since each iteration Fk ù Fk`1 yields coherence on a strictly larger subsurface
Ak`1 Ľ Ak, any chain F0 Ą F1 Ą . . . produced in this way must terminate at
Ak “ S within k ď ξpSq steps. Since at each step each Fk is partitioned into
at most q3q2prq subfamilies, this iterative procedure ultimately produces at most
pq3q2prqq

ξpSq subfamilies F that are each S–coherent. By definition of coherence,
all elements φ, ψ P F agree on S and thus in fact are equal. Hence in total there
are at most pq3q2prqq

ξpSq elements φ in the original collection F0 �

7. Witness families

We now lay the foundation for our main technical construction of the “complexity
length” between points of T pΣq. This notion of length is defined in terms of curve
complex data of subsurfaces of Σ and relies on building and manipulating collections
of subsurfaces with certain properties. In this section we introduce our terminology
and establish basic operations and results about such families. The definition of
complexity length will then be given in §8.2.

Given any parameter C ě 2M, we once and for all fix a sequence of constants

(7.1) ξpSq ` 30C
ε0
ε01
“ NξpSq`1 ď NξpSq ď NξpSq´1 ď . . . ď N0 ď N´1 “ N,

where M and ε0 ą ε0
1 are from Definition 3.24. Note that 1 “ ξpS0,4q and ´1 “

ξpannulusq. The exact value of these constants (along with other related constants)
will be specified later in a recursive manner (Proposition 10.13), but we stress that
they depend only on C and S. By abuse of notation, for any domain V of S we set
NV :“ NξpV q and emphasize that these depend only on the integer ξpV q and not on
the domain V .

Definition 7.2. For Σ a domain in S and x, y P T pΣq we consider the following
collections of subdomains:

Υcpx, yq “
 

V Ă Σ | dV px, yq ě NV
(

, and

Υ`px, yq “
 

A Ă Σ | A an annulus with mint`xpBAq, `xpBAqu ă ε0{NA ă ε0
1
(

.

Thus Υc consists of those domains with big curve complex distance, and Υ`px, yq
consists of those curves (really annuli) with drastic length difference at x and y.
Note that

ˇ

ˇΥ`px, yq
ˇ

ˇ ď 2ξpΣq, since x and y each have at most ξpΣq curves of length
smaller than ε0. We then define

Υpx, yq “ Υcpx, yq YΥ`px, yq

and, when the points x, y are understood, abbreviate these simply as Υ,Υc,Υ`.

Remark 7.3. Observe that every V P Υ has a nonempty active interval IV along
rx, ys. If V P Υc this follows form Lemma 3.26(1). If instead V P Υ` then V is an

annulus with at least one of `xpBV q or `ypBV q smaller than 1
NV
ε0 ď

ε0
1

30Cε0
ε0 ă ε0

1.

Hence IV “ Ĩε0V is nonempty by Definition 3.25 and Theorem 3.22(2).



50 DOWDALL AND MASUR

The distance formula (Theorem 3.33) basically says the domains V of Υpx, yq
(along with the projections πV p˚q and lengths `˚pBV q when V is an annulus) ac-
count for all of the data needed to estimate dT pΣqpx, yq. However, the multiplicative
error in the distance formula is unacceptable in our application because dT pΣqpx, yq
goes into the exponent and the whole point is to calculate its coefficient.

Morally, this multiplicative error stems from the fact that the collection Υpx, yq
can be arbitrarily large. The point of witness families, defined next, is to partition
Υpx, yq into uniformly boundedly many subcollections (Definition 8.2). The data
for each subcollection will then be recombined into a Teichmüller distance (Defini-
tion 8.7). If everything is done carefully, the weighted sum of these distances may
be related to dT pΣqpx, yq with only additive error (Theorem 11.2).

Definition 7.4 (Witness family). Let Σ be a domain in S. A collection Ω of
domains of Σ is called a witness family for a geodesic segment rx, ys in T pΣq if:

(WF1) Every V P Ω satisfies V P Υpx, yq; that is Ω Ă Υpx, yq.
(WF2) Every Z Ă Σ with Z P Υpx, yq satisfies Z Ă V for some V P Ω.
(WF3) If Z Ă W are such that Z P Ω and W P Υpx, yq, then either W P Ω or else

W&Z 1 for some Z 1 P Ω with Z Ă Z 1.

7.1. Supremums for witness families. We will have need to discuss the minimal
subsurfaces in a collection that contain a given subsurface:

Definition 7.5 (Minimal containment). If Ω is a collection of subsurfaces of Σ and
Z is an arbitrary subsurface of Σ, we use the notation Z űΩ W to mean that W
is a minimal (with respect to inclusion) subsurface of Σ satisfying the conditions
Z Ă W and W P Ω. If W is moreover the unique element of Ω such that Z űΩ W ,
we write W “ Z̄Ω and call W the Ω–supremum of Z.

Lemma 7.6. Let Ω be a witness family for rx, ys and suppose that W Ă Σ has an
Ω–supremum W̄Ω P Ω. Then W̄Ω Ă V for every V P Ω with W Ă V .

Proof. Let V P Ω be such that W Ă V . Then the family tV 1 P Ω | W Ă V 1 Ă V u
is nonempty and so contains a topologically minimal element V0. By minimality, it
must be that W űΩ V0. The assumed uniqueness of the Ω–supremum now implies
that W̄Ω “ V0 Ă V , as claimed. �

7.2. Complete witness families. In general, a domain Z could satisfy Z űΩ W
for multiple elements W of a witness family Ω. Our construction of Teichmüller res-
olutions below will utilize witness families for which every large-projection domain
has a Ω–supremum:

Definition 7.7 (Completeness). A witness family Ω for a geodesic segment rx, ys
in T pΣq is said to be complete if every domain Z Ă Σ with Z P Υpx, yq has an
Ω–supremum Z̄Ω P Ω.

We next describe a criterion for completeness. Suppose that A,B Ă Σ are two
domains with A&B. Define FpA,Bq to be the collection

FpA,Bq :“ tZ Ă Σ | Z Ă A,Z Ă B and Z P Υpx, yqu

and let FpA,Bq be the subcollection of topologically maximal surfaces in FpA,Bq.

Lemma 7.8. For every geodesic rx, ys in T pΣq and pair of domains A,B Ă Σ with
A&B, one has |FpA,Bq|j ď p2Nj`1q

ξpΣq`2 for every ´1 ď j ď ξpΣq.
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Proof. Consider FcpA,Bq “ tZ Ă Σ | Z Ă A,Z Ă B and Z P Υcpx, yqu. Applying
Lemma 4.1 to the essential intersection A [ B (Lemma 3.3) immediately yields
|Fc
pA,Bq|j ď p2Nj`1q

ξpΣq`1 for every ´1 ď j ď ξpΣq. Since FpA,Bq Ă FcpA,BqY

Υ`px, yq and Υ`px, yq consists of annuli, we see that FpA,Bq Ă Fc
pA,BqYΥ`px, yq

and that the claimed bound follows for all 0 ď j ď ξpΣq. For j “ ´1, the fact
ˇ

ˇΥ`px, yq
ˇ

ˇ ď 2ξpΣq ď N0 now gives |FpA,Bq|´1 ď p2N0q
ξpΣq`2. �

Let Ω be a witness family for rx, ys in T pΣq. A cutting pair in Ω is a pair of
subsurfaces A,B P Ω such that A&B. We say that the cutting pair pA,Bq is filled
in Ω if FpA,Bq Ă Ω and that the pair is unfilled otherwise.

Lemma 7.9 (Filled to completeness). A witness family Ω for rx, ys in T pΣq is
complete if and only if every cutting pair pA,Bq in Ω is filled.

Proof. First suppose every cutting pair in Ω is filled. Let Z Ă Σ be any domain
with Z P Υpx, yq. Condition (WF2) ensures there exists some A P Ω with Z űΩ A.
Thus if Z fails to have an Ω–supremum, there is a second domain B P Ω with
B ‰ A and Z űΩ B. By minimality, A and B cannot be nested and so we have
A&B. It follows that pA,Bq is a cutting pair and that Z P FpA,Bq. Therefore, by
definition of FpA,Bq, we have Z Ă Z0 for some Z0 P FpA,Bq. The hypothesis that
pA,Bq is filled now implies that Z0 P Ω. But since Z Ă Z0 Ă A,B, this contradicts
the minimality of Z űΩ A and Z űΩ B. Therefore Z̄Ω exists.

Next suppose Ω is complete. Let pA,Bq be a cutting pair in Ω and choose any
Z P FpA,Bq. We must show Z P Ω. Since Z Ă A, the Ω–supremum necessarily
satisfies Z̄Ω Ă A by Lemma 7.6. Similarly Z̄Ω Ă B. Therefore Z̄Ω P FpA,Bq by
definition. Since Z is a topologically maximal element of FpA,Bq and Z Ă Z̄Ω by
definition, it follows that Z “ Z̄Ω P Ω. �

7.3. Insulation. Let rx, ys be a Teichmüller geodesic in T pΣq. If Z, V Ă Σ are two
domains with Z Ă V and Z ‰ V , define

CpV |Zq “ tα P CpV q | α is essential or peripheral in Zu “ ΓpZq Y BZ.

Observe that CpV |Zq has diameter at most 2 in CpV q. For any domain E Ă Σ and
parameter 0 ď t ď dEpx, yq, we then define LtpEq and RtpEq to be the topologically
maximal domains in the respective collections

LtpEq :“
 

Z Ĺ E | Z P Υpx, yq and Dα P CpE|Zq : dEpα, xq P rt´ 9C, t` 9Cs
(

RtpEq :“
 

Z Ĺ E | Z P Υpx, yq and Dα P CpE|Zq : dEpα, yq P rt´ 9C, t` 9Cs
(

,

where here dEpα, xq “ diamCpEqpπEpxqYtαuq and similarly for dEpα, yq. Note that
by construction LtpAq “ H “ RtpAq for any annulus A.

Lemma 7.10. For every geodesic rx, ys in T pΣq, domain E Ă Σ, and parameter t
with 0 ď t ď dEpx, yq ě NE, one has |LtpEq|j , |RtpEq|j ď p2Nj`1q

ξpΣq`3 for every

´1 ď j ď ξpΣq.

Proof. We give the proof for LtpEq: As in the proof of Lemma 7.8, let

LctpEq “
 

Z Ĺ E | Z P Υcpx, yq and Dα P CpE|Zq : dEpα, xq P rt´ 9C, t` 9Cs
(

and observe that LtpEq Ă LctpEq Y Υ`px, yq. Since
ˇ

ˇΥ`px, yq
ˇ

ˇ ď 2ξpΣq ď Nj`1, it

therefore suffices to prove that |LctpEq|j ď p2Nj`1q
ξpΣq`2 for all ´1 ď j ď ξpΣq.

Choose α P πEpxq and β P πEpyq realizing the distance dEpx, yq “ dCpEqpα, βq
and fix a geodesic α “ γ0, . . . , γm “ β in CpEq. As in the proof of Lemma 4.1,
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we claim that every Z Ĺ E with dZpx, yq ě NZ is disjoint from some curve γi.
Indeed, this is immediate if α or β misses Z, and otherwise Lemma 3.9 ensures
dCpZqpπZpαq, πZpβqq ě dZpx, yq´2k ě M´2k so that the Bounded Geodesic Image
Theorem implies πZpγiq “ H for some i.

Thus every Z P LctpEq is disjoint from some γi. Further, from the definition of
LctpEq, we see that this curve γi must satisfy dEpγi, xq P rt ´ 9C ´ 1, t ` 9C ` 1s.
Since diamCpEqpπEpxqq ď L, this implies dCpEqpα, γiq P rt ´ 9C ´ 2L, t ` 9C ` 2Ls.
Letting W denote the set of all components of Ezγi obtained as i ranges between
maxt0, t´ 9C´ 2Lu and mintm, t` 9C` 2Lu, it follows that

LctpEq Ă
ď

WPW
PpW q,

where PpW q is as in Lemma 4.1. Now let Z P LctpEq be a topologically maximal
element of LctpEq and choose W P W such that Z P PpW q. If Z Ĺ V for some
V P PpW q, then the facts dV px, yq ě NV and Z Ă V Ĺ E with Z P LctpEq
imply that V P LctpEq as well. But this contradicts the maximality of Z in LctpEq.
Therefore Z is maximal in PpW q as well. This proves LctpEq Ă

Ť

W PpW q. We
may now invoke Lemma 4.1 to conclude

|LctpEq|j ď
ÿ

WPW
|P pW q|j ď |W| p2Nj`1q

ξpΣq`1 ď 2p18C` 5Lqp2Nj`1q
ξpΣq`1

for every j. Since 18C` 5L ă 23C ă Nj`1, the lemma follows. �

Definition 7.11 (Insulation). If Ω is a witness family for rx, ys in T pΣq, we say
that E P Ω is insulated in Ω if L0pEq YR0pEq Ă Ω. The witness family Ω is said
to be insulated if every E P Ω is insulated in Ω.

The terminology stems from the observation that if E is insulated in Ω, then for
every domain Z P Υpx, yq with Z űΩ E, BZ occurs towards the middle or “interior”
of the geodesic rπEpxq, πEpyqs in CpEq, rather than near the endpoints. This has
the following useful consequence:

Lemma 7.12. Let Ω be witness family for rx, ys in T pΣq.
(1) Suppose V P Ω is insulated in Ω. If Z Ă Σ is such that Z űΩ V with

Z P Υpx, yq, then the active intervals of Z and V satisfy IZ Ă IV .
(2) Suppose V P Ω is insulated in Ω. If Z,W Ă Σ are such that Z űΩ V with

Z P Υpx, yq and W,V time-ordered along rx, ys, then W&Z.
(3) Suppose Ω is insulated. If V1, V2 P Ω are such that V1&V2 and Z1, Z2 Ă Σ

are such that Zi P Υpx, yq and Zi űΩ Vi for i “ 1, 2, then Z1&Z2.

Proof. Suppose, contrary to (1), that z R IV for some point z P IZ . Then z lies in
the same component of rx, yszIV as either x or y. Without loss of generality, say x
an z lie in the same component. Then dV px, zq ď M{3 by Lemma 3.26(3). Since the
Bers marking at z contains BZ by Lemma 3.26(2), it follows that dV px, BZq ď M{3
and thus that Z P L0pV q by definition. Hence Z Ă Z 1 Ĺ V for some Z 1 P L0pV q.
But then Z 1 P Ω by the insulation of V , contradicting Z űΩ V .

We next prove (2): If W and Z do not cut, then BW and BZ are disjoint so
that dV pCpV |Zq, BW q ď 2 ` dV pBW, BZq ď 3 ă M{2. The fact that W and V are
time-ordered implies mintdV pBW,xq, dV pBW, yqu ă M{3 by Lemma 3.29. Therefore
Z P L0pV q YR0pV q and hence Z Ă Z 1 for some Z 1 P L0pV q YR0pV q. Since V is
insulated in Ω, it follows that Z 1 P Ω, contradicting Z űΩ V .
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Conclusion (3) now follows easily. Since V1 is insulated in Ω by hypothesis, (2)
implies Z1&V2. Applying (2) again to the insulated V2 P Ω, we conclude Z1&Z2. �

We also note the following useful observation:

Lemma 7.13. If Ω is an insulated witness family for rx, ys, then Υ`px, yq Ă Ω.

Proof. Consider any annulus A P Υ`px, yq. Then either `xpBAq ă ε0 or `ypBAq ă ε0;
by symmetry, let us suppose it is the former. By (WF2), there exists some Z P Ω
with A űΩ Z. If A “ Z we are done. Otherwise BA is an essential curve in Z, and
the fact `xpBAq ă ε0 implies that dZpx, BAq ď L ď M. Thus A P L0pZq and hence
A Ă Z 1 for some Z 1 P L0pZq. Since Ω is insulated, we have Z 1 P Ω. But now the
containments A Ă Z 1 Ĺ Z contradict A űΩ Z. �

7.4. Subordered witness families. To construct our complexity length, we will
work with witness families that come equipped with the following structure:

Definition 7.14 (Subordering). Let Ω be a witness family for the segment rx, ys
in T pΣq. A subordering on Ω is an ordering designation Z Ö V exclusive or V Œ Z
for every Z, V P Ω with Z Ĺ V . This ordering data must satisfy:

(SO1) If Z,W, V P Ω are such that Z Ĺ W Ĺ V then

Z Ö V ðñ W Ö V (and so V Œ Z ðñ V ŒW also).

(SO2) If Z,W, V P Ω are such that Z Ö V ŒW , then Z&VW and Z ă̈W .
(SO3) If Z, V P Ω and W Ă Σ with W P Υpx, yq are such that Z Ö V ă̈ W or

W ă̈ V Œ Z, then Z&VW .
(SO4) If Z, V P Ω are such that Z Ö V (resp. V Œ Z), then there does not exist

any domain W P Υpx, yq with W̄Ω “ V , and W ă̈ Z (resp. Z ă̈W ).

Remark 7.15. Condition (SO2) in fact implies condition (SO1), as can be seen by
noting that if Z Ĺ W Ĺ V , then Z&VW clearly fails so that Z Ö V Œ W and
W Ö V Œ Z must both fail as well.

If Ω and Ω1 are two subordered witness families with Ω Ă Ω1, we say that the
subordering on Ω1 extends the subordering on Ω if the ordering designations coming
from Ω and Ω1 agree on each pair Z, V P Ω with Z Ĺ V . Subordered witness families
enjoy the following property:

Lemma 7.16. Let Ω be a subordered witness family for a geodesic rx, ys in T pΣq.
Fix a domain V P Ω and let W Ĺ V be a domain with W P Υpx, yq and W̄Ω “ V .
Then for any Z P Ω with Z Ö V (resp. V Œ Z) we have that either Z and W are
disjoint, or IZ occurs before (resp. after) IW .

Proof. We only consider the case Z Ö V . If Z and W are disjoint, the lemma is
satisfied. If Z&W , then (SO4) ensures we have the time ordering Z ă̈ W so that
IZ occurs before IW as required. The possibility W Ă Z is ruled out by W̄Ω “ V ,
so it remains to consider the case Z Ĺ W .

Here, since W R Ω, (WF3) provides Z 1 P Ω so that Z Ă Z 1 and Z 1&W . Either
Z 1&V , in which case (SO3) (applied to Z Ö V and Z Ă Z 1) forces Z 1 ă̈ V and
hence Z 1 ă̈ W by Corollary 3.31. Otherwise Z 1 Ă V and (SO1) gives Z 1 Ö V so
that we may invoke (SO4) (using Z 1&W ) to again conclude Z 1 ă̈W .

Since IZ1 is nonempty with Z 1&W , Lemma 3.26(4) now implies IZ X IW “ H.
In fact, since Z 1 ă̈W it must be that IZ occurs before IW along rx, ys. �
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Definition 7.17 (Encroachment). Let Ω be a subordered witness family for rx, ys
in T pΣq. For V P Ω, the left and right encroachments of V in Ω are defined as

E`ΩpV q :“ sup
ZPΩ,ZÖV

dV px, CpV |Zqq and ErΩpV q :“ sup
ZPΩ,VŒZ

dV py, CpV |Zqq,

respectively (where here dV pw, CpV |Zqq “ diamCpV qpπV pwq Y CpV |Zqq). The en-

croachment of V is then defined as EΩpV q “ maxtE`ΩpV q, ErΩpV qu. To streamline
notation, for each W R Ω these encroachments are set to zero:

E`ΩpW q “ ErΩpW q “ EΩpW q “ 0 when W R Ω.

Definition 7.18 (Wide). A subordered witness family Ω is wide if EΩpV q ď NV {3
for all V P Ω.

We next describe two operations—refinement and augmentation—that may be
used to enlarge a witness family and ultimately produce one that is both complete
and insulated. For each operation, we must work to show that suborderings may
be naturally extended to the new family.

7.5. Refinement. Lemma 7.9 suggests a means of making any witness family com-
plete: simply add collections of the form FpA,Bq until every cutting pair is filled.
This motivates the following operation:

Definition 7.19 (Refinement). Let Ω be a witness family for rx, ys and let pA,Bq
be a cutting pair in Ω. The refinement of Ω along pA,Bq is the collection

ΩpA,Bq :“ ΩY FpA,Bq.

Thus ΩpA,Bq “ Ω if and only if pA,Bq is a filled cutting pair in Ω. Fortunately
refinement always produces a new witness family.

Lemma 7.20. Let Ω be a witness family for rx, ys in T pSq and let pA,Bq be a
cutting pair in Ω. Then the refinement ΩpA,Bq is a witness family for rx, ys and
the pair pA,Bq is filled in ΩpA,Bq.

Proof. It is obvious that pA,Bq is filled in ΩpA,Bq, provided that ΩpA,Bq is a
witness family. For this, conditions (WF1) and (WF2) are immediate; we verify
(WF3). Let Z Ă W be such that Z P ΩpA,Bq and W P Υpx, yq. If Z P Ω, then
W satisfies condition (WF3) because Ω Ă ΩpA,Bq is a witness family. Therefore
we may suppose Z R Ω so that Z P FpA,Bq. If W Ă A and W Ă B, then the fact
W P Υpx, yq implies W P FpA,Bq so that W “ Z P ΩpA,Bq by maximality of Z.
If W cuts A or B, then we have verified (WF3) since A and B lie in ΩpA,Bq and
contain Z. Therefore, let us suppose W cuts neither A nor B and that rW Ă A
and W Ă Bs fails. In this case we must have A,B Ă W . But now (WF3), applied
to A P Ω, implies that either W P Ω Ă ΩpA,Bq or else that W&Z 1 for some
Z 1 P Ω Ă ΩpA,Bq with Z 1 Ą A Ą Z. This proves that ΩpA,Bq satisfies condition
(WF3) and establishes the lemma. �

Furthermore, suborderings always extend to refinements:

Lemma 7.21 (Subordering refinements). If Ω is a subordered witness family for
rx, ys in T pΣq and pA,Bq is a cutting pair in Ω, then there is a unique subordering
on the refinement ΩpA,Bq that extends the subordering on Ω.
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Proof. To simplify notation, write Ω “ ΩpA,Bq and without loss of generality
suppose A ă̈ B. We first show that conditions (SO1)–(SO4) uniquely determine a
well-defined ordering designation

�
or �for each pair Z, V P Ω with Z Ĺ V :

(1) If Z, V P Ω we must use the ordering designation from Ω: Z
�
V iff Z Ö V .

(2) If V P Ω and Z R Ω, then Z P FpA,Bq so that (SO3) forces us to set
A �Z

�
B (since Z&AB and A&BZ both fail). We claim that exactly one

of the following hold: (i) A,B Ă V , (ii) A ă̈ V , or (iii) V ă̈ B. Firstly, it is
impossible to have V Ă A,B, as that would contradict the maximality of
Z in FpA,Bq. Triple nesting A Ă V Ă B or B Ă V Ă A is also ruled out
by A&B. Thus if (i) fails, then V necessarily cuts A or B. If A&V then
we must have A ă̈ V along rx, ys, for otherwise we have V ă̈ A ă̈ B and
(by Corollary 3.30) V&AB, contradicting Z Ă V,A,B. Similarly, if V&B
then V ă̈ B and we are in case (iii). To prove the claim, it remains to show
(ii) and (iii) are mutually exclusive; but this is clear: since A&VB fails (as
Z Ă A, V,B), Corollary 3.30 precludes A ă̈ V ă̈ B. We now suborder Z
and V in each case:
(i) If A,B Ă V , then (SO2) implies AÖ V ðñ B Ö V . In accordance

with (SO1), we thus set Z
�
V in the case that A Ö V and B Ö V

and set V �Z in the case that V Œ A and V Œ B.

(ii) If A ă̈ V we declare Z
�
V in accordance with (SO3), since  pA&V Zq.

(iii) If V ă̈ B we similarly declare V �Z.
(3) If Z P Ω and V R Ω, then V P FpA,Bq. Here (WF3) implies that V&Z 1

for some Z 1 P Ω with Z Ă Z 1. Since  pZ 1&V Zq, we thus declare Z
�
V if

Z 1 ă̈ V and V �Z if V ă̈ Z 1 in accordance with (SO3). Note that this is
well-defined: If Z 10 P Ω is any other such domain, Z 1 ă̈ V ă̈ Z 10 is ruled out
by Corollary 3.30 and the fact  pZ 1&V Z

1
0q.

(4) If Z, V R Ω then Z, V P FpA,Bq, contradicting the fact that no two surfaces
in FpA,Bq can be properly nested. Therefore this case does not occur.

We have now established ordering designations on Ω that extend those of Ω. We
henceforth use Ö and Œ for these orderings in both Ω and Ω, as the meaning is
unambiguous. It remains to show these in fact give a subordering on Ω:

Condition (SO2): Let Z,W, V P Ω be such that Z Ö V Œ W . If all three
domains are in Ω the condition is clear. Suppose V R Ω. Then Z,W P Ω since
no pair of domains in FpA,Bq are nested. By case (3) above, there must exist
Z 1,W 1 P Ω such that Z Ă Z 1, W Ă W 1, and Z 1 ă̈ V ă̈ W 1. Corollaries 3.30–3.31
now imply Z 1&VW

1 and consequently Z&VW and Z ă̈W .
Next suppose V P Ω. Observe that if Z,W R Ω, then case (2) above dictates that

orderings for Z Ĺ V and W Ĺ V are both determined solely by the relationship of
V to A and B so that in fact Z Ö V ðñ W Ö V . As this is not the case, we
see that at most one of Z,W can lie outside of Ω. By symmetry, let us suppose
that Z R Ω (so that Z P FpA,Bq) and W P Ω. Since Z Ö V , the definition in
(2) dictates that either A,B Ö V , or else A ă̈ V . If A,B Ö V , then we have
B Ö V Œ W with B,W, V P Ω so that (SO2) for Ω implies B ă̈ W with B&VW .
If A,B Ö V fails, then we have A ă̈ V Œ W so that (SO3) for Ω implies A&VW .
Since Z Ă A,B, either of these outcomes implies Z&VW . Using Corollary 3.31, we
may further conclude Z ă̈W . Thus condition (SO2) is satisfied in this case.

Condition (SO1): This follows from the above and Remark 7.15.
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Condition (SO3): Let Z, V P Ω and W P Υpx, yq be such that Z Ö V ă̈ W
(the case W ă̈ V Œ Z is similar). We must show Z&VW . As above, this is clear if
Z, V P Ω, and at most one of Z or V can lie outside of Ω. Suppose first that Z R Ω,
so that Z P FpA,Bq, and Ω P V . Let us first consider the case (2i) above in which
A,B Ă V . Since Z Ö V , the definition dictates that AÖ V as well. Therefore we
may apply (SO3) for Ω to AÖ V ă̈W and conclude that A&VW . If we are not in
case (2i), then (since Z Ö V ) we must be in case (2ii) with A ă̈ V . Therefore we
have A ă̈ V ă̈ W and Corollary 3.30 gives A&VW . In either case, since relative
cutting descends to the subsurface Z Ă A, we may conclude Z&VW as desired.

It remains to suppose that Z P Ω and V R Ω. Now case (3) dictates that there
is a domain Z 1 P Ω with Z Ă Z 1 and Z 1 ă̈ V . Therefore we have Z Ă Z 1 ă̈ V ă̈W
and may again conclude Z 1&VW and consequently Z&VW . This proves that Ω
satisfies condition (SO3).

Condition (SO4): Let Z, V P Ω be such that Z Ö V and suppose that W P

Υpx, yq satisfies W̄Ω “ V . We show that W ă̈ Z. (The case V Œ Z is similar).
This is clear if Z and W are disjoint or nested, so we may assume Z&W . Note that
this gives W ‰ V and, consequently W R Ω. As before, it suffices to suppose that
exactly one of Z or V lies in Ω.

First suppose V P Ω and Z R Ω. We claim that the facts V “ W̄Ω and Ω Ă Ω
imply V “ W̄Ω as well. Indeed, if V0 P Ω is any domain with W Ă V0, then V0 P Ω
so that V Ă V0 by Lemma 7.6. Whence V “ W̄Ω as claimed. Since Z R Ω, we have
Z P FpA,Bq with Z Ö V so that, by the definition in (2), either A,B Ă V with
B Ö V , or else A ă̈ V . First consider the former case A,B Ă V with B Ö V . Since
W űΩ V and B P Ω with B Ĺ V , it cannot be that W Ă B. Also we cannot have
B Ă W or B disjoint from W because W&Z. Therefore W&B. Since B, V P Ω
with B Ö V and W̄Ω “ V , we can now invoke (SO4) for Ω to conclude B ă̈ W .
The desired time-ordering Z ă̈ W now follows from Corollary 3.31. Next consider
the latter case A ă̈ V . Now, A and W cannot be disjoint nor can A Ă W because
Z&W . If W&A, then A ă̈ V implies A ă̈ W and Z ă̈ W by Corollary 3.31. So
it remains to suppose W Ă A P Ω; but here Lemma 7.6 implies V “ W̄Ω Ă A
contradicting A&V . This proves that (SO4) holds when V P Ω and Z R Ω.

Next suppose V R Ω and Z P Ω. Since Z Ö V , the definition in (3) provides
some Z 1 P Ω such that Z Ă Z 1 and Z 1 ă̈ V . If W Ă Z 1, then since Z 1 P Ω Ă Ω,
Lemma 7.6 implies that V “ W̄Ω Ă Z 1, contradicting Z 1&V . Therefore W Ă Z 1.
Neither can we have Z 1 Ă W or Z 1 and W disjoint (since Z&W ). Therefore Z 1&W
and we may invoke Corollary 3.31 to conclude Z 1 ă̈ W and subsequently Z ă̈ W ,
as desired. This proves that (SO4) holds when V R Ω and Z P Ω and completes the
proof of Lemma 7.21. �

One may now ask how encroachments in Ω and ΩpA,Bq are related:

Lemma 7.22 (Refined encroachments). Let Ω be a subordered witness family for
rx, ys in T pΣq and let Ω “ ΩpA,Bq be the subordered refinement along the the
cutting pair pA,Bq. Then every domain V Ă Σ satisfies

E`ΩpV q ď maxtE`ΩpV q,Mu and ErΩpV q ď maxtErΩpV q,Mu.

Proof. First suppose V R Ω. As the claim is immediate for V R Ω, we assume
V P ΩzΩ so that EΩpV q “ 0. An examination of the proof of Lemma 7.21 shows
that any Z P Ω with Z Ĺ V falls under case (3) and thus satisfies Z Ă Z 1 for some
Z 1 P Ω with Z 1&V . If Z 1 ă̈ V , so that Z Ö V , it follows that dV px, CpV |Zqq ď
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1`dV px, BZ
1q ă M by Lemma 3.29. If instead V ă̈ Z 1, so that V Œ Z, we similarly

have dV py, CpV |Zqq ă M. Thus EΩpV q ď M and the claim follows.
Next suppose V P Ω. Now the proof of Lemma 7.21 shows that every Z P Ω

with Z Ö V either satisfies Z P Ω, or else falls under case (2i) with Z Ă A Ö V
or case (2ii) with Z Ă A ă̈ V . In the former case we have dV px, CpV |Zqq ď E`ΩpV q
by definition, and in the latter case we have dV px, CpV |Zqq ă M as in the previous
paragraph. For the middle case, we simply note that CpV |Zq Ă CpV |Aq and thus
that dV px, CpV |Zqq ď dV px, CpV |Aqq ď E`ΩpV q by definition. This proves E`ΩpV q ď
maxtE`ΩpV q,Mu; the proof for ErΩpV q is similar. �

7.6. Augmentation. We will repeatedly need to enlarge witness families Ω by
adding sets of the form LtpEq or RtpEq (see §7.3) for E P Ω:

Definition 7.23 (Augmentation). Let Ω be a witness family for rx, ys P T pΣq. For
any E P Ω and 0 ď t ď dEpx, yq, the collections Ω Y LtpEq and Ω Y RtpEq are
termed the left and right augmentations of Ω along E with parameter t.

Lemma 7.24. If Ω is a witness family for rx, ys in T pΣq and E P Ω, then ΩYLtpEq
and ΩYRtpEq are witness families for each 0 ď t ď dEpx, yq.

Proof. We prove the claim for Ω1 “ ΩYLtpEq; the proof for ΩYRtpEq is identical.
Conditions (WF1) and (WF2) are clear because Ω Ă Ω1 and each Z P LtpEq
satisfies Z P Υpx, yq by definition. For condition (WF3), suppose Z Ă W are such
that Z P Ω1 and W P Υpx, yq; we must show W P Ω1 or else W&Z 1 for some
Z 1 P Ω1 with Z Ă Z 1. If Z P Ω, this follows from the fact that Ω is a witness family.
Otherwise we have Z P LtpEq so that Z Ă E. If E&W we have satisfied (WF3).
If E Ă W , then we may apply (WF3) to E P Ω to obtain our conclusion. It thus
remains to suppose Z Ă W Ĺ E. But now W P Υpx, yq, CpE|Zq Ă CpE|W q and
Z P LtpEq together imply that W P LtpEq. By maximality of Z, it follows that
W “ Z P Ω1. This establishes (WF3) for ΩY LtpEq and proves the lemma. �

Extending suborderings to augmentations will require the following fact.

Lemma 7.25. Let rx, ys be a geodesic in T pΣq and let Z,W Ă E Ă Σ be domains
such that tZ,W,Eu Ă Υpx, yq.

‚ If W ă̈ Z along rx, ys, then dEpx, CpE|W qq ď dEpx, CpE|Zqq.
‚ If dEpx, CpE|W qq ď dEpx, CpE|Zqq ´ 3, then W ă̈ Z along rx, ys.

The same conclusions of course hold with the roles of x, y and W,Z swapped.

Proof. Consider the first claim. If W P Υ`px, yq, then W is an annulus and BW
is short at either x or y. The time ordering W ă̈ Z implies it must be that
`xpBW q ă ε0. Hence CpE|W q consists of the single curve BW , which is an element
of any Bers marking µx at x. Thus

dEpx, CpE|W qq “ diamCpEqpπEpxqq ď dEpx, CpE|Zq

and the first claim holds when W P Υ`px, yq.
IfW R Υ`px, yq, then necessarily dW px, yq ě NW . Let us set kW “ dEpx, CpE|W qq

and suppose on the contrary that kW ą dEpx, CpE|Zqq. Since E contains two sub-
domains that cut each other, E cannot be an annulus. Recalling that πEpxq is the
set of all essential simple closed curves in CpEq achieved by projecting the curves
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of the Bers marking µx to E, it follows that πEpxq contains at least two distinct
curves in CpEq. In particular

kW ą dEpx, CpE|Zqq “ diamCpEqpπEpµxq Y CpE|Zqq ě diamCpEq πEpµxq ě 1,

which gives kW ě 2.
Choose curves γ P πEpxq and ν P CpE|W q such that dEpγ, νq “ kW . Choose also

a curve ζ P BZ that cuts W , and a geodesic pα0, . . . , αmq in CpEq from α0 “ γ to
αm “ ζ. The curve αm cuts W by construction. Thus if m “ 0, we trivially have
πW pαiq ‰ H for each 0 ď i ď m. Otherwise m ě 1 and for each 0 ď i ă m ă kW
the curve αi necessarily intersects ν (and consequently cuts W ) by the fact that

dEpν, αiq ě dEpν, γq ´ dEpγ, αiq “ kW ´ i ě 2.

In any case we find that πW pαiq ‰ H for all 0 ď i ď m. It follows from the Bounded
Geodesic Image Theorem (Theorem 3.8), that dW pγ, ζq ď Q. Using dW pBZ, ζq ď 2
and Lemma 3.9 and recalling that M ě 100pk`Q`1q (Definition 3.24), this implies

dW px, BZq ď k` 2` dW pγ, ζq ď k` 2` Q ď M{2.

However, the time ordering W ă̈ Z implies dW px, BZq ě 2M{3, a contradiction.
For the second claim, if W and Z were disjoint or nested, we would have

diamCpEqpCpE|W q Y CpE|Zqq ď 2; this can be seen by choosing a curve in BW YBZ
that is disjoint from every curve in CpE|W q Y CpE|Zq. As this is incompatible with
the hypothesis dEpx, CpE|W qq ď dEpx, CpE|Zqq ´ 3, it must be that W&Z. Thus
either Z ă̈ W or W ă̈ Z. But by the first part of the lemma, W ă̈ Z is the only
option compatible with the hypothesis. �

We may now extend suborderings to any augmentation in which the parameter
and corresponding encroachment are controlled:

Lemma 7.26 (Subordering augmentations). Let Ω be a subordered witness family
for rx, ys in T pΣq and suppose E P Ω satisfies EΩpEq ď NE{3. For each parameter
0 ď t ď E`ΩpEq (respectively, 0 ď t ď ErΩpEq) there is a natural subordering on
ΩY LtpEq (respectively, ΩYRtpEq) that extends the subordering on Ω.

Proof. We prove the lemma for Ω “ Ω Y LtpEq; the proof for Ω YRtpEq is sym-
metric. We first show that conditions (SO1)–(SO4) give rise to a natural ordering
designation

�
or �for each pair Z, V P Ω with Z Ĺ V :

(1) If Z, V P Ω, we use the designation from Ω and set Z
�
V iff Z Ö V .

(2) If V P Ω and Z R Ω, then Z P LtpEq and we proceed as follows:
(i) If V “ E, we set Z

�
V . (For the case of ΩYRtpEq with Z P RtpEqzΩ

we instead set E �Z).

(ii) If E Ĺ V , then we set Z
�
V ðñ E Ö V and V �Z ðñ V Œ E

in accordance with (SO1).
(iii) If V Ĺ E, then the fact V Ą Z P LtpEq implies V P LtpEq, contradict-

ing the maximality of Z in LtpEq. Hence V Ĺ E cannot occur.
(iv) If V&E, we claim it must be that V ă̈ E and therefore set V �Z in

accordance with (SO3). (For the case of ΩYRtpEq with Z P RtpEq, we
instead have E ă̈ V and accordingly set Z

�
V .) To see this, note that

V Ą Z P LtpEq implies there exists ν P CpE|Zq with dEpx, νq ď t`9C.
Since t ď E`ΩpEq ď NE{3, this gives dEpy, νq ě

2
3NE ´ 9C ě 5M. Now

since BV and ν are disjoint, we have dEpy, BV q ě 4M ´ 2 ą 2M{3,
showing that V ă̈ E by Lemma 3.29.
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(3) If V R Ω and Z P Ω, then (WF3) provides some Z 1 P Ω with Z Ă Z 1 and
Z 1&V . Thus we set Z

�
V if Z 1 ă̈ V and V �Z if V ă̈ Z 1 in accordance

with (SO3). This is well-defined, as Corollary 3.30 ensures it is impossible to
have the two such domains Z 11, Z

1
2 P Ω with the time ordering Z 11 ă̈ V ă̈ Z 12.

(4) The case Z, V R Ω is ruled out by the fact domains in LtpEq are not nested.

The above establishes ordering designations on Ω that extend those of Ω, and so
we henceforth use Ö and Œ for the designations in both Ω and Ω. To prove these
give a subordering on Ω, it remains (by Remark 7.15) to verify (SO2)–(SO4):

Condition (SO2): Let Z,W, V P Ω be such that Z Ö V Œ W . The condition
is immediate if all three domains lie in Ω. If V R Ω, then Z,W P Ω because domains
in LtpEq cannot be nested. As dictated by (3) above, we may choose Z 1,W 1 P Ω
such that Z Ă Z 1, W Ă W 1, and Z 1 ă̈ V ă̈ W 1. By Corollaries 3.30–3.31, this
implies Z 1&VW

1 and Z&VW with Z ă̈W , as desired.
Next suppose V P Ω. If Z,W R Ω, then an examination of case (2) above shows

that Z Ö V ðñ W Ö V since the ordering designations for Z Ĺ V and W Ĺ V
are both determined by the relationship of V to E. As this is not the case, at most
one of Z or W can lie outside of Ω. Let us first suppose Z P Ω and W R Ω, so that
W P LtpEq. Now case (2) above dictates that the designation V Œ W must fall
under (2ii) with V Œ E or else (2iv) in which V ă̈ E. In the first case V Œ E
we have Z Ö V Œ E so that (SO2) for Ω ensures Z&V E with Z ă̈ E, and in the
second case V ă̈ E we have Z Ö V ă̈ E so that Z&V E with Z ă̈ E by (SO3) for
Ω. In either case, we may conclude Z&VW with Z ă̈W , as desired.

It remains to suppose V,W P Ω and Z R Ω. By case (2) above, the designation
Z Ö V must fall under (2i) with V “ E, or else (2ii) with E Ö V . In the latter
case E Ö V we have E Ö V Œ W so that we may use (SO2) to conclude Z&VW
and Z ă̈ W as above. So let us restrict our attention to the case V “ E. Since
E ŒW and Z P LtpEq, we find that dEpy, CpE|W qq ď ErΩpEq and that

dEpx, CpE|Zqq ď t` 9C ď E`ΩpEq ` 9C.

Since EΩpEq ď NE{3 and dEpx, yq ě NE ą 30C, the triangle inequality gives
dEpx, CpE|Zqq ď dEpx, CpE|W qq´C so that we may conclude Z ă̈W by Lemma 7.25.
The fact dEpBZ, BW q ě M ą 3 further ensures that Z&VW , as desired.

Condition (SO3): Let Z, V P Ω and W P Υpx, yq be such that Z Ö V ă̈ W
or W ă̈ V Œ Z. We may assume exactly one of Z or V lies outside of Ω. First
suppose V P Ω and Z R Ω so that Z P LtpEq and the designation for Z Ĺ V is
dictated by case (2) above. Let us examine these possibilities in turn: If Z Ĺ V
falls under (2i), then V “ E and we must have Z Ö V ă̈ W . Here we find that
dV py, BW q ď M{3 and that dV px, BZq ď t ` 9C ď E`ΩpV q ` 9C. Since dV px, yq ě
NV ě 30C and EΩpV q ď NV {3, this together with the triangle inequality implies
dV pBZ, BW q ě C. We may thus conclude the desired Z&VW , for otherwise we
would find that dV pBZ, BW q ď M{3 exactly as in the proof of Corollary 3.30. If
Z Ĺ V falls under (2ii), then (2ii) dictates E Ö V ă̈W in the case that Z Ö V and
instead dictates W ă̈ V Œ E in the case V Œ Z. Either way, we may invoke (SO3)
to conclude E&VW and consequently Z&VW . Finally, if Z Ĺ V falls under (2iv),
then it must be that V ă̈ E and V Œ Z. Hence we are in the case W ă̈ V Œ Z
and in fact have W ă̈ V ă̈ E. Therefore W&V E by Corollary 3.30 and we may
conclude W&V Z as desired.
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Next suppose V R Ω and Z P Ω. Then (WF3) allows us to choose Z 1 P Ω
such that Z Ă Z 1. If Z Ö V ă̈ W then (3) dictates that Z 1 ă̈ V ă̈ W , and if
W ă̈ V Œ Z then (3) instead dictates W ă̈ V ă̈ Z 1. Either way, we may invoke
Corollary 3.30 to conclude Z&VW .

Condition (SO4): Let Z, V P Ω and W P Υpx, yq be such that Z Ĺ V ,
Z&W , and W̄Ω “ V . Observe that these facts imply W R Ω. We must show that
Z Ö V ùñ Z ă̈W and V Œ Z ùñ W ă̈ Z.

First suppose V R Ω. Then we must have Z P Ω because domains in LtpEq
cannot be nested. Now (WF3) provides a domain Z 1 P Ω such that Z 1&V and
Z Ă Z 1. Since Z&W , it cannot be that Z 1 and W are disjoint. Nor can we have
Z 1 Ă W . If W Ă Z 1 P Ω, then the assumption W̄Ω “ V implies V Ă Z 1 by
Lemma 7.6. As this contradicts Z 1&V , we must have Z 1&W . Now, if Z Ö V ,
then (3) dictates that Z 1 ă̈ V so that we find Z ă̈W by Corollary 3.31. If instead
V Œ Z, then (3) dictates V ă̈ Z 1 and we similarly deduce W ă̈ Z. This establishes
(SO4) when V R Ω.

Next suppose V P Ω. Then the facts V P Ω Ă Ω and W̄Ω “ V imply W̄Ω “ V as
well (since Lemma 7.6 implies V Ă V0 for any V0 P Ω with W Ă V0). Thus if Z P Ω
as well we may invoke (SO4) to prove the claim. It therefore suffices to suppose
Z R Ω so that Z P LtpEq. Let us examine the subcases of (2) in turn:

If V “ E, then (2i) dictates Z Ö V and we must show Z ă̈ W . If instead
W ă̈ Z, then Lemma 7.25 implies that dEpx, CpE|W qq ď dEpx, CpE|Zqq ď t ` 9C.
Since W̄Ω “ E it cannot be that W P LtpEq, for then we would have W Ă W 1 Ĺ E
for some W 1 P LtpEq Ă Ω. Thus dEpx, CpE|W qq R rt´ 9C, t` 9Cs. Together, these
inequalities give

dEpx, CpE|W qq ă t´ 9C ď E`ΩpEq ´ 9C.

By definition of encroachment, we may choose a domain U P Ω such that U Ö E
and dEpx, CpE|U qq “ E`ΩpV q. By Lemma 7.25, the above inequality implies W ă̈ U
along rx, ys. We now have U, V P Ω with U Ö V and and W ă̈ U . Since we have
seen W̄Ω “ V , this contradicts the fact that Ω satisfies (SO4). Therefore, W ă̈ Z
leads to a contradiction, and we may conclude the desired ordering Z ă̈W .

If E Ĺ V , then (2ii) dictates Z Ö V ðñ E Ö V . Observe that W űΩ V
precludes W Ă E. We also cannot have E Ă W nor E and W disjoint (since
Z&W ). Therefore E&W , and we may apply (SO4) to E Ĺ V in Ω to conclude
Z Ö V ùñ E Ö V ùñ E ă̈ W , which in turn implies Z ă̈ W as desired. If
instead V Œ Z, we similarly conclude W ă̈ E and consequently W ă̈ Z.

If V&E, then (2iv) dictates that V ă̈ E and V Œ Z. We cannot have E Ă W
nor E and W disjoint (because Z&E), and if W Ă E, then Lemma 7.6 would imply
V “ W̄Ω Ă E, contradicting V&E. Therefore it must be that W&E. We may now
apply Corollary 3.31 to V ă̈ E to conclude W ă̈ E and W ă̈ Z, as desired. This
verifies (SO4) when V P Ω and completes the proof of the lemma. �

As for refinements, we shall need to bound each augmentation’s encroachments.

Lemma 7.27 (Augmented encroachments). Let Ω be a subordered witness family
for rx, ys in T pΣq, let E P Ω satisfy EΩpEq ď NE{3, and let Ω “ Ω Y LtpEq with
0 ď t ď E`ΩpEq or Ω “ Ω YRtpEq with 0 ď t ď ErΩpEq be the augmentation of Ω
along E with parameter t. Then every domain V Ă Σ satisfies

E`ΩpV q ď

#

maxtE`ΩpEq, t` 9Cu, if V “ E and Ω “ ΩY LtpEq
maxtE`ΩpV q,Mu, else
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and

ErΩpV q ď

#

maxtErΩpEq, t` 9Cu, if V “ E and Ω “ ΩYRtpEq

maxtErΩpV q,Mu, else
.

Proof. We prove the lemma for ΩY LtpEq; the proof for ΩYRtpEq is symmetric.
First suppose V R Ω. The claim is immediate for V R Ω (since then EΩpV q “ 0), so
we assume V P ΩzΩ. The proof of Lemma 7.26 shows that any Z P Ω with Z Ĺ V
falls under case (3) and satisfies Z Ă Z 1 for some Z 1 P Ω with Z 1&V . Therefore, as
in the proof of Lemma 7.22, Z Ö V implies dV px, CpV |Zqq ď M and V Œ Z implies
dV py, CpV |Zqq ď M. Thus the lemma holds for V R Ω.

Next suppose V P Ω and consider any Z P Ω with Z Ĺ V . If Z Ö V , then the
proof of Lemma 7.26 shows that either (1) Z P Ω, (2) Z P LtpEq with V “ E,
or (3) Z Ă E Ö V so that CpV |Zq Ă CpV |Eq. In the former and latter cases we
conclude the desired bound dV px, CpV |Zqq ď E`ΩpV q. In the middle case, we have
V “ E and instead find dV px, CpV |Zqq ď t`9C by the definition of LtpEq. Thus we
conclude the stated bound on E`ΩpV q. If instead V Œ Z, the proof of Lemma 7.26

now shows that either (1) Z P Ω, (2) V Œ E Ą Z so that CpV |Zq Ă CpV |Eq, or
(3) V ă̈ E Ą Z. In these three cases we may respectively bound dV py, CpV |Zqq by
ErΩpV q, ErΩpV q, and M. Therefore ErΩpV q ď maxtErΩpV q,Mu as claimed. �

7.7. Completion. We may now extend any witness family to a complete and in-
sulated one:

Definition 7.28 (Insulated completion). If Ω is a witness family for rx, ys in T pΣq,
define Ω̌ to be

Ω̌ :“ ΩY

˜

ď

EPΩ

L0pEq YR0pEq

¸

Y

¨

˝

ď

pA,Bq a cutting pair in Ω

FpA,Bq

˛

‚.

The insulated completion of Ω is then defined to be Ω “ YiPNΩi, where Ω0,Ω1, . . .
is the sequence recursively defined by Ω0 “ Ω and Ωi`1 “ Ω̌i.

Lemma 7.29. Let Ω be a witness family for rx, ys in T pΣq and let Ω0,Ω1, . . . be
the sequence recursively defined by Ω0 “ Ω and Ωi`1 “ Ω̌i. Then

(1) Ω̌ is a witness family,
(2) Ω “ ΩξpΣq`1, and

(3) Ω is a complete and insulated witness family.
(4) Any subordering on Ω extends to natural suborderings on Ω̌ and Ω whose

encroachments, for each V Ă Σ, satisfy

E`
Ω̌
pV q, E`

Ω
pV q ď maxtE`ΩpV q, 9Cu and Er

Ω̌
pV q, Er

Ω
pV q ď maxtErΩpV q, 9Cu.

Proof. For (1), first observe that Ω is finite. This is because there are only finitely
many subsurfaces Z Ă Σ with dZpx, yq ě M and only finitely many annuli A with
`xpBAq ă ε0 or `ypBAq ă ε0. The family Ω̌ may be constructed by adding the
finitely many families L0pEq, R0pEq, and FpA,Bq one at a time. Lemmas 7.20
and 7.24 show that each addition results in another witness family. Therefore the
output Ω̌ of those finitely many additions is a witness family.

For (2), let k0 “ maxtξpV q | V P Ω0u, and for each i ą 0 let ki “ maxtξpV q | V P
ΩizΩi´1u be the maximal complexity of any domain that was added during the ith
iteration, with the convention that ki “ ´8 if Ωi “ Ωi´1 (in which case Ω “ Ωi´1).
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We claim that ki´1 ě 1`ki for each i ą 0. The result Ω “ ΩξpΣq`1 will then follow
from the observation k0 ď ξpΣq. To see this, suppose V P ΩizΩi´1. Then either
V P L0pEq YR0pEq for some E P Ωi´1, or else V P FpA,Bq for some cutting pair
pA,Bq in Ωi´1. If i “ 1, this shows that V is a proper subsurface of domain in Ω0

and hence that k0 ě 1` ξpV q. Next suppose i ą 1. If V P L0pEq YR0pEq then we
must have E R Ωi´2, for otherwise V P Ωi´1 “ Ω̌i´2 by construction. Similarly, if
V P FpA,Bq, then either A R Ωi´2 or B R Ωi´2 by the same reasoning. Therefore V
is a proper subsurface of a domain in Ωi´1zΩi´2 and we may conclude the claimed
inequality ki ď ki´1 ´ 1.

Combining (1) and (2), we see that Ω is a witness family and that FpA,Bq Y
L0pEq YR0pEq Ă Ω for all E P Ω and all cutting pairs pA,Bq in Ω. Therefore Ω is
complete by Lemma 7.9 and insulated by Definition 7.11, which proves (3). Finally,
(4) follows from Lemmas 7.21, 7.22, 7.26, and 7.27. �

We may also use Lemmas 7.8 and 7.10 to control the cardinality of Ω.

Lemma 7.30. For each ´1 ď j ď ξpΣq, there exists a computable function
Gj : NξpΣq´j Ñ N depending only NξpΣq, . . . ,Nj`1 with the following property. If
Ω is any witness family for any geodesic rx, ys in T pΣq, then

ˇ

ˇΩ
ˇ

ˇ

j
´ |Ω|j ď GjpKξpΣq, . . . ,Kj`1q

for any tuple pKξpΣq, . . . ,Kj`1q satisfying |Ω|i ď Ki for each ξpΣq ě i ą j. In

particular, there exists a computable function G : NÑ N such that
ˇ

ˇΩ
ˇ

ˇ ď Gp|Ω|q for
every witness family Ω.

Proof. For j “ ξpΣq, we may take the constant function GξpΣq ” 1 since Ω can
contain at most one domain of this complexity. For the remaining j, we proceed
inductively: Fix an integer´1 ď j ă ξpΣq and suppose that the stipulated functions
GξpΣq, . . . Gj`1 have been constructed. Let us count the domains V P ΩzΩ of

complexity ξpV q “ j. Any such V satisfies V P L0pEq Y R0pEq for some E P Ω
with ξpEq ą j, or else V P FpA,Bq for some A,B P Ω with ξpAq, ξpBq ą j. Letting
J denote the number of domains of Ω of complexity at least j ` 1, it follows from
Lemmas 7.8 and 7.10 that

ˇ

ˇΩ
ˇ

ˇ

j
´ |Ω|j “

ˇ

ˇΩzΩ
ˇ

ˇ

j
ď

ˆ

J

2

˙

p2Nj`1q
ξpΣq`2 ` 2Jp2Nj`1q

ξpΣq`3.

However, our induction hypothesis gives

J ď

ξpΣq
ÿ

i“j`1

ˇ

ˇΩ
ˇ

ˇ

i
ď
`

GξpΣq `KξpΣq

˘

` ¨ ¨ ¨ `
`

Gj`1pKξpΣq, . . .Kj`2q `Kj`1

˘

.

Combining these inequalities shows that
ˇ

ˇΩ
ˇ

ˇ

j
´|Ω|j is bounded above by function of

pKhΣ , . . . ,Kj`1q that depends only on the thresholds NξpΣq, . . . ,Nj`1, as claimed.
The final assertion of the lemma then holds for the function G : NÑ N defined as

Gpxq “ x`GξpΣq ` ¨ ¨ ¨ `G´1px, . . . , xq. �

8. Complexity of witness families

We next explain how the the structure of a witness family organizes curve com-
plex projection data into a quantity that we call complexity. Let us first designate
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an acronym combining the many types of witness families that have been introduced
in Definitions 7.7, 7.11, 7.14, and 7.18.

Terminology 8.1 (WISC). A witness family is WISC if it is wide, insulated,
subordered, and complete.

The starting point is the following notion that is suggested by completeness:

Definition 8.2 (Contribute). If Ω is a complete witness family for a geodesic
segment rx, ys P T pΣq, we say that a domain Z Ă Σ contributes to V P Ω if
Z P Υpx, yq and V “ Z̄Ω.

Since every domain Z P Υpx, yq has a unique Ω–supremum, we may partition the
domains of Υpx, yq according to the elements of Ω they contribute to. We would
like to somehow combine the data tpZ, dZpx, yqq | Z contributes to V u into a notion
of “distance in V ” that, when summed over all V P Ω, can be used for counting
problems and is moreover related to the total Teichmüller distance dT pΣqpx, yq. A
subordering on Ω allows us to accomplish this by resolving x and y into points
in the Teichmüller space T pV q for each V P Ω. In fact, we can resolve any point
coarsely aligned between x and y.

8.1. Teichmüller resolutions. Recall the constant C ě 0 specified at the start of
§7 (which determines the Ni).

Definition 8.3 (Projection tuple). Let Ω be a WISC witness family for a geodesic
rx, ys in T pΣq. For each domain V P Ω and point w P T pΣq satisfying

dZpx,wq ` dZpw, yq ď dZpx, yq ` 9C for all Z Ă V,

define its projection tuple to be the tuple pw̃Zq P
ś

ZĂV CpZq given by:

w̃Z :“

$

’

&

’

%

πZpyq, if Z P Υpx, yq and Z̄Ω Ö V

πZpxq, if Z P Υpx, yq and V Œ Z̄Ω

πZpwq, else

.

In particular, w̃Z “ πZpwq whenever Z Ă Σ contributes to V .

Proposition 8.4. With the notation from Definition 8.3, the projection tuple
pw̃Zq P

ś

ZĂV CpZq is k–consistent for some constant k depending only on C.

Proof. Let U,Z Ă V be arbitrary subdomains. We must show that:

(8.5)
U&Z ùñ mintdU pw̃U , BZq, dZpw̃Z , BUqu ď k
U Ă Z ùñ mintdU pw̃U , πU pw̃Zqq, dZpw̃Z , BUqu ď k

Note that for each p P tx,w, yu the pair pπU ppq, πZppqq in CpUqˆCpZq satisfies these
conditions with constant K by Theorem 3.37. Thus we may assume w̃U ‰ πU pwq
or w̃Z ‰ πZpwq. We may additionally assume dU px, yq ě NU and dZpx, yq ě NZ .
Indeed, if say dZpx, yq ă NZ , then by coarse alignment πZpxq Y πZpwq Y πZpyq has
diameter at most 9C ` NZ ď 2N. Hence, regardless of whether w̃U is defined as
πU pxq, πU pwq, or πU pyq we may move w̃Z by distance at most 2N to arrive at a
K–consistent pair pπU ppq, πZppqq as above. In particular, U,Z P Υpx, yq and ŪΩ

and Z̄Ω both exist by the completeness of Ω.
Suppose first U&Z. By symmetry, we may suppose w̃Z ‰ πZpwq so that Z̄Ω

is a proper subsurface of V . We only consider the case Z̄Ω Ö V as the opposite
case V Œ Z̄Ω is symmetric. In this case w̃Z “ πZpyq by definition. If we also
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have ŪΩ Ö V , then w̃U “ πU pyq and the pair pw̃U , w̃Zq is K–consistent. If instead
V Œ ŪΩ, then (SO2) and Corollary 3.31 imply that Z ă̈ U along rx, ys. Therefore
dZpw̃Z , BUq “ dZpy, BUq ă M{3 by Lemma 3.29, and (8.5) is satisfied. The only
remaining possibility is ŪΩ “ V . In this case we necessarily have U&pZ̄Ωq (U is
not disjoint from Z̄Ω since U&Z Ă Z̄Ω, U is not contained in Z̄Ω as that would
give ŪΩ Ă Z̄Ω, and Z̄Ω is not contained in U since that would give Z Ă U). Thus
U and Z̄Ω are time-ordered. Since Z̄Ω Ö V and ŪΩ “ V , condition (SO4) forces
Z̄Ω ă̈ U which in turn implies Z ă̈ U . Therefore dZpw̃Z , BUq “ dZpy, BUq ă M{3,
as above, and we have verified (8.5) when U&Z.

Next let us suppose that U Ă Z. Then ŪΩ Ă Z̄Ω. If ŪΩ “ Z̄Ω, then consistency
is automatically satisfied by definition of w̃U , w̃Z and Theorem 3.37. So suppose
ŪΩ Ĺ Z̄Ω. If Z̄Ω Ĺ V , then condition (SO1) ensures that ŪΩ Ö V iff Z̄Ω Ö V
and we again have consistency by Theorem 3.37. The only remaining possibility is
ŪΩ Ĺ Z̄Ω “ V . Let us consider the case ŪΩ Ö V (the other case V Œ ŪΩ being
similar). In this case we have w̃Z “ πZpwq and w̃U “ πU pyq by definition.

Claim 8.6. dZpx, BUq ă EΩpV q `M ď N{2.

Proof. We clearly cannot have Z Ă ŪΩ. If Z&ŪΩ then (SO4) implies we must
have ŪΩ ă̈ Z and consequently dZpx, BpŪ

Ωqq ď M{3. Since BU Y BpŪΩq is a curve
system on Σ we have dZpBU, BpŪ

Ωqq ď 2. Thus dZpx, BUq ď 2`M{3 ă M.
Since ŪΩ and Z cannot be disjoint, it remains to suppose ŪΩ Ă Z. There are

two possibilities: Firstly, if Z “ V , then

dZpx, BUq “ dV px, BUq ď dV px, CpV |ŪΩqq ď EΩpV q ď N{3

by the fact ŪΩ Ö V . Secondly, if Z Ĺ V , then Z̄Ω “ V implies Z R Ω so that (WF3)
provides some Z 1 P Ω with Z&Z 1 and ŪΩ Ă Z 1. Note that we must have Z 1 ‰ V .
If Z 1 Ĺ V , then (SO1) implies Z 1 Ö V so that (SO4) forces Z 1 ă̈ Z. Otherwise we
have Z 1&V so that (SO3) (using ŪΩ Ö V and ŪΩ Ă Z 1) forces Z 1 ă̈ V and we
may again conclude Z 1 ă̈ Z by Corollary 3.31. Therefore dZpx, BZ

1q ď M{3 so that
we may use U Ă Z 1 to conclude dZpx, BUq ď M{3` 2 ă M as above. �

Since diamCpUqpπU pwq, πU pπZpwqqq is bounded by Lemma 3.9, verifying (8.5)
amounts to bounding mintdU py, wq, dZpw, BUqu. Thus if dU pw, yq ď N we are
done. Otherwise dU pw, yq ą N, and applying Corollary 3.27 and Claim 8.6 gives

dZpw, xq ` dZpx, yq ď dZpw, BUq ` dZpBU, yq ` N ď dZpw, yq ` 2N.

On the other hand, the coarse alignment hypothesis on w gives

dZpx,wq ` dZpw, yq ď dZpx, yq ` 9C.

Combining these inequalities yields

2dZpx,wq ` dZpw, yq ´ 9C ď dZpw, yq ` 2N,

or equivalently dZpw, xq ď p2N ` 9Cq{2 ď 3N{2. Thus the triangle inequality and
Claim 8.6 now give the desired bound dZpw, BUq ď 2N. �

Combining Proposition 8.4 with Theorem 3.37 and Lemma 3.10, we are now able
to resolve w into the Teichmüller space of any V P Ω:

Definition 8.7 (Resolution point). Let Ω be a WISC witness family for rx, ys in
T pΣq. For any V P Ω, there are coarsely well-defined resolution points pxΩ

V , py
Ω
V P

T pV q constructed as follows: Let w P tx, yu. If V is nonannular, then pwΩ
V P Tε0pV q
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is a thick point realizing the consistent tuple pw̃ZqZĂV from Definition 8.3. If V is
an annulus, then the tuplepw̃ZqZĂV is a singleton w̃V P CpV q, and we define pwΩ

V to
be the point in T pV q “ H2 whose twist coordinate is given by w̃V “ πV pwq, and
whose length coordinate is 1

mintε0,`wpBV qu
.

8.2. Complexity via Teichmüller distance. Given a WISC witness family Ω
for a Teichmüller geodesic rx, ys in T pΣq, Proposition 8.4 provides a pair pxΩ

V , py
Ω
V of

resolutions for each V P Ω. We now combine these into the following quantity:

Definition 8.8 (Complexity). The complexity of a WISC witness family Ω for a
geodesic rx, ys in T pΣq is the weighted sum

LpΩq “
ÿ

V PΩ

h˚V dT pV qppx
Ω
V , py

Ω
V q

where h˚V “ hV for every nonannular domain, and for annuli A we set h˚A “ 1 in
the case that pxΩ

A, py
Ω
A are both ε0–thick, and otherwise set h˚A “ 2 “ hA.

Remark 8.9. Let us highlight three features of this definition.

(1) The resolution points pxΩ
V , py

Ω
V coarsely encode all the projection data of x, y,

with the result that it is possible to reconstruct the original points from
their resolutions. This allows one to relate complexity LpΩq to counting
problems, as we do in §12 below.

(2) It is helpful to compare this definition of LpΩq to the distance formula
Theorem 3.33. Indeed, if one applies the distance formula to each term
dT pV qppx

Ω
V , py

Ω
V q, the result is a weighted (by h˚V and the multiplicative er-

rors) sum of curve complex distances dZpx, yq for all Z P Υpx, yq. Thus
LpΩq is coarsely equivalent to dT pΣqpx, yq with some bounded but unknown
multiplicative and additive error. The purpose of §§9–10 below to show
that one can choose Ω carefully so that, up to only additive error, LpΩq is
bounded above by the explicit multiple hΣdT pΣqpx, yq (Theorem 11.2). This
multiplicative control is crucial in our counting applications (Theorem 12.1)
since the quantity LpΩq appears in the exponent.

(3) The final and perhaps least apparent feature is that by decomposing the
Teichmüller distance into separate subsurfaces, the quantity LpΩq is able
to tap into the hyperbolicity of curve complexes and promote alignment
in curve complexes to a sort of alignment for complexity. That is, the
definition is constructed with the heuristic that if px, y, zq is an aligned
triple in T pΣq with associated WISC witness families Ωyx,Ω

z
y,Ω

z
x, then one

should morally expect LpΩyxq ` LpΩzyq ď LpΩzxq up to additive error. To
achieve this precise statement seems to be quite difficult. However, we will
show in Theorem 11.2 that the witness families can be chosen so that, up
to only additive error, LpΩyxq ` LpΩzyq is bounded above by hΣdT pΣqpx, zq
provided px, y, zq is strongly aligned. This feature together with the above-
mentioned Theorem 12.1 make complexity a useful tool for counting orbit
points of finite order and reducible mapping classes.

8.3. Complexity of tuples. To obtain the features indicated in Remark 8.9, we
will work in a more general setting of tuples of witness families. Recall the param-
eter C ě 2M from §7 that determines the constants Ni and satisfies (7.1).

Definition 8.10. A witness family for a strongly C–aligned tuple px0, . . . , xnq in
T pΣq is a tuple Ω “ pΩ1, . . . ,Ωnq where each Ωi is a witness family for rxi´1, xis.
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All of the notation and terminology from §7—such as subordering, refinement,
augmentation, completion—are extended componentwise to the setting of witness
families for tuples. Thus Ω has a given property provided it holds for each Ωi. In
particular, a subordering on Ω is a subordering on each Ωi, and we will write Öi and

iŒ for the subordering designations on Ωi. We additionally define encroachments as
EΩpV q “ maxi EΩipV q and similarly for E`ΩpV q and ErΩpV q, and define the insulated

completion of Ω to be Ω “ pΩ1, . . . ,Ωnq.

Notation 8.11. When a strongly C–aligned tuple px0, . . . , xnq has been speci-
fied, we will use the shorthand Υi “ Υpxi´1, xiq and similarly Υ`

i “ Υ`
ipxi´1, xiq

and Υc
i “ Υcpxi´1, xiq. Similarly, if Ω “ pΩ1, . . . ,Ωnq is a witness family for

px0, . . . , xnq, we will by abuse of notation write V P Ω to mean that V P YiΩi.

Definition 8.12. A witness family Ω for a strongly C–aligned tuple px0, . . . , xnq
is WISC if each Ωi is WISC, and in this case the complexity of Ω is defined as

LpΩq “
n
ÿ

i“1

LpΩiq “
n
ÿ

i“1

ÿ

V PΩi

h˚V dT pV qpzxi´1
Ωi
V , pxi

Ωi
V q.

In order to account for those annuli where we use h˚V “ 1 instead of h˚V “ 2 in
the above formula, we also introduce the following:

Definition 8.13. The savings of a WISC witness family Ω “ pΩ1, . . . ,Ωnq is

SpΩq “
n
ÿ

i“1

ÿ

V PΩi

phV ´ h
˚
V qdT pV qpzxi´1

Ωi
V , pxi

Ωi
V q.

9. Bounding the contribution of a witness

We recall from the introduction that the reason witness families were introduced
and the goal of the whole second half of the paper are Theorem 11.2 and Theo-
rem 12.1 The first bounds the complexity of a collection of witness families defined
by a strongly aligned set of points in terms of Teichmüller distance. The second
counts net points in terms of complexity. Together they will give the desired count
of net points in terms of Teichmüller distance. As a major first step towards proving

Theorem 11.2 in this section we bound the distances dT pV qpzxi´1
Ω
V , pxi

Ω
V q contributed

by each individual witness; this is the content of Theorem 9.4. Throughout this
section, we fix a WISC witness family Ω “ pΩ1, . . . ,Ωnq for a strongly C–aligned
tuple px0, . . . , xnq in T pΣq. For each domain V Ă Σ, we let xV0 , . . . , x

V
n P rx0, xns

denote the points provided by Definition 3.21 (strong alignment) that appear in
order along rx0, xns and satisfy dV pxi, x

V
i q ď C. In the case of an annulus, we

furthermore assume the ratio of mintε0, `xipBAqu and mintε0, `xVi pBAqu is at most

C. We also remind the reader that the collections Υ,Υc,Υ` were introduced in
Definition 7.2.

9.1. Contribution sets. Estimating LpΩq will involve a careful analysis of active
intervals along the main Teichmüller geodesic rx0, xns. To this end, we have the
following basic observations.

Lemma 9.1. If V P Υpxi´1, xiq, for some 1 ď i ď n, then V has a nonempty
active interval IV along rx0, xns. In particular, this holds for each V P YiΩi.



COUNTING FINITE-ORDER MAPPING CLASSES 67

Proof. Assume first V P Υcpxi´1, xiq. Then dV pxi´1, xiq ě NV . Hence by C–
alignment of px0, . . . , xnq we have

dV px0, xnq ě dV px0, xi´1q ` dV pxi´1, xiq ` dV pxi, xnq ´ 2C ě NV ´ 2C ą M.

Hence IV ‰ H by Lemma 3.26.
Otherwise V P Υ`pxi´1, xiq and V is an annulus with at least one of `xi´1

pBV q
and `xipBV q smaller than ε0{NV Without loss of generality, we may therefore sup-
pose `xipBV q ď ε0{NV . By strong C–alignment and the choice of NV (7.1), this gives

`xVi pBV q ď Cε0{NV ă ε0
1. Therefore, V has a nonempty active interval IV “ Ĩε0V

along rx0, xns by Theorem 3.22(2) and Definition 3.25. �

Lemma 9.2. If Z P Υcpxi´1, xiq and W P Υpxi´1, xiq satisfy Z&W , then Z and
W are time-ordered compatibly along rx0, xns and rxi´1, xis.

Proof. We know from Lemma 9.1 and Remark 7.3 that Z and W have nonempty
active intervals along both rxi´1, xis and rx0, xns. Let us suppose that Z ă̈W along
rxi´1, xis (the reverse possibility being handled similarly), and by contradiction that
W ă̈ Z along rx0, xns. Then by time-ordering, dZpBW,xiq and dZpx0, BW q are at
most M{3. Hence

dZpx0, xiq ď dZpx0, BW q ` dZpBW,xiq ď 2M{3.

Since Z P Υc
i , alignment now gives the contradictory inequality

dZpx0, xiq ě dZpx0, xi´1q ` dZpxi´1, xiq ´ C ě NZ ´ C ě M. �

Recall (Definition 8.2) that Z Ă V contributes to V P Ωi if Z P Υi and V “ Z̄Ωi .
For each V P Ω, we will now define a “contribution set” for V along rx0, xns by
starting with the active interval IV , then removing the active interval IW for any
domain W P Ω with W Ĺ V , and finally adding the active intervals IZ of any
domain Z that contributes to V in some Ωi. More precisely, for each V P Ω, we
use Lemma 9.1 to define

MpV q “
ď

tIW |W P Ω with W Ĺ V u Ă rx0, xns, and

CpV q “
ď

1ďiďn

CipV q,

where for each index 1 ď i ď n we define CipV q “ H if V R Ωi and otherwise define

CipV q “
ď

tIZ | Z Ĺ V contributes to V in Ωiu Ă rx0, xns.

Definition 9.3 (Contribution set). The contribution set of V P YiΩi is

AΩ
V “

`

IV zMpV q
˘

Y CpV q Ă rx0, xns.

We stress that all active intervals here are taken along the main geodesic rx0, xns.

The following result is the heart of proving Theorem 11.2. It bounds Teichmüller
distances in terms of size of active intervals of contribution sets.

Theorem 9.4. If V P Ωi, then dT pV qpzxi´1
Ωi
V , pxi

Ωi
V q

`
ăN

ż xVi

xVi´1

1AΩ
V

.

We remark that the term on the left and the integrand both depend on the
witness family, while the limits of integration just depend on the points xi´1 and
xi.
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9.2. Proving Theorem 9.4 for annuli. We maintain the notation Ω, xi, and xVi
from the start of §9. Fix some index 1 ď i ď n and an annular domain V P Ωi. So
by strong alignment we have, in particular:

(9.5) dV pxj , x
V
j q ď C and

1

C
ď

mintε0, `xj pBV qu

mintε0, `xVj pBV qu
ď C for j “ i´ 1, i.

To ease notation, set x̂j “ pxj
Ωi
V P T pV q “ H2

BV for j P ti´ 1, iu, and recall that by
definition these resolution points satisfy

(9.6) dV px̂j , xjq
`
ăC 0 and `x̂j pBV q “ mintε0, `xj pBV qu for j “ i´ 1, i.

The proof will follow easily from these facts:

Proof of Theorem 9.4–Annular case. Consider the active interval IV of V along
rx0, xns. For each point w P IV we have `wpBV q ă ε0, and we write w|V for the
T pV q–component of the point ΦBV pwq in the product region PpΣ|BV q. Since V is an
annulus, there are no proper subdomains of V ; hence by definition the contribution
set is simply AΩ

V “ IV .
First suppose that AΩ

V X rx
V
i´1, x

V
i s is empty. Then dV px

V
i´1, x

V
i q ď M and

`xVi´1
pBV q, `xVi pBV q ě ε0

1. Therefore equations (9.5) and (9.6) above imply that

dV px̂i´1, x̂iq
`
ăC 0 and

ε0
1

C
ď `x̂i´1pBV q, `x̂ipBV q ď ε0,

which together uniformly bound dT pV qpx̂i´1, x̂iq in terms of C.

If AΩ
V X rx

V
i´1, x

V
i s is nonempty, then (being the intersection of intervals) it is

necessarily an interval and we may write it as ry, zs Ă rxVi´1, x
V
i s. We claim that

(9.7) dT pV qpx̂i´1, y|V q
`
ăC 0 and dT pV qpx̂i, z|V q

`
ăC 0.

By symmetry, let us just consider dT pV qpx̂i, z|V q. To see this, note that if z “ xVi
then obviously `zpBV q “ `xVi pBV q, and otherwise we have both `xVi pBV q ě ε0

1 and

ε0
1 ď `zpBV q ď ε0. Thus in either case equations (9.5)–(9.6) imply

ε0
1

Cε0
ď

mintε0, `xVi pBV qu

C`zpBV q
ď
`x̂ipBV q

`zpBV q
ď C

mintε0, `xVi pBV qu

mintε0, `zpBV qu
ď C

ε0
ε01
.

Furthermore, since rz, xVi s is disjoint from the interior of IV , Lemma 3.26 gives
dV pz, x

V
i q ď M. Combining with (9.5)–(9.6) we therefore have dV px̂i, zq

`
ăC 0.

This proves x̂i and z|V coarsely have the same horizontal coordinate in H2
BV , and

the above bounds on `x̂ipBV q{`zpBV q show they coarsely have the same vertical
component. Therefore dT pV qpx̂i, z|V q is indeed bounded as claimed.

To conclude the argument, since y and z both lie in the thin region for BV ,
Minsky’s product regions Theorem 3.11 implies that

dT pV qpy|V , z|V q
`
ă dT pΣqpy, zq “

ż z

y

1 ď

ż xVi

xVi´1

1AΩ
V
.

Combining this with (9.7) and the triangle inequality proves the proposition. �

9.3. Proving Theorem 9.4 for nonannuli. We maintain the notation Ω, xi,
and xVi fixed at the start of §9. We also fix an index 1 ď i ď n and a nonannular
domain V P Ωi. Note that in this case V P Υcpxi´1, xiq so that dV pxi´1, xiq ě NV .
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9.3.1. Setup. We begin by identifying a subinterval of rxVi´1, x
V
i s on which we have

better control of resolution points.

Lemma 9.8. There is a nonempty subinterval J “ ry, zs Ă rxVi´1, x
V
i s such that

‚ dV pxi´1, yq and dV pxi, zq are both at most 7C.
‚ For all w P J the distances dV pxi´1, wq and dV pw, xiq are both at least 3C.

Furthermore J is contained in the active interval IV of V along rx0, xns.

Proof. Recall C ě M ě L. We know dV pxi, x
V
i q, dV pxi´1, x

V
i´1q ď C. Therefore

dV px
V
i´1, x

V
i q ě dV pxi´1, xiq ´ 2C ě NV ´ 2C ě 28C.

Since πV : T pΣq Ñ CpV q is coarsely L–Lipschitz and L ď C, there must exists points
y, z P rxVi´1, x

V
i s such that

5C ď dV px
V
i´1, yq ď 6C and 5C ď dV px

V
i , zq ď 6C.

Observe that necessarily y and z appear in order along rxVi´1, x
V
i s for otherwise

y P rz, xVi s and we may apply Theorem 3.19 (no backtracking) to conclude

dV px
V
i´1, x

V
i q ď dV px

V
i´1, yq ` dV py, x

V
i q ď 6C` dV pz, yq ` dV py, x

V
i q

ď 6C` dV pz, x
V
i q ` B ď 6C` 6C` B ă 13C,

which we have seen is false. By the triangle inequality, we also clearly have

dV pxi´1, yq ď 7C and dV pxi, zq ď 7C.

Finally, for any w P rx0, zs Theorem 3.19 additionally gives

(9.9) dV pw, x
V
i q ě dV pw, zq ` dV pz, x

V
i q ´ B ě 5C´ B ě 4C

so that dV pw, xiq ě 3C by the triangle inequality. Similarly dV pxi´1, wq ě 3C for
all w P ry, xns. This proves all w P J satisfy the second bullet point.

Finally, we know from Lemma 9.1 that V has a nonempty active interval along
rx0, xns. If IV were disjoint from rz, xVi s, then we would have dV pz, x

V
i q ď M{3 by

Lemma 3.26(3). But this contradicts the implication dV pz, x
V
i q ě 4C of Equation

(9.9). Thus IV necessarily intersects rz, xVi s and, similarly, rxVi´1, ys. Since IV is
an interval, the containment J “ ry, zs Ă IV follows. �

The interval J moreover contains the active interval of each domain contributing
to V in Ωi; this is a variation of Lemma 7.12(1) for this more general context of
witness families for aligned tuples:

Lemma 9.10. If Z Ĺ V contributes to V in Ωi, then its active interval along
rx0, xns lies in the interior of J . Further, dZpxi´1, x

V
i´1q ď M and dZpxi, x

V
i q ď M.

Proof. The fact that Z contributes to V implies Z P Υpxi´1, xiq but that Z R Ωi.
Recall from Lemma 7.13 that Ωi Ą Υ`pxi´1, xiq; hence in fact Z P Υcpxi´1, xiq. If
dV pxi, BZq ď 9C, then by definition we would have Z P R0pV q for Ωi and hence
Z Ă Z 1 for some Z 1 P R0pV q. But since Ωi is insulated, this would imply Z 1 P Ωi
and contradict Z̄Ωi “ V . Therefore

dV pxi, BZq ą 9C ą C`M ě dV pxi, x
V
i q `M.

Corollary 3.27 therefore implies dZpxi, x
V
i q ă M. Similarly dZpxi´1, x

V
i´1q ă M.

Also observe that for all all w P rz, xVi s we have

dV px
V
i , wq ď dV px

V
i , wq ` dV pw, zq ď dV px

V
i , zq ` B ď 6C` B
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and therefore dV pxi, wq ď 8C. Similarly dV pxi´1, wq ď 8C for all w P rxVi´1, ys.
We know from Lemma 9.1 that Z has a nonempty active interval IZ along

rx0, xns. We claim that IZ is disjoint from rz, xVi s. Indeed, otherwise we would
have w P rz, xVi s X IZ with BZ Ă µw and hence dV pxi, BZq ď dV pxi, wq ď 8C,
contradicting the above lower bound

dV pxi, BZq ą 9C.

Similarly IZ must be disjoint from rxVi´1, ys.
Therefore, if IZ is not contained in the interior of J “ ry, zs, it is necessarily

disjoint from rxVi´1, x
V
i s. This gives dZpx

V
i´1, x

V
i q ď M{3 and thus by the triangle

inequality

dZpxi´1, xiq ď dZpxi´1, x
V
i´1q ` dZpx

V
i´1, x

V
i q ` dZpx

V
i , xiq

ď M`M{3`M ă NZ .

But this contradicts the fact, observed above, that Z P Υcpxi´1, xiq. �

The following observation will also be useful.

Lemma 9.11. Suppose W Ĺ V has a nonempty active interval along rx0, xns. If
IW intersects rx0, zs (resp. ry, xnsq then dW pxj , x

V
j q ď M for all j ě i (resp. all

j ď i´ 1). In particular, if IW intersects J (as holds for every Z that contributes
to V in Ωi by Lemma 9.10), then dW pxj , x

V
j q ď M for all 0 ď j ď n.

Proof. We suppose IW X rx0, zs ‰ H, the alternate hypothesis IW X ry, xns ‰ H
being handled symmetrically. Fix any j ě i. Pick some point w P IW X rx0, zs, so
that BW Ă µw. We then have rz, xVi s Ă rw, x

V
j s and therefore (by Theorem 3.19)

dV pw, x
V
j q ě dV pw, zq ` dV pz, x

V
i q ` dV px

V
i , x

V
j q ´ 2B ě dV pz, x

V
i q ´ 2B ě 4C.

It follows that

dV pBW,x
V
j q ě dV pw, x

V
j q ´ L ě 3C ą dV pxj , x

V
j q `M.

Thus Corollary 3.27 gives the desired bound dW pxj , x
V
j q ď M. �

Corollary 9.12. Suppose that W Ĺ V satisfies W P Υpxj´1, xjq for some j ‰ i.
Then IW X J “ H.

Proof. We assume W P Υpxj´1, xjq for j ą i, the alternate case j ă i being
symmetric. We know (Lemma 9.1) that W has a nonempty active interval IW along
rx0, xns. To derive a contradiction, let us suppose there is a point w P IW X J . It
cannot be that xVi P IW , since that would imply rz, xVi s Ă IW and hence

dV pz, x
V
i q ď dV pz, BW q ` dV pBW,x

V
i q ď 2L ă 5C,

violating the choice of z in Lemma 9.8. Since IW is an interval, we find that
rxVi , xns Ą rx

V
j´1, x

V
j s misses IW . Lemma 3.26(3) and Lemma 9.11 now give

dW pxj´1, xjq ď dW pxj´1, x
V
j´1q ` dW px

V
j´1, x

V
j q ` dW px

V
j , xjq ď 3M ă NW .

This shows W R Υcpxj´1, xjq. Thus we must have W P Υ`pxj´1, xjq. Choose
k P tj ´ 1, ju so that `xkpBW q ă ε0{NW , and note that k ě i. Since the curve BW
is short at xk, we evidently have dV pBW,xkq ď L. Since BW is also short at the
chosen point w P IW X J , this shows

dV pw, x
V
k q ď dV pw, BW q ` dV pBW,xkq ` dV pxk, x

V
k q ď 2L` C.
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On the other hand the fact that rz, xVi s Ă rw, x
V
k s gives (via Theorem 3.19)

dV pw, x
V
k q ě dV pw, zq ` dV pz, x

V
i q ` dV px

V
i , x

V
k q ´ 2B ě 5C´ 2B.

As these inequalities are incompatible, we have derived our contradiction. �

The following property of the interval J will play a key role in our argument.

Lemma 9.13. If w P J , then every domain Z Ă V satisfies

dZpxi´1, wq ` dZpw, xiq ď dZpxi´1, xiq ` 9C.

Proof. Fix any domain Z Ă V . First suppose that dZpxi´1, x
V
i´1q and dZpxi, x

V
i q

are both at most 2C (as is the case for Z “ V ). Then since J Ă rxVi´1, x
V
i s,

Theorem 3.19 and the triangle inequality give

dZpxi´1, wq ` dZpw, xiq ď dZpx
V
i´1, wq ` dZpw, x

V
i q ` 4C

ď dZpx
V
i´1, x

V
i q ` 4C` B ď dZpxi´1, xiq ` 9C.

So it suffices to assume at least one of the quantities is larger that 2C. Suppose
then that dZpx

V
i , xiq ą 2C ą M (the other possibility is handled similarly). Then

dV pxi, BZq ď dV pxi, BZq ` dV pBZ, x
V
i q ď dV pxi, x

V
i q `M{3 ď 2C

by Corollary 3.27. The triangle inequality therefore gives

dV pxi´1, BZq ě dV pxi´1, xiq ´ dV pxi, BZq ě NV ´ 2C ě 28C.

In particular, it must be the case that dZpxi´1, x
V
i´1q ď 2C (since otherwise the

above argument would force dV pxi´1, BZq ď 2C, which is false).
We next show that dZpx

V
i´1, wq ď M. Indeed, otherwise dZpx

V
i´1, wq ą M and Z

must have an active interval along rxVi´1, ws. Thus there is some point u P rxVi´1, ws
that contains BZ in its Bers marking. Thus dV pxi, uq ď dV pxi, BZq`1 ď 2C`1. On
the other hand equation (9.9) (in the proof of Lemma 9.8) gives dV pu, x

V
i q ě 4C,

which implies dV pu, xiq ě 3C; a contradiction.
We now know both dZpxi´1, x

V
i´1q ď 2C and dZpx

V
i´1, wq ď M. Combining these

gives dZpxi´1, wq ď 3C. It is now easy to conclude

dZpxi´1, wq ` dZpw, xiq ď dZpxi´1, wq ` dZpw, xi´1q ` dZpxi´1, xiq

ď 3C` 3C` dZpxi´1, xiq. �

9.3.2. Comparison points. Lemma 9.13 and Proposition 8.4 imply that for each
w P J , the projection tuple pw̃Zq P

ś

ZĂV CpZq from Definition 8.3 is k–consistent
for some constant k depending only on C. We next use this fact together with the
lengths of certain curves at w to define a point ŵ P T pV q as follows:

Definition 9.14 (Comparison point). For each point w P J , consider the tuple
pw̃ZqZĂV from Definition 8.3. Let αw be the multicurve consisting of those curves
γ P ΓpV q which are essential in V , have `wpγq ă ε0, and satisfy

(9.15) dZpγ, w̃Zq “ diamCpZqpπZpγq Y w̃Zq ď 2M for every domain Z Ă V.

Using Proposition 8.4, Theorem 3.37, and Lemma 3.10, we may then build a mark-
ing µ of V that realizes the tuple pw̃ZqZ and has αw Ă basepµq. Working in
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Fenchel–Nielsen coordinates for the pants decomposition basepµq, take ŵ P T pV q
to be the point whose Bers marking is µ and such that γ P basepµq has

`ŵpγq “

#

ε0, if γ R αw

`wpγq, if γ P αw
.

This comparison point satisfies (and is coarsely characterized by):

(1) dZpŵ, w̃Zq
`
ăN 0 for every domain Z Ă V .

(2) If γ P ΓpV q is an essential curve in V , then `ŵpγq ă ε0 if and only if γ
satisfies `wpγq ă ε0 and (9.15). Further, in this case `ŵpγq “ `wpγq.

The next lemma shows that if w P IZ for some domain Z Ĺ V that contributes to
V in Ωi, then BZ Ă αw and hence, by construction, `ŵpγq ă ε0 for each component
γ of BZ that is essential in V . Thus the points w P T pΣq and ŵ P T pV q both live
in product regions for Z, and we may compare them as follows:

Lemma 9.16 (Comparisons in active intervals). Suppose Z Ĺ V contributes to V
in Ωi, For all w P IZ with corresponding comparison ŵ P T pV q, the following hold:

(1) `wpγq ă ε0 and `ŵpγq ă ε0 for each component γ P BZ X ΓpV q.
(2) Writing w|Z and ŵ|Z for the T pZq–components of ΦBZpwq P PpΣ|BZq and

ΦBZpŵq P PpV |BZq, respectively, we have dT pZqpw|Z , ŵ|Zq
`
ăN 0.

Proof. We will need the following observation.

Claim 9.17. If U P Υpxi´1, xiq satisfies ŪΩi ÖiV (resp. V iŒ ŪΩi), then either Z
and U are disjoint, or else IU occurs before (resp. after) IZ along rx0, xns.

Proof. Set U 1 “ ŪΩi and, by symmetry, suppose U 1 ÖiV . We may assume Z is
not disjoint from U , and hence neither disjoint from U 1. Note that we cannot have
Z Ă U or Z Ă U 1, as that would imply V “ Z̄Ωi Ă U 1 Ĺ V by Lemma 7.6.

The fact that Z Ĺ V contributes to V implies Z R Ωi. We claim there is some
W P Ωi such that U 1 Ă W and W&Z. If U 1&Z then we can simply take W “ U 1.
Otherwise U 1 Ă Z and (WF3) (applied to U 1 P Ωi and Z R Ωi) provides such a W .

Since W&Z Ă V , we see that both V Ă W and V K W are impossible. If
W&V , then (SO3) (applied to U 1 ÖiV and V Ą U 1 Ă W q forces W ă̈ V and
hence W ă̈ Z along rxi´1, xis by Corollary 3.31. Otherwise W Ĺ V and (SO1)
(using U 1 ÖiV ) implies W ÖiV so that we may invoke (SO4) (using W&Z) to again
conclude W ă̈ Z along rxi´1, xis. Note that the fact Z R Ωi Ą Υ`pxi´1, xiq ensures
that Z P Υcpxi´1, xiq. Hence Lemma 9.2 implies we have the same time-ordering
W ă̈ Z along rx0, xns. Since U Ă W , Lemma 3.26(4) now implies the intervals
IU and IZ along rx0, xns are disjoint, and in fact it must be that IU occurs before
IZ . �

Returning to the lemma: Since w P IZ , Lemma 3.26 implies `wpαq ă ε0 for every
component α of BZ. Hence, (1) will follow from the following fact:

Claim 9.18. If γ P CpV |Zq satisfies `wpγq ă ε0, then `ŵpγq “ `wpγq ă ε0.

Proof of claim. Given the hypotheses, by definition of ŵ it suffices to show γ satis-
fies (9.15). Let U Ă V be any subdomain. If γ is disjoint from U , we trivially have
dU pγ, w̃U q “ diamCpUqpw̃U q ď M. Observe also that

dU pγ,wq “ diamCpUqpπU pγq Y πU pwqq ď L ď M{2
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owing to the fact that γ is short at w. Thus (9.15) is immediate when w̃U “ πU pwq;
this takes care of the case that U contributes to V . It remains to suppose, then,
that γ&U and U P Υpxi´1, xiq with ŪΩi ‰ V . We write U 1 “ ŪΩi and, by
symmetry, assume U 1 ÖiV . Then w̃U “ πU pxiq. As the curve γ P CpV |Zq cuts
U , it cannot be that Z and U are disjoint. Claim 9.17 thus ensures IU occurs
before IZ along rx0, xns. Since w P IZ Ă J “ ry, zs Ă rxVi´1, x

V
i s by Lemma 9.10,

we now see that w and xVi lie in the same component of rx0, xnszIU . Whence
dU pw, x

V
i q ď M{3 by Lemma 3.26(3). We also see that IU intersects rx0, zs and

hence that dU pxi, x
V
i q ď M by Lemma 9.11. Therefore dU pw, xiq ď 4M{3. Since

w̃U “ πU pxiq and we have already observed dU pγ,wq ď M{2, we conclude that
dU pγ, w̃U q ď 2M and condition (9.15) is verified. �

It now follows from (1) that w and ŵ lie in product regions for BZ, so we are
justified in considering w|Z , ŵ|Z P T pZq. By the distance formula [Raf1, Theorem
6.1], to bound dT pZqpw|Z , ŵ|Zq it suffices to show that w|Z and ŵ|Z have the same
short curves and the same curve complex projections to all subsurfaces of Z.

First let β P ΓpZq be an essential curve of Z. We claim that either `w|Z pβq and
`ŵ|Z pβq are both at least ε0, or else `w|Zpβq and `ŵ|Z pβq coarsely agree. Indeed, by
nature of the homeomorphism ΦBZ , the lengths `wpβq and `w|Z pβq coarsely agree,
as do `ŵpβq and `ŵ|Z pβq. Thus it suffices to show either `wpβq, `ŵpβq ě ε0 or else
`wpβq and `ŵpβq coarsely agree. But this follows from the construction of ŵ: if
`wpβq ă ε0, then `ŵpβq “ `wpβq by Claim 9.18. Conversely, if `ŵpβq ă ε0, then we
must have `ŵpβq “ `wpβq by item (2) of Definition 9.14.

Next let U Ă Z be any domain in Z. Since the curves of BZ are all short at
w, the Bers marking µw at w has BZ Ă basepµwq. Therefore, taking the curves of
µw that are essential in Z defines a marking of µ1 of Z, and in fact µ1 is a Bers
marking µw|Z of w|Z . Since U Ă Z, we have πU pµwq “ πU pµ

1q “ πU pµw|Z q. Thus

dU pw,w|Zq
`
ă 0. Similarly dU pŵ, ŵ|Zq

`
ă 0. It therefore suffices to bound dU pw, ŵq.

By construction (Definition 9.14(1)) dU pŵ, w̃U q
`
ăN 0 for w̃U as in Proposition 8.4.

Thus we must bound dU pw, w̃U q. We consider the three possibilities of w̃U : if
w̃U “ πU pwq this is immediate. If not then U P Υpxi´1, xiq and ŪΩi ‰ V . Since U
and Z are evidently not disjoint, if ŪΩi ÖiV then Claim 9.17 implies that IU occurs
before IZ along rx0, xns. As above, (using Lemmas 3.26(3) and 9.11) it follows that
dU pw, x

V
i q ď M{3 and dU px

V
i , xiq ď M so that dU pw, w̃U q “ dU pw, xiq ď 2M. If

instead V iŒ ŪΩi , we similarly obtain dU pw, w̃U q “ dU pw, xi´1q ď 2M and thereby
establish (2). �

9.3.3. The main argument. With the requisite notation and setup established, we
now work in earnest towards the proof of Theorem 9.4.

Definition 9.19 (The point w̄). Since J Ă IV (Lemma 9.10), each point w P J
lies in the thin region for the multicurve BV ; accordingly we let w̄ denote the
T pV q–component of product region point ΦBV pwq P PpΣ|BV q.

Our proof relies on comparing the points w̄, ŵ P T pV q for carefully chosen w P
J . To streamline notation, and mimic that used in Definition 9.14, we will set

x̂i´1 “ zxi´1
Ωi
V and x̂i “ pxi

Ωi
V ; however we stress that x̂i´1 and x̂i are defined

by Definition 8.7 and are necessarily thick, whereas points ŵ for w P J (from
Definition 9.14) may be thin.
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Remark 9.20. The fact that points ŵ, for w P J , are allowed to be thin causes
technical complications in the proof. However, allowing thinness is necessary in
order for the crucial ingredient Lemma 9.16(2) to hold.

Strategy 9.21. The goal is to show that dT pV qpx̂i´1, x̂iq is bounded, up to additive

error, by
şxVi
xVi´1

1AΩ
V

. Since J “ ry, zs Ă rxVi´1, x
V
i s, it suffices to instead work with

şz

y
1AΩ

V
. That is, we are concerned with the Lebesgue measure of J XAΩ

V .

We will construct a piecewise geodesic path in T pΣq from xi´1 to xi with the
property that each segment rp, qs satisfies either dT pV qpp̂, q̂q

`
ăC dT pΣqpp, qq, or else

dZpp̂, q̂q
`
ăC 0 for every domain Z Ă V ; these two properties will be established in

Lemmas 9.27 and 9.28 below. The piecewise path will consist of boundedly many
segments—each of which is either rxi´1, ys, rz, xis, or a subintervals of J—and will
be constructed using breakpoints provided (essentially) by Lemma 9.29.

Furthermore, the segments rp, qs with dT pV qpp̂, q̂q
`
ăC dT pΣqpp, qq will have total

length at most
şz

y
1AΩ

V
. The triangle inequality thus implies dT pV qpx̂i´1, x̂iq is at

most
şz

y
1AΩ

V
plus the sum of the lengths dT pV qpp̂, q̂q for the other segments rp, qs

with dZpp̂, q̂q bounded for all Z Ă V . To complete the proof, we will use Minsky’s
product regions Theorem 3.11 to show these latter segments can be ignored.

To begin, let D denote the set of domains Z Ă Σ such that Z P Υpxi´1, xiq with
Z Ĺ V and Z̄Ωi “ V . Thus D consists of all domains contributing to V in Ωi
except for V itself, and hence CipV q “ YZPDIZ .

Definition 9.22. We say a subinterval rp, qs of J is squarely covered by D if:

‚ the open interval pp, qq intersects CipV q, and
‚ whenever the open interval pp, qq intersects IZ for some Z P D, then we

have rp, qs Ă IY for some Y P D with IZ Ă IY and Z Ă Y .

Lemma 9.23. If rp, qs Ă J is squarely covered by D, then dT pV qpp̂, q̂q
`
ăC dT pΣqpp, qq.

Proof. By hypothesis there exists Z P D with pp, qq X IZ ‰ H. If Z P D is any
such domain, then square covering further implies rp, qs Ă IY for some Y P D with
IZ Ă IY and Z Ă Y . Let Y denote the set of topologically maximal domains in
the collection

tY P D | rp, qs Ă IY u.
It follows from the above that Y is nonempty and moreover that if Z P D satisfies
IZ X pp, qq ‰ H, then Z Ă Y for some Y P Y.

The domains in Y are evidently pairwise disjoint, since they cannot be nested
and their active intervals overlap. Therefore BY “ YY PYBY defines a multicurve
in V with the property that every element of Y is a component of V zBY. By
Lemma 9.16, each component γ of BY satisfies `wpγq ă ε0 and `ŵpγq ă ε0 for all
w P rp, qs. Consider the the product regions map ΦBY : T pV q Ñ PpV |BYq. For each
component Z of V zBY and each point w P rp, qs, we may consider the projection
ŵ|Z of ΦBYpŵq to T pZq.

Recall that dPpV |BYqpΦBYpp̂q,ΦBYpq̂qq is the supremum of dT pY qpp̂|Y , q̂|Y q over
all factors T pY q of the product PpV |BYq, that is, over all components Y of V zBY.
Note that the components of the multicurve BY count as annular components of
V zBY. Let Y be the component of V zBY maximizing this supremum. By Minsky’s
Theorem 3.11 we thus have

dT pV qpp̂, q̂q
`
ă dPpV |BYqpΦBYpp̂q,ΦBYpq̂qq “ dT pY qpp̂|Y , q̂|Y q.
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First suppose Y is not an element of Y. We claim that dW pp̂|Y , q̂|Y q is uniformly
bounded for all domains W Ă Y . Note that by definition of product region factors,
we have dW pp̂|Y , q̂|Y q

`
ă dW pp̂, q̂q. Clearly Y is the only component of V zBY con-

taining W ; since elements of Y are components of V zBY and yet Y R Y, it follows
that W cannot be contained in any element of Y. If W P D, it follows that pp, qq
is disjoint from IW , since otherwise W would be contained in an element of Y by
construction. Hence in this case

dW pp̂, q̂q
`
ăC dW pp, qq ď M{3.

If W R D but W P Υpxi´1, xiq, then evidently W̄Ωi ‰ V and therefore the points
p̃W and q̃W in the projection tuple (Definition 8.3) are equal (either πW pxi´1q or
πW pxiq). Hence dW pp̂, q̂q

`
ăC 0 in this case as well. In the remaining case W R

Υpxi´1, xiq we have dW pxi´1, xiq ă NW and therefore dW pp, xiq, dW pq, xiq
`
ăC NW

by Lemma 9.13. Consequently dW pp̂, q̂q
`
ăC dW pp, qq

`
ăC 0 as before. Thus we have

shown dW pp̂|Y , q̂|Y q
`
ăC 0 for every domain W Ă Y .

Now let R denote the quantity from Lemma 3.35 for the pair p, q, and let R̂|Y
denote the corresponding quantity for the pair p̂|Y , q̂|Y . The lengths `p̂pγq and
`p̂|Y pγq are comparable for every essential curve γ in Y . Further, by construction,
if `p̂pγq ă ε0, then `ppγq “ `p̂pγq ă ε0. Thus every short curve at p̂|Y is also
short, with a comparable length, at p. The same holds for the points q̂|Y and q.

Therefore we evidently have R̂|Y
`
ă R. Applying Lemma 3.35, and using our bound

dW pp̂|Y , q̂|Y q
`
ăC 0 for all W Ă Y , we now conclude

dT pV qpp̂, q̂q
`
ă dT pY qpp̂|Y , q̂|Y q

`
ăC R̂|Y

`
ă R ď dT pΣqpp, qq.

It remains to suppose that Y is an element of Y. Hence rp, qs Ă IY . Using
the product regions map ΦBY : T pΣq Ñ PpΣ|BYq in the main Teichmüller space
T pΣq, we may consider the T pY q–components p|Y and q|Y of ΦBYppq and ΦBY pqq,
respectively. We may now finally invoke Lemma 9.16(2) to obtain

dT pY qpp̂|Y , q̂|Y q
`
ăC dT pY qpp|Y , q|Y q.

Combining with the above estimate, and again using Theorem 3.11, we conclude

dT pV qpp̂, q̂q
`
ă dT pY qpp̂|Y , q̂|Y q

`
ăC dT pY qpp|Y , q|Y q

`
ă dT pΣqpp, qq. �

Recall from Definition 9.3 that AΩ
V “ pIV zMpV qq Y CpV q. Lemmas 9.8 and

9.10 together show that CipV q Ă J Ă IV . If we define MjpV q “ tIW | W P

Ωj with W Ĺ V u then Lemma 9.12 furthermore shows that MjpV q X J “ H and
CjpV qXJ “ H for j ‰ i; that is, we have J XMpV q “ J XMipV q and J XCpV q “
CipV q. Combining these observations, we conclude that

(9.24) AΩ
V X J “

´

`

IV zMpV q
˘

Y CpV q
¯

X J “
`

JzMipV q
˘

Y CipV q.

Since MipV q is the union of the active intervals IW of all domains W P Ωi with
W ÖiV or V iŒW , let us define

W´ “ tW P Ωi |W ÖiV u and W` “ tW P Ωi | V iŒW u.

Using these collections, we then define

y1 “ sup

¨

˝tyu Y
ď

WPW´

IW

˛

‚ and z1 “ inf

¨

˝tzu Y
ď

WPW`

IW

˛

‚,
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where here each interval IW is taken along rx0, xns and the supremum/infimum are
taken with respect to the orientation of this interval from x0 to xn. Note that we
have included tyu and tzu in the definition to both handle the case that W˘ may
be empty and to ensure y1, z1 P ry, zs “ J .

Lemma 9.25. The points y1, z1 satisfy the following:

(1) dV pxi´1, y1q and dV pz1, xiq are both at most NV {3` L.
(2) y1 and z1 lie in and occur in order along J .
(3) The interval ry1, z1s Ă J is contained in JzMipV q Ă J XAΩ

V .
(4) Each point w P rz1, zs satisfies dV pw, xiq

`
ăC 0.

(5) Each point w P ry, y1s satisfies dV pxi´1, wq
`
ăC 0,

Proof. For (1), let us only consider dV pz1, xiq. The construction of J (Lemma 9.8)
ensures dV pxi, zq ď 7C. Hence the claim is immediate if z1 “ z. Otherwise, there
is some W PW` so that z1 P IW . Thus BW is contained in the Bers marking at z1

so that dV pz1, xiq ď dV pBW,xiq ` L. Since V iŒ W , the definition of encroachment
and the fact that Ωi is wide now give

dV pxi, z1q ď dV pxi, BW q ` L ď EΩipV q ` L ď NV {3` L.

For (2), since the pairs y, y1 and z1, z occur in order by construction, it suffices
to show y1, z1 occur in order along rx0, xns as this will force ry1, z1s Ă ry, zs “ J .
By means of contradiction, let us instead suppose z1, y1 occur in order. First note
that having y1 P rx

V
i , xns would imply (by Theorem 3.19)

dV px
V
i´1, y1q ě dV px

V
i´1, x

V
i q ´ B ě dV pxi´1, xiq ´ 2C´ B ě NV ´ 3C

and hence dV pxi´1, y1q ě NV ´ 4C. Since NV ě 30C, this is incompatible with (1).
Hence we must in fact have y1 P rz1, x

V
i s, in which case Theorem 3.19 now gives

dV py1, x
V
i q ď dV pz1, x

V
i q ` B ď dV pz1, xiq ` C` B ď NV {3` 3C,

where we have again utilized (1). Using V P Υcpxi´1, xiq together with one more
application of (1), this now leads to the contradiction:

NV ď dV pxi´1, xiq ď dV pxi´1, y1q ` dV py1, x
V
i q ` dV px

V
i , xiq

ď NV {3` L` NV {3` 3C` C ă NV .

Since ry1, z1s Ă J , the assertion ry1, z1s Ă JzMipV q of (3) is clear: MipV q is the
union of intervals IW for W Ĺ V with W PW´ YW`. By definition of the points
y1, z1, if W P W´ then IW Ă rx0, y1s and if W P W` then IW Ă rz1, xns. Hence
MipV q is disjoint from ry1, z1s, which proves the claim.

For (4), if w P rz1, zs Ă rz1, x
V
i s, then as above Theorem 3.19 and (1) give

dV pw, xiq ď dV pz1, wq ` dV pw, x
V
i q ` dV px

V
i , xiq

ď dV pz1, x
V
i q ` B` C ď dV pz1, xiq ` 2C` B `

ăC 0.

The argument for (5) is symmetric. �

The significance of the subinterval ry1, z1s is highlighted by the next lemma.

Lemma 9.26. Every point w P ry1, z1s satisfies dT pV qpŵ, w̄q
`
ăC 0.

Proof. We use Lemma 3.35 and show that ŵ and w̄ agree in all subsurfaces and
have the same short curves with the same lengths. Consider any domain Z Ă V
and let w̃Z Ă CpZq be as in Proposition 8.4. Then dZpŵ, w̃Zq

`
ăC 0 by construction.
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Since w̄ is simply the T pV q–component of w, we also observe that dZpw, w̄q
`
ă 0.

Thus to bound dZpŵ, w̄q it suffices to bound dZpw, w̃Zq.
If Z R Υpxi´1, xiq or if Z P Υpxi´1, xiq with Z̄Ωi “ V , then w̃Z “ πZpwq by

definition and hence dZpw, w̃Zq
`
ă 0 is immediate. So suppose Z P Υpxi´1, xiq with

Z̄Ωi “ W Ĺ V . We consider the case W ÖiV , the opposite possibility V iŒ W
being similar. By definition we now have w̃Z “ πZpxiq. On the other hand, the
construction of y1 implies IW Ă rx0, y1s. As IZ Ă IW by Lemmas 9.8 and 9.10
(applied with W in place of V ), it follows that IZ is contained in rx0, y1s and that
w, xVi lie in the same component of rx0, xnszIZ . Therefore dZpx

V
i , xiq ď M by

Lemma 9.11 and dZpw, x
V
i q ď M{3 by Lemma 3.26. The triangle inequality thus

gives dZpw, w̃Zq “ dZpw, xiq
`
ă 0 here as well.

By Lemma 3.35 it remains to bound the quantity R associated to the two points
ŵ, w̄ P T pV q. For this, it suffices to bound the ratio `w̄pγq{`ŵpγq, from above and
below, for every curve γ that is short on either w̄ or ŵ. Note that `wpγq and `w̄pγq
agree up to bounded multiplicative error for all essential curves γ in V , thus we may
instead bound the ratio `wpγq{`ŵpγq. Suppose now that γ is an essential curve in
V with `ŵpγq ă ε0. Then by Definition 9.14, `wpγq{`ŵpγq “ 1. Conversely, suppose
γ is a curve in V with `wpγq ă ε0. We show that γ satisfies condition (9.15), it
will then follow from the definition of ŵ that `ŵpγq “ `wpγq. Let Z Ă V be any
domain. Since `wpγq ă ε0, we have γ P µw. Thus dZpγ,wq ď L. Hence (9.15) is
satisfied if w̃Z “ πZpwq. If w̃Z ‰ πZpwq, then Z P Υpxi´1, xiq with W “ Z̄Ωi ‰ V .
Let us suppose W ÖiV so that w̃Z “ πZpxiq, the reverse possibility V iŒ W being
similar. As above, we have that dZpw, xiq ď 4M{3 and therefore conclude

dZpγ, w̃Zq “ dZpγ, xiq ď dZpγ,wq ` dZpw, xiq ď L` 4M{3 ď 2M

as required. This establishes (9.15) for γ and proves the claim. �

We now establish the properties mentioned in Strategy 9.21 that will hold for
the segments of the yet-to-be-constructed piecewise geodesic path from xi´1 to xi.

Lemma 9.27. Let rp, qs Ă J be a subgeodesic satisfying either

‚ rp, qs is squarely covered by D, or
‚ rp, qs Ă ry1, z1s.

Then rp, qs is contained in J XAΩ
V and dT pV qpp̂, q̂q

`
ăC dT pΣqpp, qq.

Proof. To see that rp, qs Ă AΩ
V , we simply note that ry1, z1s is contained in JzMipV q

by Lemma 9.25(3), and that each squarely covered interval is contained in IY Ă
CipV q for some Y P D. Thus clearly rp, qs Ă pJzMipV qq Y CipV q “ J XAΩ

V .
If rp, qs is squarely covered by D, the bound on dT pV qpp̂, q̂q is simply Lemma 9.23.

If instead rp, qs Ă ry1, z1s, then Lemma 9.26 implies dT pV qpp̄, p̂q and dT pV qpq̄, q̂q are
both bounded in terms of C. Therefore

dT pV qpp̂, q̂q
`
ăC dT pV qpp̄, q̄q

Since the metric in PpΣ|BV q is a sup metric, by Minsky’s Theorem 3.11 we have

dT pV qpp̄, q̄q ď dPpΣ|BV qpΦBV ppq,ΦBV pqqq ď dT pΣqpp, qq ` D0.

Combining with the previous inequality thus proves the lemma in this case. �

In contrast to Lemma 9.27, we have the following for certain subintervals of J :

Lemma 9.28. Let rp, qs be a geodesic segment in T pΣq such that either
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‚ rp, qs “ rxi´1, ys, or rp, qs “ rz, xis, or
‚ pp, qq is contained in J and disjoint from CipV q Y ry1, z1s.

Then dZpp̂, q̂q
`
ăC 0 for every domain Z Ă V .

Proof. To ease notation, set J 1 “ txi´1u Y J Y txiu and note that p, q P J 1. By
Lemma 9.13, each point w P J 1 satisfies the condition of Definition 8.3

dZpxi´1, wq ` dZpw, xiq ď dZpxi´1, xiq ` 9C for all Z Ă V

and so determines a consistent tuple pw̃Zq P
ś

ZĂV CpZq. Recall from Defini-
tions 8.7 and 9.14 that ŵ P T pV q then satisfies dZpw̃Z , ŵq

`
ăC for any Z Ă V .

Let us now fix a domain Z Ă V and bound dZpp̂, q̂q provided any of the conditions
hold. First suppose Z R Υpxi´1, xiq, so that by Definition 8.3 p̃Z “ πZppq and
q̃Z “ πZpqq. In this case we have dZpxi´1, xiq ă NV , so the above condition implies

dZpxi´1, wq ` dZpw, xiq ď NV ` 9C

for every point w P J 1. Therefore we conclude that

dZpp̂, q̂q
`
ăC dZpp̃Z , q̃Zq “ dZpp, qq ď dZpp, xiq ` dZpxi, qq

`
ă 2pNV ` 9Cq.

Next suppose Z P Υpxi´1, xiq, and set W “ Z̄Ωi P Ωi. If W ÖiV , then by
definition p̃Z “ πZpxiq “ q̃Z , and we have

dZpp̂, q̂q
`
ăC dZpp̃Z , q̃Zq “ dZpxi, xiq ď L.

Similarly if W iŒ V , then p̃Z “ πZpxi´1q “ q̃Z and we again find dZpp̂, q̂q
`
ăC 0.

The remaining possibility is W “ V , in which Z contributes to V in Ωi. In this
case, p̃Z “ πZppq and q̃Z “ πZpqq, so that dZpp̂, q̂q

`
ăC dZpp, qq. Hence it suffices to

bound this latter quantity dZpp, qq. We consider two cases:
First, suppose Z “ V itself. If rp, qs “ rxi´1, ys or if rp, qs “ rz, xis, then

Lemma 9.8 provides the desired bound:

dZpp, qq P
!

dV pxi´1, yq, dV pz, xiq
)

ď 7C.

Otherwise pp, qq is contained in J and disjoint from CipV q Y ry1, z1s. It follows
that rp, qs is either contained in ry, y1s or rz1, zs. In the latter case, Lemma 9.25(4)
implies

dV pp, qq ď dV pp, xiq ` dV pxi, qq
`
ăC 0,

and in the former case Lemma 9.25(5) similarly implies dV pp, qq
`
ăC 0.

Second, suppose Z Ĺ V . In that case we know that IZ Ă J “ ry, zs (Lemma 9.10)
and that dZpxi´1, x

V
i´1q and dZpxi, x

V
i q are both at most M (Lemma 9.11). By

Lemma 3.26 and the triangle inequality, it follows that

dZpz, xiq ď dZpz, x
V
i q ` dZpx

V
i , xiq ď M{3`M ď 2M

and similarly that dZpxi´1, yq ď 2M. This handles the case that rp, qs equals
rxi´1, ys or rz, xis. If instead pp, qq is contained in J and disjoint from CipV q Y
ry1, z1s, then evidently pp, qq X IZ “ H due to the fact that IZ Ă CipV q by defini-
tion. Therefore dZpp, qq ď M{3 by Lemma 3.26 and the lemma is proven. �

In order to decompose J into subsegments that satisfy either Lemma 9.27 or
9.28 above, we will use endpoints of active intervals IZ for domains Z P D. To
this end, let DR denote the collection of all Z P D such that IZ intersects rz1, zs.
Define DL symmetrically. Observe that z1 “ z forces DR “ H (since each Z P D
has IZ Ă py, zq by Lemma 9.10) and similarly for DL. Using the notation of §4.1,
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we write DLxnx0
and DRxnx0

for the set of domains in DL and DR, respectively, that

are maximal with respect to the order

Z ărx0,xns Y ðñ Z Ă Y and IZ Ă IY along rx0, xns.

Lemma 9.29. The collections DLxnx0
and DRxnx0

have uniformly bounded cardinality.

That is
ˇ

ˇ

ˇ
DLxnx0

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
DRxnx0

ˇ

ˇ

ˇ

`
ăN 0.

Proof. We only consider DRxnx0
. We may assume z1 ‰ z, for otherwise DR “ H and

there is nothing to prove. Thus, by definition of z1, we may choose W P Ωi such
that V iŒ W and so that z1 is the left endpoint of IW . Since Ωi is assumed to be
wide, we have that dV pBW,xiq ď EΩipV q ď NV {3.

We claim that for every Z P DR, the multicurves BZ and BW are disjoint.
Indeed, the definition of DR ensures that IZ either intersects or occurs to the right
of IW . If BZ&BW , then Z&W and hence W is necessarily time-ordered before Z
along rx0, xns. Lemma 9.2 implies we also have the time ordering W ă̈ Z along
rxi´1, xis. But, since Z contributes to V in Ωi and V iŒW , this contradicts (SO4).

Choose α P πV pxi´1q and β P πV pxiq realizing dV pxi´1, xiq and fix a geodesic
β “ γ0, . . . , γm “ α in CpV q. Since Υ`pxi´1, xiq Ă Ωi by insulation, we have
D Ă Υcpxi´1, xiq; that is dZpxi´1, xiq ě NZ for each Z P D. Exactly as in the
proof of Lemma 4.1, the bounded geodesic image theorem implies that each Z P D
is disjoint from one of the curves γj . If we fix Z P DR and let 0 ď j ď m be such
that Z is disjoint from γj , it follows that

j “ dV pβ, γjq ď dV pxi, γjq ď dV pxi, BW q ` dV pBW, BZq ` dV pBZ, γjq ď EΩipV q ` 2.

This proves that if we define

Y “ tY | Y is a connected component of V zγj for some j ď EΩipV q ` 2u,

then each Z P DR satisfies Z Ă Y for some Y P Y. Notice that, since Ωi is wide,
|Y| ď 2pEΩipV q ` 3q ď 2NV {3` 6 ď NV .

For each Y P Y we consider the collection

PpY q “ tU Ă Y | dU pxi´1, xiq ě NUu.

Now choose any Z P DRxnx0
, that is a maximal element of DR with respect to the

partial order ărx0,xns. Choose some Y P Y so that Z Ă Y . Since dZpxi´1, xiq ě NZ ,
we have Z P PpY q as well. We claim that furthermore Z P Pxnx0

pY q. To see this,
consider any U P PpY q with Z Ă U and IZ Ă IU . Since Z Ă U Ă Y Ĺ V , the
fact Z̄Ωi “ V forces ŪΩi “ V as well. As U Ĺ V and U P Υpxi´1, xiq, we see that
U contributes to V and in fact that U P D. Finally, since IZ intersects rz1, zs, the
same holds for IU Ą IZ . Therefore U P DR. Since Z is ărx0,xns–maximal in DR, it
follows that U “ Z. Hence Z P Pxnx0

pY q as claimed. This proves that each element
of DRxnx0

is contained in Pxnx0
pY q for some Y P Y. Thus we have

DRxnx0
Ă

ď

Y PY
Pxnx0

pY q.

Applying Lemma 4.1 with the thresholds NξpΣq ď ¨ ¨ ¨ ď N´1 “ N gives a bound
ˇ

ˇPxnx0
pY q

ˇ

ˇ

`
ăN 0 for every Y . Since |Y| ď N, we conclude

ˇ

ˇDLyx
ˇ

ˇ

`
ăN 0, as desired. �

We are now finally ready to complete the proof of the Theorem:
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Proof of Theorem 9.4–Nonannular case. Let E denote the union of ty, y1, z1, zu
with the set of all endpoints of active intervals IZ for Z P DLxnx0

or Z P DRxnx0
.

This nonempty set is contained in J and has uniformly bounded cardinality by
Lemma 9.29. Let us write E “ te1, . . . , ek´1u ordered along J as

y “ e1 ă e2 ă ¨ ¨ ¨ ă ek´1 “ z.

We also define e0 “ xi´1 and ek “ xi. The points e0, . . . , ek therefore define a
piecewise geodesic path in T pΣq from xi´1 to xi:

re0, e1sre1, e2s ¨ ¨ ¨ rek´1, eks

We claim that each segment rp, qs of this concatenation satisfies the hypotheses
of either Lemma 9.28 or Lemma 9.27. Indeed, the first and last segments rxi´1, ys
and rz, xis satisfy Lemma 9.28 by fiat, and any subsegment of ry1, z1s satisfies
Lemma 9.27. If rp, qs is not covered by the previous sentence, then rp, qs is contained
in ry, y1s or rz1, zs. By symmetry, let us suppose it is the former. We may assume
pp, qq intersects CipV q, for otherwise it satisfies Lemma 9.28. Now let Z P D be
any domain for which IZ intersects pp, qq. Since rp, qs Ă ry, y1s we evidently have
Z P DL and may choose some Y P DLxnx0

with Z Ă Y and IZ Ă IY . It follows that

rp, qs intersects IY as well. Since the points p, q are consecutive in the set E, which
by definition contains both endpoints of IY , it must be that rp, qs Ă IY . Therefore
rp, qs is squarely covered by D and satisfies Lemma 9.27.

Taking resolutions produces a sequence of points x̂i´1 “ ê0, . . . , êk “ x̂i in T pV q.
Let P Ă t1, . . . , ku be the set of indices 1 ď j ď k such that the segment rej´1, ejs
satisfies Lemma 9.27. Since the intervals rej´1, ejs with j P P have disjoint interiors
and are each contained in J XAΩ

V , applying Lemma 9.27 implies that

(9.30)
ÿ

jPP

dT pV qpêj´1, êjq
`
ăC

ÿ

jPP

dT pΣqpej´1, ejq ď

ż z

y

1AΩ
V
.

Note that in the first inequality above we have used the fact that k is uniformly
bounded (Lemma 9.29) to combine the additive errors from each of the |P | ď k
applications of Lemma 9.27 into a single additive error depending only on C.

Now let Q “ t1, . . . , kuzP be the set of remaining indices. By the above, for
each j P Q the segment rej´1, ejs satisfies Lemma 9.28; consequently we have

(9.31) dZpêj´1, êjq
`
ăC 0 for each j P Q and every domain Z Ă V .

For each j P Q let Γj denote the set of essential curves α in V such that either
`êj´1pαq ă ε0

1{2 or `êj pαq ă ε0
1{2. Since a point in T pV q can have at most ξpV q

disjoint curves, we see that |Γj | ď 2ξpSq. Setting Γ “ YjPQΓj now gives a set of
uniformly bounded cardinality.

Note that if Γj “ H, then the quantity R̂j in Lemma 3.35 for the pair êj´1, êj
is uniformly bounded and hence that lemma implies dT pV qpêj´1, êjq

`
ăC 0. Thus

if Γ were empty, combining the inequalities (9.30) and (9.31) above would prove
the proposition. However, since the points ŵ for w P J are allowed to be thin (c.f.
Definition 9.14), Γ may be nonempty and we must work a bit harder.

Claim 9.32. If A Ă V is an annulus with BA “ α P Γ, then A does not contribute
to V in Ωi. Therefore diamCpAqpπApê0q Y ¨ ¨ ¨ Y πApêkqq

`
ăC.

Proof of claim. By contradiction, suppose that A contributes to V . The hypothesis
implies there is some 0 ď j ď k such that `êj pBAq ă ε0

1{2 and such that either
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j P Q or j`1 P Q. By construction, ê0 “ x̂i´1 and êk “ x̂i are both thick; therefore
it must be that 0 ă j ă k. The construction of êj (Definition 9.14) implies in this
case that `ej pBAq “ `êj pBAq ă ε0

1{2. Therefore the point ej P J evidently lies in
the interior of the active interval IA of A. Since IA Ă J by Lemma 9.10, this rules
out both possibilities ej “ y and ej “ z; hence in fact 1 ă j ă k ´ 1. Since ej is in
the interior of IA, we see that IA Ă CipV q intersects the interiors of both rej´1, ejs
and rej , ej`1s. It follows neither pej´1, ejq nor pej , ej`1q is disjoint from CipV q, and
thus that neither of these intervals satisfies Lemma 9.28. But this contradicts the
assumption that either j P Q or j ` 1 P Q. Hence A cannot contribute to V .

For the second conclusion, if A P Υpxi´1, xiq then the above implies that either
ĀΩi ÖiV or V iŒ ĀΩi . In the former case we have dApêj , xiq

`
ăC 0 for all 0 ď j ď k,

and in the latter case we have dApêj , xi´1q
`
ăC 0. Otherwise A R Υpxi´1, xiq so

that dApxi´1, xiq ď NA. In this case for each 0 ď j ď k we have dApêj , ejq
`
ăC 0 by

construction and, by Lemma 9.13, that

dApêj , xiq
`
ăC dApej , xiq ď dApxi´1, ejq ` dApej , xiq

`
ăC dApxi´1, xiq ď NA.

In any case, YjπApêjq lies within bounded distance of either πApxi´1q or πApxiq. �

For any essential curve α on V , we now define a transformation fα of T pV q to
itself by utilizing the product region PpV |αq “ T pV zαq ˆ T pαq. Recalling that
T pαq “ H2, let hα : T pαq Ñ T pαq be the map that pushes points vertically down
to below the horizontal line 1{ε0

1; that is, hαpx, yq “ px,minty, 1
ε01
uq for px, yq P H2.

Conjugating with Φα then gives a transformation fα “ Φ´1
α ˝ pid ˆ hαq ˝ Φα from

T pV q to itself. Observe that fα is the identity on the complement of the thin region
Hε01,α, and therefore fixes every point of w P T pV q with `wpαq ě ε0

1. The fact that
fα only makes α longer and does not affect twisting leads easily to the following:

Claim 9.33. For every point w P T pV q we have:

‚ dZpw, fαpwqq
`
ă 0 for every domain Z Ă V .

‚ logp`fαpwqpγqq
`
ą logpmint`wpγq, ε0

1uq for every essential curve γ on V .

Proof of Claim. It is clear that any short marking at w is also a short marking for
fαpwq; whence the first bullet. The second bullet is immediate for the curve α “ γ.
If γ ‰ α is disjoint from α, then γ is essential in T pV zαq and so the lengths `wpγq
and `fαpwqpγq coarsely agree. Finally suppose γ&α. If `wpαq ě ε0

1 then fαpwq “ w
and there is nothing to prove. Otherwise `wpαq ă ε0 and so `fαpwqpαq “ ε0

1 by
construction. Thus necessarily `fαpwqpγq ą ε0

1 since ε0
1 is smaller than the Margulis

constant. �

Let us list the curves in Γ as Γ “ tα1, . . . , αmu and write ft “ fαt . For each
0 ď j ď k, set ê0

j “ êj and then recursively set êtj “ ftpê
t´1
j q for 1 ď t ď m. Since

the points ê0 and êk are thick by construction, each map ft fixes these two points
and we have êm0 “ ê0 “ x̂i´1 and êmk “ êk “ x̂i. Hence to prove the proposition it
suffices to bound dT pV qpê

m
0 , ê

m
k q.

Applying Claim 9.33 successively for the maps f1, . . . , fm gives dZpêj , ê
m
j q

`
ăC 0

for each Z Ă V (recall that m `
ăC 0). Therefore (9.31) can now be restated as

dZpê
m
j´1, ê

m
j q

`
ăC 0 for each j P Q and every domain Z Ă V .

Furthermore, when j P Q, since Γ contains every short curve at êj´1 or êj and
each of these curves gets lengthened by one of the maps ft, repeated applications of
Claim 9.33 shows that the points êmj´1 and êmj are uniformly thick. Therefore the
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quantity R̂mj from Lemma 3.35 associated to this pair is uniformly bounded above
(in terms of C), and we may promote the above bound to yield the following:

(9.34) dT pV qpê
m
j´1, ê

m
j q

`
ăC 0 for each j P Q.

The only remaining step is to promote the bound in (9.30) to the new points
êmj´1, ê

m
j for j P P . The key point here is that the diameter bound from Claim 9.32

implies our transformations ft are coarsely 1–Lipschitz for the points in question:

Claim 9.35. For any 1 ď j ď k and 0 ď t ď m we have

dT pV qpê
t
j´1, ê

t
jq
`
ăC dT pV qpêj´1, êjq.

Proof. We fix j and proceed by induction on t, with the claim being immediate
for t “ 0. Fix t ě 1 and suppose the claim holds for t ´ 1. To ease notation, set
p “ êt´1

j´1 and q “ êt´1
j . Thus by the induction hypothesis it suffices to prove

(9.36) dT pV qpftppq, ftpqqq
`
ăC dT pV qpp, qq.

Let ra, bs “ Iαt be the (possibly empty) active interval for the curve αt along
the geodesic segment rp, qs. Since the length of αt is at least ε0

1 in the complement
of Iαt , the map ft is the identity on this complement. Thus it suffices to suppose
ra, bs is nonempty, for otherwise ft fixes both points p, q and (9.36) is immediate.
As ft is the identity on rp, qszra, bs, we have dT pV qpftppq, ftpaqq “ dT pV qpp, aq and
similarly dT pV qpftpbq, ftpqqq “ dT pV qpb, qq. Since

dT pV qpp, qq “ dT pV qpp, aq ` dT pV qpa, bq ` dT pV qpb, qq,

by the triangle inequality it therefore suffices to prove that

(9.37) dT pV qpftpaq, ftpbqq
`
ăC dT pV qpa, bq.

Now let A Ă V be the annulus with BA “ αt. Combining Claim 9.32 with
t ´ 1 applications of Claim 9.33 implies that dApp, qq

`
ăC 0. By Theorem 3.19

it follows that dApa, bq
`
ăC. Let a|αt , a|

 
αt and b|αt , b|

 
αt respectively denote the

T pαtq– and T pV zαtq–components of the images Φαtpaq,Φαtpbq P PpV |αtq. The
previous sentence implies that the horizontal coordinates of a|αt and b|αt (viewed
in T pαtq “ H2) differ by an amount bounded in terms of C. On the other hand,
since a, b P Iαt we have `apαtq, `bpαtq ă ε0. It follows that the vertical coordinates
of hαtpa|αtq and hαtpb|αtq both lie between 1

ε0
and 1

ε01
. We conclude that hαtpa|αtq

and hαtpb|αtq have uniformly bounded (in terms of C) distance in T pαtq. Since the
metric on PpV |αtq is a supremum, it follows that

dPpV |αtq

´

idˆ hαtpΦαtpaqq, idˆ hαtpΦαtpbqq
¯

“ sup
!

dT pV zαtq
`

a| αt , b|
 
αt

˘

, dT pαtq
`

hαtpa|αtq, hαtpb|αtq
˘

)

`
ăC dT pV zαtq

`

a| αt , b|
 
αt

˘

ď dPpV |αtq
`

Φαtpaq,Φαtpbq
˘

.

Finally, the points a, b, ftpaqftpbq lie in the thin region Hε0,αtpV q where Minsky’s
Theorem 3.11 ensures the maps Φ˘1

αt change distances by at most D0. The last

quantity above thus lies within D0 of dT pV qpa, bq and, recalling that ft “ Φ´1
αt ˝

pid ˆ hαtq ˝ Φαt , the first quantity lies within D0 of dT pV qpftpaq, ftpbqq. Therefore
the above estimate establishes (9.37) and completes the proof of the claim. �
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The proposition now follows easily by invoking the triangle inequality and suc-
cessively applying equation (9.34), Claim 9.35, and equation (9.30):

dT pV qpx̂i´1, x̂iq “ dT pV qpê
m
0 , ê

m
k q ď

ÿ

jPP

dT pV qpê
m
j´1, ê

m
j q `

ÿ

jPQ

dT pV qpê
m
j´1, ê

m
j q

`
ăC

k
ÿ

jPP

dT pV qpê
m
j´1, ê

m
j q

`
ăC

k
ÿ

jPP

dT pV qpêj´1, êjq
`
ăC

ż z

y

1AΩ
V
. �

10. Dealing with badness

Continue to let Ω “ pΩ1, . . . ,Ωnq be a WISC witness family for a strongly C–
aligned tuple px0, . . . , xnq in T pΣq. We want to use Theorem 9.4 to estimate both
the complexity LpΩq (Definition 8.12) and the savings SpΩq of Ω (Definition 8.13).
To this end, we will utilize weighted characteristic functions 1AΩ

V
of contribution

sets: Again the ultimate goal is Theorem 11.2. The obstacle as has been suggested
are the existence of nested sets. In this section we show how to modify a witness
family, if necessary, to deal with this problem.

Definition 10.1 (Weight and savings). For each V P Ω, use the points xV0 , . . . , x
V
n

to define an adjustment function ξV : rx0, xns Ñ R whose value is 1 on those subin-

tervals rxVi´1, x
V
i s such that V P Ωi is an annulus with zxi´1

Ωi
V , pxi

Ωi
V both thick,

and whose value is zero elsewhere. Thus ξV ” 0 for nonannular V . On rxVi´1, x
V
i s

the values of hV ´ ξV and ξV thus respectively agree with the coefficients h˚V and

phV ´h
˚
V q of the dT pV qpzxi´1

Ωi
V , pxi

Ωi
V q terms appearing in the complexity LpΩiq (Def-

inition 8.8) and savings SpΩq (Definition 8.13). Accordingly the weight and savings
functions rx0, xns Ñ R of V P Ω are defined as the products ωV “ phV ´ ξV q1AΩ

V

and σV “ ξV 1AΩ
V

with the characteristic function of the contribution set AΩ
V (from

Definition 9.3). Summing now yields the total weight and total savings functions
ωΩ, σΩ : rx0, xns Ñ R of Ω:

ωΩ “
ÿ

V PΩ

ωV “
ÿ

V PΩ

phV ´ ξV q1AΩ
V

and σΩ “
ÿ

V PΩ

σV “
ÿ

V PΩ

ξV 1AΩ
v

Theorem 9.4 says that the individual terms phV ´ h˚V qdT pV qpzxi´1
Ω
V , pxi

Ω
V q and

h˚V dT pV qpzxi´1
Ω
V , pxi

Ω
V q appearing in the savings SpΩq and complexity LpΩq are bounded

by the respective integrals
şxVi
xVi´1

σV and
şxVi
xVi´1

ωV . Since the points xV0 , . . . , x
V
n ap-

pear in order along rx0, xns, summing over all i and V shows that LpΩq and SpΩq
are bounded by the integrals of the total weight ωΩ and total savings σΩ func-
tions over rx0, xns (up to an additive error depending on n, N, and the cardinality
|Ω|). If we knew ωΩppq ` σΩppq ď hΣ for all p, we would thus be able to bound
LpΩq `SpΩq `ă hΣdT pΣqpx0, xnq. While this inequality need not hold in general, it
can only fail on the following sets:

Definition 10.2 (Bad set). We say a point p P AΩ
V is bad for V in Ω if there exists

Z P Ω such that Z Ĺ V and p P AΩ
V XAΩ

Z . The bad set for V is then defined to be

BΩ
V “ tp P AΩ

V | p is bad for V u Ă AΩ
V .

with corresponding badness function βV “ hV 1BΩ
V

. As for the weight and savings,

the total badness function is βΩ “
ř

V PΩ βV
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Remark 10.3. We note that AΩ
V Ă IV for every domain V P Ω. This is immediate

from the definition when V annular, and when V is nonannular it follows from
Lemmas 9.8–9.10. Therefore any pair of domains V,W P Ω with AΩ

V X AΩ
W ‰ H

must either be disjoint or nested (since V&W is precluded by Lemma 3.26(4)).

The relationship between badness and weight is made precise by the next lemma.

Lemma 10.4. For any WISC witness Ω for a strongly C–aligned tuple px0, . . . , xnq
in T pΣq, the weight, savings, and badness functions ωΩ, σΩ, βΩ : rx0, xns Ñ R satisfy

ωΩ ` σΩ ´ βΩ ď hΣ.

Proof. Fix p P rx0, xns and consider the subcollection

Gp “ tV P Ω | p P AΩ
V and p R BΩ

V u.

Notice that if V R Gp, then necessarily p P pAV
Ω X BVΩ q Y prx0, xnszAΩ

V q and thus

pωV ` σV ´ βV qppq “ hV 1AΩ
V
ppq ´ hV 1BΩ

V
ppq “ 0.

On the other hand, if V P Gp then βV ppq “ 0 so that

pωV ` σV ´ βV qppq “ pωV ` σV qppq “ hV 1AΩ
V
ppq ď hV .

Summing over all V , we therefore have pωΩ ` σΩ ´ βΩqppq ď
ř

V PGp hV . That this

latter quantity is at most hΣ follows from the observation that the domains in Gp
are disjoint subdomains of Σ. Indeed, all V,Z P Gp have p P AΩ

V X AΩ
Z ; hence

cutting V&Z is impossible by Remark 10.3, and nesting Z Ĺ V is impossible by
virtue of V P Gp and the definition of BΩ

V . �

We remark that the lemma indicates that in trying to bound ωΩ ` σΩ in terms
of hΣ we need to bound βΩ. The goal of this section is to construct witness families
where that term is small.

We will also need the following feature of bad sets.

Lemma 10.5. If p P BΩ
V , then there exists an index 1 ď i ď n and domains

Z, Y Ĺ V such that Z, V P Ωi. Y P Υpxi´1, xiq with Ȳ Ωi “ V , and p P AΩ
Z X IY .

Furthermore, i is the unique index for which p lies in the interior of rxVi´1, x
V
i s.

Proof. By definition, there is some Z P Ω such Z Ĺ V and p P AΩ
Z . Since Z, V P Ω

with Z Ĺ V , it follows from the definition that IZ ĂMpV q. Since the contribution
set is defined as AΩ

V “ pIV zMpV qq Y CpV q, it must be the case that p P CpV q.
In particular, p P CipV q for some 1 ď i ď n, which means that p P IY for some
Y Ĺ V satisfying Y P Υpxi´1, xiq and Ȳ Ωi “ V . From Lemmas 9.8–9.10, we see
that p P IY Ă J Ă rxVi´1, x

V
i s. Since IZ evidently intersects J , by Corollary 9.12 we

must have Z R Υpxj´1, xjq for all j ‰ i. Hence the fact Z P Ω implies Z P Ωi. �

10.1. Fixing badness. If Ω “ pΩ1, . . . ,Ωnq and Ω1 “ pΩ11, . . . ,Ω
1
nq are both WISC

witness families for a tuple px0, . . . , xnq, we will write Ω Ă Ω1 to mean that Ωi Ă Ω1i
for each i and that the the subordering on Ω1i extends the subordering on Ωi. Note

that in this case, for each V P Ω we have MΩpV q ĂMΩ1pV q and CΩpV q Ą CΩ1pV q
(since in Ω1 there are more domains subordered below V and thus less domains
contributing to V ). Therefore we observe

V P Ω Ă Ω1 ùñ AΩ1

V Ă AΩ
V .
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Recall from §8.3 that we have defined EΩpV q “ maxi EΩipV q. If V P Ω satisfies
EΩpV q ď

1
3NV ´ 9C, then for each 1 ď i ď n define

Ω`i pV q :“

#

Ωi Y LE`Ωi pV q
pV q YRErΩi pV q

pV q, if V P Ωi

Ωi, if V R Ωi
.

That is, Ω`i pV q is obtained by taking the left and then right augmentations of Ωi
along V with parameters t “ E`ΩipV q and t “ ErΩipV q, respectively. Observe that

Ω`i pV q is a witness family by Lemma 7.24 and that it inherits a natural subordering
by Lemma 7.26. Then let Ω`pV q “ pΩ`1 pV q, . . . ,Ω

`
n pV qq be the associated witness

family, and define

pΩpV q “ Ω`pV q “
´

Ω`1 pV q, . . . ,Ω
`
n pV q

¯

“

´

pΩ1pV q, . . . , pΩnpV q
¯

to be the insular completion of Ω`pV q, equipped with its natural subordering.

Notice that, since pΩpV q is obtained from Ω by first performing left- and right-
augmentations with parameters ErΩipV q and E`ΩipV q, and then a finite sequence of
refinements and augmentations with parameter 0, Lemmas 7.22 and 7.27 imply

that pΩpV q is again WISC (since Ω was wide and EΩpV q ď
1
3NV ´ 9C). Observe

that Ω Ă pΩpV q and hence that A
pΩpV q
V Ă AΩ

V . The point of this procedure is that it
moves the bad set for V entirely off of itself:

Lemma 10.6. Suppose that Ω:, Ω, and Ω; are insular, complete, subordered wit-
ness families for the strongly C–aligned tuple px0, . . . , xnq in T pΣq, that V P Ω: Ă Ω

satisfies EΩpV q ď
1
3NV ´ 9C, and that Ω: Ă Ω Ă pΩpV q Ă Ω;. Then

BΩ:

V X BΩ;

V “ H.

Proof. Suppose on the contrary that there is some p P BΩ:

V X BΩ;

V . Let 1 ď i ď n
be the unique index (cf Lemma 10.5) such that p is in the interior of rxVi´1, x

V
i s.

By Lemma 10.5, for each ˚ P t:, ;u we have V P Ω˚i and may choose subdomains
Z˚, Y˚ Ĺ V such that Z˚ P Ω˚i , that Y˚ P Υi contributes to V in Ω˚i , and that
p P IZ˚ X IY˚ . In particular, the domains Z:, Y:, Z;, Y; must be pairwise disjoint
or nested since we have

p P IZ: X IY: X IZ; X IY: .

Since Z:, V P Ω:i it must be that Z: is subordered in Ω:i with respect to V . Let us

suppose V iŒ Z: in Ω:i (the reverse possibility Z: ÖiV being symmetric). Since BY;
and BZ: are disjoint and Ω:i Ă Ωi, we see that

dV pBY;, xiq ď dV pBZ:, xiq ` 1 ď Er
Ω:i
pV q ` 1 ď ErΩipV q ` 1.

Since Ω;i Ą Ωi and Y; P Υi contributes to V in Ω;i , it must be that Y; also con-
tributes to V in Ωi. By definition of encroachment we may choose a domain U P Ωi
with V iŒ U and dV pCpV |U q, xiq “ ErΩipV q. We claim that dV pBY;, xiq ě ErΩipV q´M.
Indeed, if this were not the case then evidently dV pBY;, BUq ě dV pBY;, CpV |U qq´1 ě
M ´ 1 which implies BY;&BU . Since Y; contributes to V in Ωi, (SO4) implies we
must have the time ordering Y; ă̈ U along rxi´1, xis. On the other hand, the facts
that Y; and U both have active intervals along rxi´1, xis and that dV pBU, xiq` 1 ą
dV pBY;, xiq`M imply that we must have the time ordering U ă̈ Y;; a contradiction.
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The above two paragraphs show that

ErΩipV q ´M ď dV pBY;, xiq ď ErΩipV q ` 1.

Therefore Y; is necessarily contained in the set LErΩipV q for the segment rxi´1, xis.
Hence we must have Y; Ă W; Ĺ V for some domain

W; P LErΩi
pV q Ă Ω`i pV q Ă

pΩipV q Ă Ω;i .

But this contradicts the fact that Y; contributes to V in Ω;i . �

10.2. Limited Admissibility. As conveyed in above, in the discussion before
Lemma 10.4, bounding LpΩq by Teichmüller distance requires controlling the the
badness of the witness family tuple Ω. While it may not be possible to eliminate
badness entirely, we will be content to minimize it by repeatedly applying the op-

eration Ω ù pΩpV q along with Lemma 10.6 to move the badness somewhere else.
Throughout this process we must carefully control the cardinality of the witness
families so that sum of the additive errors from Theorem 9.4 does not blow up.

Recall that we have introduced (at the start of §7) an as-yet unspecified sequence
of thresholds NξpSq`1, . . . ,N´1. We will shortly explain how these are chosen recur-
sively, together with accompanying bounds and fractions,

∆j ě 1 and 0 ă ηj :“
1

4pj ` 2q3C∆j
ă 1 for ξpSq ě j ě ´1,

in a manner that only depends on the parameter C and the global complexity ξpSq.
We continue to use the notation ηV “ ηξpV q and ∆V “ ∆ξpV q for a domain V Ă S.
Before specifying these constants, let us mention the role they will play.

Definition 10.7 (Admissible and Limited). A witness family Ω “ pΩ1, . . . ,Ωnq for
a strongly C–aligned tuple px0, . . . , xnq in T pΣq is called:

‚ admissible if
ˇ

ˇBΩ
V

ˇ

ˇ ď ηV dT pΣqpx0, xnq for all V P Ω,
‚ limited if |Ω|j ď ∆j for every index ξpSq ě j ě ´1, where here

|Ω|j :“ max
1ďiďn

|Ωi|j “ max
1ďiďn

#tV P Ωi | ξpV q “ ju

Adding these conditions to our previous ones, we now say a witness family is WIS-
CAL if it is wide, insulated, subordered, complete, admissible, and limited, or
WISCL when we drop the admissibility condition.

The significance of such witness families is readily apparent:

Theorem 10.8. Let Ω “ pΩ1, . . . ,Ωnq be a witness family for a strongly C–aligned
tuple px0, . . . , xnq in T pΣq. If Ω is WISCAL, then its complexity and savings satisfy

LpΩq `SpΩq `ăC,n

´

hΣ `
n

C

¯

dT pΣqpx0, xnq.

Proof. Set ∆ “
ř

j ∆j . Since Ω is limited, each family Ωi contains at most ∆j

domains of complexity j. Thence the full union YiΩi contains at most n∆ `
ăC,n 0

domains. For each domain V P Ω, since the points xV0 , . . . , x
V
n appear in order
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along rx0, xns, Theorem 9.4 implies that
ÿ

1ďiďn|V PΩi

h˚V dT pV qpzxi´1
Ωi
V , pxi

Ωi
V q `

ÿ

1ďiďn|V PΩi

phV ´ h
˚
V qdT pV qpzxi´1

Ωi
V , pxi

Ωi
V q

`
ăC,n

n
ÿ

i“1

ż xVi

xVi´1

`

phV ´ ξV q ` ξV
˘

1AΩ
V
“

ż xn

x0

`

ωV ` σV
˘

.

Summing these |Ω| ď n∆ inequalities over all V P Ω, combining their additive
errors, and applying Lemma 10.4 now yields

LpΩq`SpΩq `ăC,n

ż xn

x0

`

ωΩ`σΩ

˘

ď

ż xn

x0

phΣ`βΩq “ hΣdT pΣqpx0, xnq`
ÿ

V PΩ

hV
ˇ

ˇBΩ
V

ˇ

ˇ .

Using the definition ηj “ p4pj`2q3C∆jq
´1, the fact that Ω is limited and admissible,

and that hV ď 2pξpV q ` 2q for all V Ă Σ, we thus conclude

LpΩq `SpΩq `ăC,n hΣdT pΣqpx0, xnq `
ÿ

V PΩ

hV ηV dT pΣqpx0, xnq

ď dT pΣqpx0, xnq

¨

˝hΣ ` n

ξpΣq
ÿ

j“´1

ˆ

2pj ` 2q

4pj ` 2q3C∆j

˙

∆j

˛

‚

“ dT pΣqpx0, xnqq

¨

˝hΣ `
n

2C

ξpΣq
ÿ

j“´1

1

pj ` 2q2

˛

‚

“ dT pΣqpx0, xnq

ˆ

hΣ `
nπ2

12C

˙

ď dT pΣqpx, yq
´

hΣ `
n

C

¯

�

10.3. Saturation. It remains to prove that WISCAL witness families exist and,
in the process, to specify all of the constants Nj , ηj , ∆j . Our witness families will
be constructed in the following iterative manner.

To begin with, suppose merely that our constants Nj and ηj have been specified
arbitrarily subject to the conditions

(10.9) ξpSq ` 30C
ε0
ε01
“ NξpSq`1 ď ¨ ¨ ¨ ď N´1 “ N and 0 ă ηj ă 1 for all j.

We continue to use the notation NV “ NξpV q and ηV “ ηξpV q for any domain V Ă S.
Let Σ Ă S be any domain and let px0, . . . , xnq be a strongly C–aligned tuple in

T pΣq. For each 1 ď i ď n, let Ω0
i be the set of topologically maximal domains in

the collection

Υpxi´1, xiq “ Υcpxi´1, xiq YΥ`pxi´1, xiq,

where we recall that Υ,Υc,Υ` are the sets from Definition 7.2. Then Ω0
i is a

witness family for rxi´1, xis by definition. Since Υ`pxi´1, xiq consists of at most
2ξpΣq annuli, we see that Ω0

i consists of the topologically maximal domains in
Υcpxi´1, xiq together with a subset of Υ`pxi´1, xiq. Thus the number of domains in
Ω0
i of each complexity is uniformly bounded as described by Lemma 4.1. Since there

are no nested domains in Ω0
i , it is trivially subordered. Now let Ω0 “ pΩ0

1, . . . ,Ω
0
nq

be the associated subordered witness family for the tuple px0, . . . , xnq, and let

Ω1 “ Ω0 “ pΩ0
1, . . . ,Ω

0
nq be its insular completion (Definitions 7.28 and 8.10). Note

that by Lemma 7.29 we have EΩ1pV q ď 9C for all V P Ω1.
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For k P N, suppose that we have constructed an increasing chain Ω1 Ă ¨ ¨ ¨ Ă Ωk

of WISC witness families for px0, . . . , xnq. Among all domains V P Ωk satisfying

EΩkpV q ď
1
3NV ´ 9C and

ˇ

ˇ

ˇ
BΩk

V

ˇ

ˇ

ˇ
ą ηV dT pΣqpx0, xnq

(that is, the Lebesgue measure of BΩk

V Ă rx0, xns is more than ηV –percent of the
total measure of rx0, xns), choose one of maximal complexity and call it Vk. Using

the operation Ω ù pΩpV q “ Ω`pV q from §10.1, we then define

Ωk`1 “ xΩkpVkq “
´

xΩk1pVkq, . . . ,
xΩknpVkq

¯

.

In this way, we obtain a list V1, V2, . . . of domains and a chain Ω1 Ă Ω2 Ă ¨ ¨ ¨ of
WISC witness families. In fact, this process must terminate in finitely many steps
yielding a WISC witness family Ω :“ YkΩk with the property that every domain
V P Ω satisfies EΩpV q ą

1
3NV ´ 9C or

ˇ

ˇBΩ
V

ˇ

ˇ ă ηV dT pΣqpx0, xnq. Indeed, since there
are only finitely many domains in each collection Υpxi´1, xiq, there are only finitely

many possible witness families for px0, . . . , xnq. Since the bad sets BΩk

Vk
and BΩk`1

Vk

are disjoint by Lemma 10.6 (and BΩk

Vk
is nonempty by choice of Vk), we see that

Ωk Ĺ Ωk`1 for each k. Therefore the families Ωk are all distinct, showing that the
process terminates in finitely many steps.

Definition 10.10. We refer to any family Ω obtained in this way as a saturated
witness family for px0, . . . , xnq.

By choosing the constants Nj and ηj carefully, we will be able to bound the
number of domains in Ω of each complexity and to moreover arrange that every
domain V P Ω satisfies EΩpV q ď

1
3NV and

ˇ

ˇBΩ
V

ˇ

ˇ ď ηV dT pΣqpx0, xnq.
To this end, we first observe that a particular domain Z can appear in the list

V1, V2, . . . at most 1{ηZ times. This is because if k1, . . . , k` are distinct indices with

Z “ Vk1
“ ¨ ¨ ¨ “ Vk` , then Lemma 10.6 implies the bad sets BΩk1

Z , . . . ,BΩk`
Z are all

disjoint. Whence

dT pΣqpx0, xnq ě
ˇ

ˇ

ˇ
BΩk1

Z

ˇ

ˇ

ˇ
` ¨ ¨ ¨ `

ˇ

ˇ

ˇ
BΩk`
Z

ˇ

ˇ

ˇ
ą `ηZdT pΣqpx0, xnq

and we have `ηZ ă 1 as claimed. This has the following consequence:

Lemma 10.11. If Ω is a saturated witness family, then each domain Z P Ω satisfies

EΩpZq ď 9C
´

1` 1
ηV

¯

.

Proof. Suppose the saturated family is constructed as Ω “ YkΩk for the increasing
chain Ω0 Ă Ω1 ¨ ¨ ¨ where each Ω0

i is the set of topologically maximal domains in

Υpxi´1, xiq, where Ω1 “ Ω0, and Ωk`1 “ pΩkpVkq for some domain Vk P Ωk. Since
there are no nested domains in any collection Ω0

i for 1 ď i ď n, we trivially have
EΩ0pW q “ 0 for every domain W . By Lemma 7.29, its insular completion Ω1

satisfies EΩ1pW q ď 9C for all W Ă Σ.

For each augmentation Ωk ù Ωk`1 “ Ωk`pVkq, Lemmas 7.27 and 7.29 together
imply that the encroachment for any Z Ă Σ satisfies

EΩk`1pZq ď

#

EΩkpZq ` 9C, Z “ Vk

maxtEΩkpZq, 9Cu, else.
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Therefore, we conclude that EΩpZq ď pm ` 1q9C, where m “ |tk P N | Z “ Vku| is
the number of indices k for which Z “ Vk. But we have observed that m is at most
1{ηV . This proves the lemma. �

Next observe that if Ω is complete and insulated, then every domain added

during an operation Ω ù pΩpV q is a proper subdomain of V . Indeed, fix some

1 ď i ď n and suppose Z P pΩipV qzΩi. If Z P Ω`i pV qzΩi, then by definition
Z P LE`Ωi pV q

pV q Y RErΩi pV q
pV q showing that Z is a proper subsurface of V by

definition. Since Ωi is already a complete and insular by assumption, it is clear

from the construction (Definition 7.28) of the insular completion pΩipV q “ Ω`i pV q

that every Z P Ω`i pV qzΩ
`
i pV q satisfies Z Ĺ W for some W P Ω`i pV qzΩi. Therefore

every Z P Ωi`1zΩi is a proper subsurface of V , as claimed.
Let us next analyze how the cardinalities of a family change under an operation

Ω ù pΩpV q. The previous paragraph shows that for each ξpΣq ě j ě ξpV q and
1 ď i ď n, the number |Ωi|j of domains of complexity j stays constant. Hence:

ˇ

ˇpΩipV q
ˇ

ˇ

j
“ |Ωi|j for ξpΣq ě j ě ξpV q, 1 ď i ď n.

However, surfaces of lower complexity may be added during the augmentation step

Ω ù Ω`pV q, and then during the completion step Ω`pV q ù pΩpV q: For each
´1 ď j ă ξpV q, Lemma 7.10 shows that

ˇ

ˇΩ`i pV q
ˇ

ˇ

j
ď |Ωi|j ` 2p2Nj`1q

ξpΣq`3 for ´1 ď j ă ξpV q, 1 ď i ď n.

Lemma 7.30 therefore implies that
ˇ

ˇpΩipV q
ˇ

ˇ

j
ď |Ωi|j ` 2p2Nj`1q

ξpΣq`3 `Gjp|Ωi|ξpΣq , . . . , |Ωi|j`1q,

where Gj is a function depending only on the thresholds NξpΣq, . . . ,Nj`1. To
summarize, since |Ω|j is defined as the maximum maxi |Ωi|j , for any operation

Ω ù pΩpV q and complexity j, we have

(10.12)
ˇ

ˇpΩpV q
ˇ

ˇ

j
´ |Ω|j ď

#

C 1j `Gjp|Ω|ξpΣq , . . . , |Ω|j`1q, ´1 ď j ă ξpViq

0, ξpViq ď j ď ξpΣq
,

where the number C 1j and functionGj depend only on the thresholds NξpΣq, . . . ,Nj`1.
With this, we can now specify our constants Nj , ηj , and ∆j recursively:

Proposition 10.13 (Choosing the constants). For any C ě M and n ě 1, there
are constants Nj, ∆j and ηj for ξpSq ě j ě ´1 satisfying (10.9), such that the
following holds: For any domain Σ Ă S and strongly C–aligned tuple px0, . . . , xnq
in T pΣq, every saturated witness family Ω for px0, . . . , xnq is WISCAL.

Proof. By construction, every saturated family is WISC, but we must take care
to ensure Ω is admissible and limited. Fix some complexity j ď ξpSq. Let
us say a choice of constants ∆ξpSq, . . . ,∆j , fractions ηξpSq, . . . , ηj , and thresh-
olds NξpSq, . . . ,Nj is robust if, irrespective of how the remaining fractions
ηj´1, . . . , η´1 and thresholds Nj´1, . . . ,N´1 are specified, subject to equation
(10.9), every saturated resolution family Ω as in the proposition statement satisfies

|Ω|m ď ∆m and EΩpV q ď
1

3
NV ´ 9C for all ξpV q,m ě j;

that is, if limited admissibility holds for all complexities at least j.
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To begin the recursion, let us set

∆ξpSq “ 1, ηξpSq “
1

4pξpSq ` 2q3C∆ξpSq
, and NξpSq “ 30C

ε0
ε01

ˆ

2`
1

ηξpSq

˙

.

Note this ensures NξpSq ě ξpSq`30C ε0
ε01

. We claim this choice is robust. Indeed, let
Ω be any saturated witness family. Since there is only one domain of complexity
ξpSq, namely S itself, we trivially have |Ω|ξpSq ď 1 “ ∆ξpSq. Further, Lemma 10.11

and our choice of NξpSq ensure that EΩpSq ď 9Cp1` 1
ηS
q ă 1

3NS ´ 9C.

By induction, fix some complexity j ă ξpSq and suppose that we have already
designated robust constants ∆ξpSq, . . . ,∆j`1, fractions ηξpSq, . . . , ηj`1, and thresh-

olds NξpSq, . . . ,Nj`1. Consider any saturated resolution family Ω “ YkΩk for a

tuple px0, . . . , xnq in T pΣq, where Ω0 “ pΩ0
1, . . . ,Ω

0
nq with each Ω0

i equal to the set

of maximal domains in Υpxi´1, xiq, where Ω1 “ Ω0, and Ωk`1 “ pΩkpVkq for each
k ě 1. Let us consider how many domains of complexity j can arise in Ω: By
Lemma 4.1, there are constants CξpΣq, . . . , Cj depending only on NξpΣq, . . . ,Nj`1

such that the original family Ω0 satisfies
ˇ

ˇΩ0
ˇ

ˇ

m
ď Cm for all j ď m ď ξpΣq. There-

fore Lemma 7.30 implies that
ˇ

ˇΩ1
ˇ

ˇ

j
“
ˇ

ˇΩ0
ˇ

ˇ

j
ď Pj ,

where Pj is a constant depending only on CξpΣq, . . . , Cj ,NξpΣq, . . . ,Nj`1, and thus
ultimately depending only on NξpSq, . . . ,Nj`1. Now, we have seen above that do-
mains of complexity j are only added when we augment along a domain of complex-
ity strictly larger than j. For each m ą j and k, our induction hypothesis ensures
that

ˇ

ˇΩk
ˇ

ˇ

m
ď |Ω|m ď ∆m. Thus there are at most n∆m domains of complexity m

that are candidates for augmentation, and each such domain can occur on the list
V1, V2, . . . at most 1{ηm times.

Therefore, there are at most
řξpSq
m“j`1 n∆m{ηm indices k such that

ˇ

ˇΩk`1
ˇ

ˇ

j
ą
ˇ

ˇΩk
ˇ

ˇ

j
.

For each such index k, our hypothesis
ˇ

ˇΩk
ˇ

ˇ

m
ď |Ω|m ď ∆m and equation (10.12)

together imply the difference
ˇ

ˇΩk`1
ˇ

ˇ

j
´
ˇ

ˇΩk
ˇ

ˇ

j
is bounded by a number Qj depending

only the thresholds NξpSq, . . . ,Nj`1 and constants ∆ξpSq, . . . ,∆j`1. This proves
|Ω|j ď ∆j , where

∆j :“ Pj `Qj

ˆ

n
∆ξpSq

ηξpSq
` ¨ ¨ ¨ ` n

∆j`1

ηj`1

˙

is a constant depending only on n, our previously determined constants ∆m, ηm,
and Nm for j ă m ď ξpSq. Now that we know |Ω|j ď ∆j , we set

(10.14) ηj :“
1

4pj ` 2q3C∆j
and Nj :“ max

"

30C

ˆ

2`
1

ηj

˙

,Nj`1

*

.

By Lemma 10.11, this d choice of Nj ensures that every domain V P Ω with ξpV q “ j
satisfies EΩpV q ď 9Cp1 ` 1

ηj
q ă 1

3NV ´ 9C. Thus the constants ∆ξpSq, . . . ,∆j ,

fractions ηξpSq, . . . , ηj and thresholds NξpSq, . . . ,Nj form a robust choice.
Proceeding recursively in this manner, we obtain a complete list of robust con-

stants ∆m, ηm, and Nm for ξpSq ě m ě ´1. Since these constants are robust,
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any saturated family Ω built using these constants is necessarily limited. Further-
more, since each V P Ω satisfies EΩpV q ă

1
3NV ´ 9C, the fact that Ω is saturated

automatically implies that
ˇ

ˇBΩ
V

ˇ

ˇ ă ηV dT pΣqpx0, xnq. Hence Ω is also admissible. �

11. Complexity Length

We are finally ready to define the key quantity coming from this lengthy con-
struction, namely the complexity length of a tuple.

Definition 11.1. Let Σ Ă S be a domain. The complexity length and savings of a
strongly C–aligned tuple px0, . . . , xnq in T pΣq are defined to be

Lpx0, . . . , xnq “ inf
Ω

LpΩq and Spx0, . . . , xnq “ inf
Ω

SpΩq,

where the infima are taken over all WISCL witness families Ω for the tuple, and
where LpΩq and SpΩq are as given in Definitions 8.12–8.13. Note that the infima
are achieved, since the set of such Ω is nonempty (e.g. by Proposition 10.13) and
finite by virtue of the sets Υpxi´1, xiq being finite.

We now have the following consequences of the construction:

Theorem 11.2. Let Σ Ă S be a domain and px0, . . . , xnq be a strongly C–aligned
tuple in T pΣq. Then for any indices 0 “ k0 ă k1 ă ¨ ¨ ¨ ă km “ n we have both

m
ÿ

j“1

Lpxkj´1
, . . . , xkj q ď Lpx0, . . . , xnq, and

Lpx0, . . . , xnq `Spx0, . . . , xnq
`
ăC,n

´

hΣ `
n

C

¯

dT pΣqpx0, xnq.

As a special case of the theorem, if py, x, zq is a strongly C–aligned tuple in T pSq,
then Lpy, xq ` Lpx, zq `ăC phS `

2
C qdT pSqpy, zq.

Proof. Let Ω1 be a saturated witness family for px0, . . . , xnq. By Proposition 10.13,
Ω1 is WISCAL and hence satisfies LpΩ1q ` SpΩ1q `ăC,n phΣ `

n
C qdT pΣqpx0, xnq by

Theorem 10.8. Next let Ω and Ω2 realize the infima from Definition 11.1, so that
Lpx0, . . . , xnq “ LpΩq and Spx0, . . . , xnq “ SpΩ2q. Since Ω1 is a candidate for
these infima, we trivially have LpΩq `SpΩ2q ď LpΩ1q `SpΩ1q. Combined with the
previous observations, this proves the second assertion of theorem.

Next, note that by definition each subfamily Ωj “ pΩ1`kj´1 , . . . ,Ωkj q is a WISCL
(but not necessarily admissible) witness family for the strongly C–aligned sub-
tuple pxkj´1

, . . . , xkj q. Since complexity length is an infimum, it follows that

Lpxkj´1 , . . . , xkj q ď LpΩjq. On the other hand, the complexity of a tuple witness
family is exactly defined so that

m
ÿ

j“1

Lpxkj´1
, . . . , xkj q ď

m
ÿ

j“1

LpΩjq “
m
ÿ

j“1

¨

˝

kj
ÿ

i“1`kj´1

LpΩiq

˛

‚“

n
ÿ

i“1

LpΩiq “ LpΩq. �

We note that the δ in the main theorem will come from this theorem. Namely
given δ we will pick C large enough so that n

C ă δ. This observation will be repeated
in the last section.
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12. Counting with complexity length

In §§7–11 we have gone to great lengths to define a quantity Lpx, yq that is essen-
tially bounded above by hSdT pSqpx, yq. We now count points with given complexity
length. Recall from Definition 3.14 that for each domain Σ of S we have specified
a pc, 2cq net N pΣq in the Teichmüller space T pΣq. Our goal in this section is:

Theorem 12.1. For any parameter C ě M there exists an integer k ě 1 such that
for any domain Σ Ă S, point x P T pΣq, and distance r ą 0 we have

#
!

y P N pΣq | Lpx, yq ď r
)

ď krker.

That is, there are at most krker net points within complexity length r of x.

This should be compared with Lemma 3.15 (itself a consequence of Theorem 3.12
by [ABEM]), but with the Teichmüller distance replaced by complexity length.

Corollary 12.2. There exists an integer k ě 1 depending only on C, n such that
for any domain Σ Ă S, point x P T pΣq, and distance r ą 0, there are at most krker

tuples px1, . . . , xnq of net points such that Lpx, x1, . . . , xnq ď r.

Proof. Since
řn
i“1 Lpxi´1, xiq ď Lpx, x1, . . . , xnq ď r by Theorem 11.2, for each

integer partition r ě r1`¨ ¨ ¨`rn we count the number of strongly C–aligned tuples
px0, . . . , xnq with x0 “ x and Lpxi´1, xiq ď ri. By Theorem 12.1, once xi´1 is
determined there are at most kpriq

keri options for the next net point xi. Thus in
total there are at most knpr1 . . . rnq

ker1`¨¨¨`rn ď knrkner options for each of the at
most rn such partitions of r. �

12.1. Directed graphs. The proof will require a bit of setup. Given a WISCL
witness family Ω for a pair px, yq, we define a labeled directed graph G “ GpΩq
as follows: The vertex set V “ VpGq is the set of domains in Ω with each vertex
Z P Ω labeled by the ordered pair ph˚Z ,

X

dT pZqppx
Ω
Z , py

Ω
Zq
\

), where the first entry h˚Z is
the weight used in calculating the complexity LpΩq (Definition 8.8) and the second
entry is the integer part of the Teichmüller distance between the resolution points
pxΩ
Z , py

Ω
Z . Vertices Y, Z P V are joined by directed labeled edge from Y to Z as follows:

‚ if Y&Z with Y ă̈ Z along rx, ys, we have an edge Y
P
Ñ Z labeled “P ;”

‚ if Y Ă Z with Y Ö Z, there is an edge Y
SW
Ñ Z labeled “SW ;”

‚ if Y Ą Z with Y Œ Z, there is an edge Y
SE
Ñ Z labeled “SE;”

‚ if Y and Z are disjoint (that is, Y K Z), there is no edge joining Y and Z.

Lemma 12.3. These directed edges give a partial ordering on the vertices of G.

Proof. We need to prove transitivity. First consider a concatenation W
P
Ñ Y

P
Ñ Z.

Then we have W&Z by Corollary 3.30 with W ă̈ Z along rx, ys by transitivity of

time-order; hence W
P
Ñ Z as required. If the second edge is labeled Y

SE
Ñ Z, then

we must have W&Z by (SO3) and moreover W ă̈ Z by Corollary 3.31. Finally, if

the second edge is labeled Y
SW
Ñ Z, then Y Ă Z and we cannot have W K Z or

W Ą Z. If W&Z, then necessarily W ă̈ Z by Corollary 3.31 so that W
P
Ñ Z as

needed. If instead W Ă Z, then we must have W Ö Z by (SO2), so that W
SW
Ñ Z.

The cases W
SW
Ñ Y

P
Ñ Z and W

SE
Ñ Y

P
Ñ Z are handled by symmetric arguments

as above. For the case W
SW
Ñ Y

SE
Ñ Z, axiom (SO2) exactly gives W

P
Ñ Z. Similarly

W
SW
Ñ Y

SW
Ñ Z, and the alternative with two SE edges, follows from (SO1).
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For the last remaining case W
SE
Ñ Y

SW
Ñ Z, the domains W and Z cannot be

disjoint because they both contain Y . If W&Z then we necessarily have W ă̈ Z

and thus W
P
Ñ Z by (SO3). Similarly if W Ă Z, then (SO1) ensures W

SW
Ñ Z and,

symmetrically, W Ą Z leads to W
SE
Ñ Z. �

The labeled directed graph G is a combinatorial object that neither remembers
the points x, y nor the family Ω giving rise to it. To emphasize this combinatorial
structure, we will use lowercase letters v P V to denote vertices of G and write
ph˚v , dvq P N2 for the label of the vertex. Our goal is, essentially, to count the
number of witness families that give rise to a given labeled graph G.

12.2. Realizing initial subsets. To this end, we say a subset X Ă V respects the
partial order if there is no directed edge from the complement VzX to X , that is,
if Y P X implies W P X for any directed edge W Ñ Y . For example, the subsets
H and V both respect the partial order.

Given our combinatorial graph G, a subset X respecting the partial order, and
an initial point x P T pΣq, we say a pair of families Ω1,Ω2 are equivalent over X if

‚ each Ωi is a WISCL witness family for a segment rx, yis starting at x,
‚ the graph GpΩiq associated to each family Ωi is isomorphic to G via an

isomorphism fi : G Ñ GpΩiq of labeled directed graphs such that
‚ for each vertex v P X , the corresponding domains fipvq P VpGpΩiqq “ Ωi

are equal, call it f1pvq “ Z “ f2pvq, and have the same resolution points,

meaning that pxΩ1

Z “ pxΩ2

Z and py1
Ω1

Z “ py2
Ω2

Z in T pZq.

Definition 12.4. A realization of X relative to an initial point x P T pΣq is an
equivalence class R of families over X . We additionally say a segment rx, ys realizes
R if the equivalence class contains a witness family Ω for rx, ys. A realization of
H thus consists of no data, whereas a realization of V roughly consists of a witness
family Ω giving rise to G.

In general, a realization R of X determines for each vertex v P X a domain
Zv Ă Σ and a pair of points x̂v, ŷv P T pZvq. These domains moreover satisfy the

combinatorial conditions that if v
P
Ñ w then Zv&Zw, if v

SW
Ñ w then Zv Ă Zw, if

v
SE
Ñ w then Zv Ą Zw, and that Zv, Zw are disjoint if there is no edge joining v and

w. Let us write ΩpRq “ tZv | v P X u for this set of domains.
Mimicking the notation from §7.1, let us say that v P X minimally contains a

domain U , denoted U űX v, if Zv is a topologically minimal element of the set
tZw | w P X and U Ă Zwu.

Lemma 12.5. If distinct vertices v, w P X minimally contain U Ă Σ, then for every
segment rx, ys realizing R we have U R Υpx, yq and, in particular dU px, yq ď N.

Proof. Let Ω be any witness family in R for the segment rx, ys. Then Zv, Zw P ΩpRq
both minimally contain U . By contradiction, let us suppose U P Υpx, yq. The
completeness of Ω then provides an Ω–supremum U 1 “ ŪΩ which, by Lemma 7.6,
satisfies U 1 Ă Zv and U 1 Ă Zw. Observe that the domains Zv, Zw cannot be nested,
as they both minimally contain U . Thus Zv&Zw and we may suppose, without loss
of generality, that they are time-ordered Zv ă̈ Zw along rx, ys. The supremum U 1 is
an element of Ω nested inside Zv and Zw, hence it must be subordered with respect
to them. In fact the subordering must be Zv Œ U 1 Ö Zw, since the alternatives
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U 1 Ö Zv ă̈ Zw and Zv ă̈ Zw Œ U 1 are precluded by (SO2). This means that the

directed graph GpΩq has edges Zv
SE
Ñ U 1

SW
Ñ Zw. Since Zw lies in ΩpRq and X

respects the partial order, it must be the case that U 1 P ΩpRq as well. But this
contradicts the assumption that v and w both minimally containing U in X . �

Corollary 12.6. For any domain U Ă Σ, the set tπU pŷvq | U űX vu has uniformly
bounded diameter in CpUq.

Proof. It suffices to bound the diameter dU pŷv, ŷwq for any distinct pair of vertices
v, w P X satisfying both U űX v and U űX w. Let Ω be any witness family in the
equivalence class R, say for a segment rx, ys. Then by definition Zv, Zw P Ω with
ŷv “ pyΩ

Zv
and ŷw “ pyΩ

Zw
. Since U Ă Zv, the construction of resolution points (Defi-

nitions 8.3 & 8.7) implies that πU pŷvq “ πU ppy
Ω
Zv
q lies within a uniformly bounded

distance of the set tπU pxq, πU pyqu. The same holds for πU pŷwq. Since Lemma 12.5
ensures that dU px, yq ď N, the bound on dU pŷv, ŷwq is therefore immediate. �

12.3. Realization tuples. We will show that the number of realizations of X is
controlled by the labels on the vertices of X . The first step is to show that a
realization relative to x P T pΣq determines a companion point p “ pR P T pΣq.
This point will be built via consistency from a tuple pp̃U q P ΠUĂΣCpUq defined
using only the data of the domains Zv and the points x P T pΣq and ŷv P T pZvq for
v P X :

Definition 12.7 (Tuples from realizations). Let R be a realization of X relative
to x P T pΣq, and define a tuple pp̃U q P ΠUĂΣCpUq as follows: Given U Ă Σ, if no
vertices v P X minimally contain U , then we set p̃U “ πU pxq, and otherwise we
choose some v P X satisfying U űX v and set p̃U “ πU pŷvq. Corollary 12.6 ensures
this is coarsely well defined, independent of the chosen vertex v.

We observe the following:

Lemma 12.8. If a segment rx, ys realizes R, then for each domain U Ă Σ we have:

‚ If U R Υpx, yq then diamCpUqpp̃U Y πU pxq Y πU pyqq
`
ăC 0.

‚ If U P Υpx, yq, then dU pp̃U , yq
`
ăC 0 provided its Ω–supremum U 1 “ ŪΩ

satisfies U 1 P ΩpRq, and dU pp̃U , xq
`
ăC 0 provided U 1 P ΩpRq.

Proof. Let Ω be any witness family in R for rx, ys. Notice, as above, that for any
v P X , the projection of ŷv “ pyΩ

Zv
to the curve complex of any subsurface Y Ă Zv is

by construction coarsely either πY pxq or πY pyq. In particular, by considering any
v P X minimally containing U , we see that p̃U “ πU pŷvq is coarsely either πU pxq or
πU pyq. Therefore, if U R Υpx, yq then dU px, yq ď NU and the first bullet follows.

Now suppose U P Υpx, yq and let U 1 “ ŪΩ. If U 1 P ΩpRq, then U űΩpRq U 1 so
that by definition p̃U is coarsely given by πU ppy

Ω
U 1q. However, since U 1 “ ŪΩ, the

construction in Definitions 8.3–8.7 implies the projection of pyΩ
U 1 to CpUq coarsely

agrees with πU pyq. Hence p̃U “ πU ppy
Ω
U 1q is coarsely πU pyq as claimed.

Suppose, on the other hand, that U 1 R ΩpRq. If there is no vertex of X that
minimally contains U , then p̃U “ πU pxq by definition. However, if U űX v for some
v P X , then necessarily U 1 Ă Zv by Lemma 7.6 and in fact we must have U 1 Ĺ Zv
since by assumption Zv P ΩpRq but U 1 R ΩpRq. The domains U 1, Zv are necessarily
subordered in Ω, and the option U 1 Ö Zv is ruled out by the fact that X – ΩpRq
respects the partial order. Hence we have Zv Œ U 1 so that by Definitions 8.3–8.7
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the projection of the resolution point pyΩ
Zv

to U is coarsely πU pxq. But since U űX v,

this projection πU ppy
Ω
Zv
q is by construction the U–coordinate p̃U of our tuple. Thus

p̃U “ πU ppy
Ω
Zv
q is coarsely πU pxq, as claimed. �

Lemma 12.9. The tuple pp̃U q P ΠUĂΣCpUq is k–consistent, for some k `ăC 0.

Proof. Let Ω be a witness family in the equivalence class R, say for a segment
rx, ys, so that we identify X with the subset ΩpRq Ă Ω. Fix two domains U,W Ă Σ
that either cut U&W or are nested U Ĺ W or W Ĺ U . If either U R Υpx, yq or
W R Υpx, yq, then Lemma 12.8 implies pp̃U , p̃W q is within bounded distance from
either pπU pxq, πW pxqq or pπU pyq, πW pyqq and is hence consistent by Theorem 3.37.

We may therefore suppose U,W P Υpx, yq. Let U 1 “ ŪΩ P Ω and W 1 “ W̄Ω P Ω
be the Ω–suprema guaranteed by completeness. If neither U 1 nor W 1 is in ΩpRq,
Lemma 12.8 implies we coarsely have p̃U “ πU pxq and p̃W “ πW pxq. If, on the other
hand, U 1,W 1 both lie in ΩpRq, then we coarsely have p̃U “ πU pyq and p̃W “ πW pyq.
In either case, the pair pp̃U , p̃W q satisfies the consistency condition by Theorem 3.37.
It therefore suffices to suppose exactly one of U 1 or W 1 lies in ΩpRq so that, without
loss of generality, we suppose U 1 P ΩpRq and W 1 R ΩpRq. In particular, U 1 ‰ W 1

and, by Lemma 12.8, dU pp̃U , yq
`
ăC 0 and dW pp̃W , xq

`
ăC 0.

First suppose U 1 Ĺ W 1. The domains U 1,W 1 are then subordered in Ω, and the
fact that X respects the partial order implies the subordering must be U 1 Ö W 1.
Note that in this case we must have U Ĺ W or U&W , since the containment
W Ă U would imply W 1 Ă U 1 by Lemma 7.6. Also, the domains U 1 and W cannot
be disjoint, as BU projects to both of them, and nor can the be nested W Ă U 1, as
that would again imply W 1 Ă U 1 by Lemma 7.6, contrary to our assumption. Thus
either U 1&W or U 1 Ĺ W . If U 1 cuts W , then (SO4) with U 1 Ö W 1 “ W̄Ω implies
they must be time-ordered U 1 ă̈ W along rx, ys. Since dW pBU, BU

1q ď 2, we thus
obtain the desired bound

dW pp̃W , BUq
`
ăC dW px, BU

1q ď M

by Lemma 3.29. It instead U 1 Ĺ W , there are two cases: Firstly, if W “ W 1, then
the fact that Ω is wide with U 1 ÖW 1 gives

dW pp̃W , BUq
`
ăN dW px, BU

1q “ dW 1px, BU 1q ď 1
3NW ď N,

which is the desired condition for consistency. Secondly, if W ‰W 1, then evidently
W P Υpx, yq but W R Ω. Since we have U 1 P Ω with U 1 Ă W , (WF3) provides some
Z P Ω with U 1 Ă Z and Z&W . We claim that Z and W must be time-ordered
Z ă̈W along rx, ys. Indeed, if Z Ĺ W 1 then (SO1) implies Z ÖW 1 so that (SO4)
forces Z ă̈W ; similarly if Z&W 1 then we must have Z ă̈W 1 since the alternative
would give U 1 Ö W 1 ă̈ Z and contradict (SO3) (since U 1&W 1Z evidently fails).
Therefore we conclude that dW pp̃W , BUq

`
ăN dW px, BZq ď M, as desired.

A completely symmetric argument shows that the assumption U 1 Ľ W 1 leads to
the subordering U 1 ŒW 1. One finds that either U Ľ W or U&W , and U Ľ W 1 or
U&W 1, and that in any case dU pp̃U , BW q

`
ăC dU py, BW

1q is uniformly bounded.
It remains to suppose U 1&W 1. In this case the fact that X respects the partial

order implies U 1 ă̈ W 1 along rx, ys. We must also have U&W 1, since U Ą W 1

would give U 1 Ą U Ą W 1 and U Ă W 1 would give U 1 Ă W 1 by Lemma 7.6.
Similarly we necessarily have U&W , since either alternative U Ă W or U Ą W
would yield nesting U 1 Ă W 1 or U 1 Ą W 1 again by Lemma 7.6. Corollary 3.31
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therefore implies that U ă̈ W 1 and U ă̈ W along rx, ys which gives the desired
bound dU pp̃U , BW q

`
ăC dU py, BW q ď M. �

We also need to account for the potentiality of short curves:

Definition 12.10 (Short multicurve of a realization). Let R be a realization of a
subset X Ă G that respects the partial order. The short multicurve associated to
R is the multicurve αR consisting of all curves γ such that there is some v P X so
that Zv is an annulus whose core BZv equals γ and is short at ŷv P T pZvq.

Lemma 12.11. For any realization R, we have that αR is indeed a multicurve and
that dU pp̃U , αRq

`
ăC 0 for every domain U Ă Σ.

Proof. Let Ω be an element of the equivalence class R, say for a segment rx, ys.
Given any component γ of αR, we may choose some v P X so that A “ Zv is an
annulus with γ “ BZv “ BA short at the point ŷv P T pAq. By construction of this
point ŷv “ pyΩ

A in Definition 8.7, we necessarily have `ŷv pBAq “ `ypBAq; therefore
γ “ BA is short at y. In particular, since all components of αR are short at the
single point y P T pΣq, αR is indeed a multicurve, as claimed.

For the second claim, it suffices to bound dU pp̃U , BAq for all U Ă Σ. If BA is
disjoint from U , then dU pp̃U , BAq “ diamCpUqpp̃U q is bounded. So we may suppose
A&U or A Ĺ U . The fact that BA is in the Bers marking at y implies that
dY pBA, yq ď L for all domains Y Ă Σ. In particular, since dU py, BAq ď L, it suffices
to bound dU pp̃U , yq. If dU px, yq ď NU , then dU pp̃U , yq

`
ăC 0 by Lemma 12.8, as

needed. Hence we may suppose dU px, yq ě NU , so that U P Υpx, yq, and set U 1 “
ŪΩ. We claim that necessarily U 1 P ΩpRq so that dU pp̃U , yq

`
ăC 0 by Lemma 12.8.

Otherwise, the fact that X respects the partial order implies that the domains
A,U 1 P Ω must be related by A Ö U 1 or A ă̈ U 1. However, the latter option
A ă̈ U 1 would give dU 1px, BAq ď M and, since Ω is wide, the former option would
give dU 1px, BAq ď NU 1{3. Since dU 1pBA, yq ď L, either case implies dU 1px, yq ă NU 1
and contradicts our assumption. �

We can now use our realization data to reconstruct a point in Teichmüller space:

Definition 12.12 (Realization point). Let X Ă G be a subset respecting the partial
order. To each realization R of X we associate a net point pR P N pΣq as follows:
Let αR be the associated short multicurve and pp̃U q P ΠUĂΣCpUq the associated
tuple from Definition 12.7. By Theorem 3.37 and Lemma 3.10, we can build a
marking µ on Σ so that αR Ă basepµq and so that dU pp̃U , µq

`
ăC 0 for all U Ă Σ.

Now let pR P T pΣq be a net point that has µ as a Bers marking and so that for each
component γ of αR, the length `pRpγq coarsely agrees with `ŷv pγq, where v P X is
the vertex so that γ “ BZv, and so that all other components of basepµq coarsely
have length ε0.

Lemma 12.13. Let R be any realization of the partially ordered set X “ V con-
sisting of all vertices of the directed graph G. Then for any segment rx, ys realizing
R we have dT pΣqppR, yq

`
ăC 0.

Proof. Consider any domain U Ă Σ. By Definition 12.12 we have dU pp̃U , pRq
`
ăC

0. Thus if U R Υpx, yq, then Lemma 12.8 implies dU ppR, yq
`
ăC 0. If instead

U P Υpx, yq, then U has an Ω–supremum U 1 “ ŪΩ P Ω by completeness. Clearly
U 1 P ΩpRq, since our subset V consists of all vertices of G “ GpΩq, and thus again
we find dU ppR, yq

`
ăC 0 by Lemma 12.8.
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By the Distance formula, or rather Lemma 3.35, it remains to show that pR and
y have the same short curves with coarsely the same lengths. By construction of
pR in Definition 12.12 and ŷv “ pyΩ

Zv
in Definition 8.7, each short curve γ on pR

is the core of an annulus Zv P ΩpRq on which `ŷv pγq coarsely agrees with `γpyq.
Conversely, for each short curve β on y, the annulus A with BA “ β satisfies
A P Υ`px, yq. The fact that Ω is insulated implies (Lemma 7.13) that Υ`px, yq Ă Ω.
Thus A P Ω “ ΩpRq and, again by Definitions 12.12 and 8.7, the length of β at y
coarsely agrees with the length of β on pyΩ

A and thus with the length of β at pR. �

12.4. Extending realizations. Finally, we count how many ways there are to
extend a realization to an enlarged subset that respects the partial order:

Proposition 12.14. There is a constant C1 depending only on C such that the
following holds: Let X Ă V be a subset that respects the partial order, and let
v P VzX be a vertex so that X 1 “ X Y tvu also respects the partial order. Then

for each realization R of X relative to a point x P T pΣq, there are at most C1eh
˚
v dv

realizations R1 of X 1 that extend R.

Proof. The equivalence class R is naturally partitioned into subsets R1 that are
each realizations of the larger set X 1. Picking such a R1 that extends R amounts
to specifying a domain Zv Ă Σ along with a pair of net points x̂v, ŷv P N pZvq. We
will show that there are at most boundedly many options for Zv and x̂v and that,

once these are specified, at most eh
˚
v dv options for ŷv.

Let pp̃U qUĂΣ be the tuple associated to R and pR the realization point. Also let
Ω be a witness family in R, say for a segment rx, ys. Thus we have an identification
of GpΩq with G under which v P V corresponds to a domain W P Ω and the pair
x̂v, ŷv are given by the resolution points pxΩ

W , py
Ω
W . These three pieces of data, W ,

pxΩ
W , and pyΩ

W , thus specify the realization R1 Ă R containing Ω.

Claim 12.15. The domain W satisfies dU ppR, BW q
`
ăC 0 for every domain U Ă Σ

and, consequently, the number of such domains W is bounded by Corollary 3.39.

Proof of Claim. Notice that W P Υpx, yq so that W has an active interval along
rx, ys. It suffices to suppose BW projects to U , that is either W Ĺ U or W&U , and
to consider dU pp̃U , BW q. If U R Υpx, yq, then we have

dU pp̃U , BW q
`
ăC dU px, BW q ď dU px, BW q ` dU pBW, yq

`
ă dU px, yq ď NU .

by Lemma 12.8 and Corollary 3.27. If instead U P Υpx, yq, we let U 1 “ ŪΩ. Note
that the assumptions W Ĺ U or W&U imply that either W Ĺ U 1 or W&U 1.
Therefore W and U 1 are related in the directed graph GpΩq.

First suppose U 1 P ΩpRq, so that dU pp̃U , yq
`
ăC 0 by Lemma 12.8. Since X

respects the partial order and v R X by assumption, we either have U 1 ă̈ W along
rx, ys (if U 1&W ) or U 1 Œ W in Ω (if W Ĺ U 1). In the the former case U 1&W we
necessarily have U&W as well (since we cannot have W Ĺ U Ă U 1&W ). Therefore
U 1 ă̈ W implies U ă̈ W by Corollary 3.31 so that dU py, BW q ď M as desired. In
the latter case U 1 ŒW , we get dU 1py, BW q ď N by wideness of Ω. If U 1 “ U this is
the desired bound. If instead U Ĺ U 1 then evidently U R Ω. We claim there is some
W 1 Ą W so that W 1 P Ω and W 1&U . Indeed: if W&U we just take W 1 “ W , and
if W Ĺ U such a W 1 is provided by (WF3). Now observe that if W 1&U 1, then we
necessarily have U 1 ă̈ W 1 along rx, ys (since W 1 ă̈ U 1 Œ W is ruled out by (SO2))
and thus U ă̈ W 1 by Corollary 3.31. Alternatively, if W 1 Ĺ U 1 then necessarily
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U 1 Œ W 1 by (SO1) so that again we get U ă̈ W 1 by (SO4). In any case U ă̈ W 1

along rx, ys and we obtain the desired bound:

dU pp̃U , BW q
`
ăC dU py, BW

1q ď M.

Next suppose U 1 R ΩpRq so that dU pp̃U , xq
`
ăC 0 by Lemma 12.8. Since W ‰ U 1,

we see that U 1 cannot correspond to one of the vertices of X 1 “ X Ytvu in G. Since
X 1 respects the partial order, this means that either W ă̈ U 1 along rx, ys (if W&U 1)
or W Ö U 1 in Ω (if W Ĺ U 1). A symmetric argument to the case U 1 P ΩpRq above
now shows that either U 1 “ U and dU pBW,xq ď N by wideness, or W Ă W 1 ă̈ U
for some W 1 P Ω so that dU pp̃U , BW q

`
ăC dU px, BW

1q ď M. �

Claim 12.16. There are only boundedly many options for the net point x̂v P N pW q.

Proof of Claim. We show that the net point x̂v “ pxΩ
W is coarsely determined by

the data captured by the original realization R. Specifically, we will show that for
any domain U Ă W , if there is a unique vertex u P X satisfying U űX u, then
dU ppx

Ω
W , ŷuq

`
ăC 0, and otherwise dU ppx

Ω
W , xq

`
ăC 0.

Let us first suppose there does not exist a unique vertex u P X that minimally
contains U . If U R Υpx, yq, then by construction in Definitions 8.3–8.7 we have
dU ppx

Ω
W , xq

`
ăC 0, which is the desired bound. If instead U P Υpx, yq, then we

consider U 1 “ ŪΩ and note that U 1 Ă W by Lemma 7.6. By completeness, U 1 is
the unique domain of Ω that minimally contains U . Hence the vertex u P V “ GpΩq
corresponding to U 1 cannot lie in X , as that would contradict our assumption that
X does not have a unique vertex minimally containing U . If u “ v, that means
U 1 “ W and hence that U contributes to W in Ω so that dU ppx

Ω
W , xq

`
ăC 0 by

construction. The remaining possibility is u R X 1 “ X Y tvu. In this case, the fact
that X 1 respects the partial order means U 1 Ĺ W must be subordered W Œ U 1 in
Ω. Therefore, by construction, we again have dU ppx

Ω
W , xq

`
ăC 0 as desired.

Now suppose there does exist a unique vertex u P X satisfying U űX u. We
must show dU ppx

Ω
W , ŷuq

`
ăC 0. Let Z “ Zu be the domain in Ω corresponding to

u, so that ŷu “ pyΩ
Z P T pZq. If U R Υpx, yq, then by definition dU ppy

Ω
Z , yq

`
ăC 0

and dU ppx
Ω
W , xq

`
ăC 0. Hence by the triangle inequality dU ppx

Ω
W , ŷuq

`
ăC dU px, yq ď

NU
`
ăC 0, as needed. If instead U P Υpx, yq, we again consider its supremum

U 1 “ ŪΩ and note that Z Ą U 1 Ă W by Lemma 7.6. If U 1 “ Z, that means U
contributes to Z in Ω so that dU ppy

Ω
Z , yq

`
ăC 0 by construction. Since Z P ΩpRq and

W R ΩpRq, the fact that X respects the partial order implies the nested domains
Z “ U 1 Ĺ W are subordered Z Ö W . Therefore dU ppx

Ω
W , yq

`
ăC 0 by construction

and thus dU ppx
Ω
W , ŷuq

`
ăC 0 by the triangle inequality. If U 1 Ĺ Z, then the fact

that Z minimally contains U in ΩpRq means we must have U 1 R ΩpRq. Since X
respects the partial order, the nested domains U 1 Ĺ Z must therefore be subordered
Z Œ U 1 so that by construction dU ppy

Ω
Z , xq

`
ăC 0. Now we either have U 1 “ W , or

else U 1 R ΩpR1q and therefore W Œ U 1 by the fact that X 1 respects the partial
order. In either case we have dU ppx

Ω
W , xq

`
ăC 0 by construction. Therefore we again

obtain the desired bound dU ppx
Ω
W , ŷuq

`
ăC 0 by the triangle inequality.

The above shows that that the curve complex projections πU px̂vq of x̂v “ pxΩ
W to

domains U Ă W are coarsely determined by the point x and the data tpZu, ŷuq | u P
X u captured by the realization R of X . When W is not an annulus, the point pxΩ

W is
thick by construction and so coarsely determined by its curve complex projections.
When W is an annulus, then by construction in Definition 8.7 the core BW has
coarsely the same length at x and pxΩ

W so that again x̂v is coarsely determined by
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the data of x and R. In either case, we conclude there are only boundedly many
options for the net point x̂v. �

To conclude the proof of the proposition, the claims show that there are uniformly
boundedly many possibilities for the next domain W “ Zv and initial point x̂v P
N pW q. To finish specifying a realization R1 of X 1, it remains to choose a net point
ŷv P N pW q. But according to the label ph˚v , dvq of the vertex v P V , this net point
must satisfy dT pW qpx̂v, ŷvq ď dv. Notice that by definition we have h˚v “ hW , unless

W is an annulus with both x̂v “ pxΩ
W and ŷv “ pyΩ

W ε0–thick (Definition 8.8). In any

case, Lemma 3.15, ensures that once x̂v is specified there are at most Peh
˚
v dv such

net points ŷv. �

12.5. Finishing the count. With these tools in hand, it is now a simple matter
to complete the proof of Theorem 12.1

Proof of Theorem 12.1. We are given a point x P T pΣq and distance r ą 0 and
need to count the number of net points y P N pσq so that Lpx, yq ď r. By definition
of complexity length, for each such point y there is a WISCL witness family Ω for
the segment rx, ys with LpΩq “ Lpx, yq ď r. The corresponding directed graph
GpΩq has exactly |Ω| vertices. Since Ω is limited, this number is bounded |Ω| ď
∆´1 ` ¨ ¨ ¨ `∆ξpΣq “ ∆ in terms of C. Thus there are uniformly boundedly many
options for the directed graph GpΩq. Each edge has only three possible labels, and
for each vertex v there are boundedly many options for the label h˚v . The remaining
vertex labels dv satisfy

ř

vPV h
˚
vdv “ LpΩq ď r. Since there are at most r|Ω| ways

to partition the integer tru as a sum of |Ω| nonnegative integers, we conclude there
is a constant C2 depending only on C such that there are at most C2r∆ possibilities
for the labeled directed graph GpΩq.

Let us now fix such a labeled directed graph G and count the number of points y
producing a witness family Ω with GpΩq “ G. Using the partial order (Lemma 12.3),
we can enumerate the finite vertex set V “ VpGq “ tv1, . . . , v|Ω|u so that each initial
list Xi “ tv1, . . . , viu respects the partial order. Let us count the number of possible
realizations Ri of each of these sets. For the emptyset X0 “ H, there is exactly
one realization R0, and for each 1 ď i ď |Ω|, Proposition 12.14 implies there are

at most C1eh
˚
vi
dvi realizations Ri of Xi extending each realization Ri´1 of Xi´1.

Thus by induction there are at most pC1qi
śi
j“1 e

h˚vi
dvi realizations Ri of Xi. In

particular, we conclude that there are at most

pC1q|Ω| exp
´

h˚v1
dv1

` ¨ ¨ ¨ ` h˚v|Ω|dv|Ω|

¯

ď pC1q∆ expprq

realizations of the full vertex set V “ X|Ω|. Furthermore, by Lemma 12.13, each
such realization R determines a point pR that lies within bounded distance of the
original point y; hence there are uniformly boundedly many net points y that admit
a witness family Ω in the equivalence class R. All together, there are at most kr∆er

potential net points y for which Lpx, yq ď r, where k,∆ depend only on C. �

13. Proving the main theorem

With all the setup in place, it is now fairly straightforward to prove Theorem 1.2.
First observe that by the triangle inequality and fact that ModpSq acts isometrically,
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for any points x, y, x1, y1 P T pSq we have

Λfopx, y,Rq Ă Λfo

`

x1, y1, R` dT pSqpx, x
1q ` dT pSqpy, y

1q
˘

.

Thus it suffices to prove the upper and lower bounds in Theorem 1.2 for one pair
x, y, as it will then follow for any other pair x1, y1 with increased constants.

13.1. Lower Bound. To prove the lower bound in Theorem 1.2, we find a finite-
order element φ0 with centralizer the finite group generated by φ0. We thank
Dan Margalit for suggesting this example. Take a 4g ` 2 regular polygon P with
opposite sides identified and let φ0 be the rotation of order 4g ` 2 of the polygon.
The quotient of P by φ0 is a sphere with 3 marked points corresponding to the
center of P , the identified vertices and the center of the edges. A sphere with 3
marked points has trivial mapping class group and therefore the centralizer of φ0

is just the group generated by φ0.
Now we can assume x “ y “ x0 is fixed by φ0. By Theorem 1.1 [ABEM] there

exists K ą 0 such that for all sufficiently large R there are at least KehSR{2 elements
w P ModpSq so that the orbit point wpx0q lies in Ballpx0, R{2q. The point wpx0q is
fixed by the finite order element φw “ wφ0w

´1, and, since φw is an isometry,

dpx0, φwpx0qq ď dpx0, wpx0qq ` dpwpx0q, φwpx0qq “ 2dpx0, wpx0qq ď R.

For the lower bound then, it is enough to show that the assignment w ÞÑ φw is
4g ` 2 to 1. Notice that if φw1 “ φw2 , then

w1φ0w
´1
1 “ w2φ0w

´1
2 ,

or w´1
1 w2 is in the centralizer of φ0. But this means w1φ

j
0 “ w2 for some j.

13.2. The upper bound. Fix any δ ą 0 and choose the parameter C sufficiently
large so that Cδ ą 3. Since there are only finitely many conjugacy classes of finite-
order elements in ModpSq, it suffices to prove the upper bound for each conjugacy
class separately. Let us therefore fix a finite order element φ0 and take x “ y “ x0

a fixed point. For each conjugate φ P rφ0s, we let aφ, bφ be the branch points from
Proposition 5.5, so that px0, aφ, bφ, φpx0qq is strongly Θ–aligned. We need:

Claim 13.1. We have Lpaφ, bφq
`
ăC Spx0, aφ, bφ, φpx0qq and, consequently,

Lpx0, aφq ` 2Lpaφ, bφq ` Lpbφ, φpx0qq
`
ăC Lpx0, aφ, bφ, φpx0qq `Spx0, aφ, bφ, φpx0qq

Proof. Note that by Theorem 11.2, the first claim implies second. Recall from
Proposition 5.5(4) that dV paφ, bφq ď Θ for all domains V Ă S except possibly some
certain annuli A. By taking C ě Θ, it follows from (7.1) that Υpaφ, bφq consists
only of annuli. Since annuli are not nested, it follows from (WF2) that in fact
Ω “ Υpaφ, bφq is the only allowed witness family for raφ, bφs. Let us call this set Υ.
Notice that by Proposition 5.5(5) each such annulus A satisfies `aφpBAq, `bφpBBq ě

ε0 and therefore, by construction (Definition 8.7), the resolution points xaφ
Υ
A,

pbφ
Υ

A
are also ε0–thick. In particular, for each such annulus A we use h˚A “ 1 when
computing complexity length LpΥq (Definition 8.8).

The savings Spx0, aφ, bφ, φpx0qq is defined an infimum over WISCL fitness fam-
ilies for the tuple, say realized by Ω “ pΩ1,Ω2,Ω3q. Since Ω2 is a witness family



COUNTING FINITE-ORDER MAPPING CLASSES 101

for raφ, bφs, necessarily Ω2 “ Υ as above. For each annulus A P Ω2, we again use
h˚A “ 1 for calculating complexity and hence 1 “ hA ´ h

˚
A for savings. Therefore

Spx0, aφ, bφ, φpx0qq “ SpΩq “
3
ÿ

i“1

ÿ

V PΩi

phV ´ h
˚
V qdT pV qpzxi´1

Ωi
V , pxi

Ωi
V q

ě
ÿ

APΩ2

phA ´ h
˚
AqdT pAqpxaφ

Υ
A,

pbφ
Υ

Aq

“
ÿ

APΥ

p2´ 1qdT pAqpxaφ
Υ
A,

pbφ
Υ

Aq “ LpΥq “ Lpaφ, bφq �

Using this claim, we now apply Theorem 11.2, which says there is an additive
constant C1 depending only on C so that

Lpx0, aφq ` 2Lpaφ, bφq ` Lpbφ, φpx0qq ď

ˆ

hS `
3

C

˙

dT pSqpx0, φpx0qq ` 2C1.

Let us suppose that Lpx0, aφq ď Lpbφ, φpx0qq. If not, we may replace φ with
φ´1 and, using the same fixed point xφ, observe that px0, aφ´1 , bφ´1 , φ´1px0qq is
Θ–strongly aligned with bφ´1 “ φ´1paφq and aφ´1 “ φ´1pbφq. In this case we have
Lpx0, aφ´1q “ Lpφpx0q, bφq ă Lpaφ, bφq and so proceed in the same way counting
φ´1. Thus by symmetry we may indeed suppose Lpx0, aφq ď Lpbφ, φpx0qq. It follows
that Lpx0, aφq ` Lpaφ, bφq is at most half the quantity above, and hence that

Lpx0, aφq ` Lpaφ, bφq ď

ˆ

hS `
3

C

˙

dT pSqpx0, φpx0qq

2
` C1 ď phS ` δq

R

2
` C1.

Now, applying Corollary 12.2, we obtain a constant k such that the number of
such pairs paφ, bφq is at most

k
`

phS ` δq
R
2 ` C1

˘k
e
phS`δq

2 ReC
1

ď k1Rke
phS`δq

2 R,

for some larger constant k1 ą k depending only on C, hS , and δ. Lastly, Theorem 6.1
provides a polynomial p such that each such pair pa, bq arises as paφ, bφq for at most
ppRq elements φ P rφ0s with dT pSqpx0, φpx0qq ď R. Hence the total number of such
φ is at most P pRq times the the above, and we finally conclude that

|Λfopx0, x0, Rq| ď ppRqk1Rke

´

hS
2 `

δ
2

¯

R
ď e

´

hS
2 `δ

¯

R

holds for all sufficiently large R.
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