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Abstract. In this article, we consider qualified notions of geometric finite-
ness in mapping class groups called parabolically geometrically finite (PGF)

and reducibly geometrically finite (RGF). We examine several constructions of

subgroups and determine when they produce a PGF or RGF subgroup. These
results provide a variety of new examples of PGF and RGF subgroups. Firstly,

we consider the right-angled Artin subgroups constructed by Koberda [Kob12]

and Clay–Leininger–Mangahas [CLM12], which are generated by high powers
of given elements of the mapping class group. We give conditions on the sup-

ports of these elements that imply the resulting right-angled Artin subgroup

is RGF. Secondly, we prove combination theorems which provide conditions
for when a collection of reducible subgroups, or sufficiently deep finite-index

subgroups thereof, generate an RGF subgroup.
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1. Introduction

Motivated by a long standing analogy with the classical theory of Kleinian
groups, Farb and Mosher [FM02] introduced the notion of a convex cocompact
subgroup of the mapping class group Mod(S) of a surface S. These subgroups have
received much attention since their introduction in 2002, and there is now a well-
developed theory that connects them to hyperbolicity of surface group extensions,
to the geometry of Teichmüller space, and to the geometry and distance formula of
the mapping class group [BBKL20, DT15, KL08, Ham05]. In particular, there are
many equivalent formulations of the definition, the most relevant for us being that
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a subgroup of Mod(S) is convex cocompact if and only if it is finitely generated
and the orbit map to the curve complex C(S) is a quasi-isometric embedding.

Despite its success, the theory of convex cocompactness is inhibited by a rel-
ative scarcity of examples. There are several constructions of convex cocompact
subgroups of the mapping class group, but to date all known examples are virtu-
ally free. Two major open questions in the field are whether there exists a convex
cocompact surface subgroup of Mod(S), and whether there exists a purely pseudo-
Anosov subgroup that fails to be convex cocompact. Kent and Leininger [KL24]
have recently shown the existence of (infinitely many commensurability classes of)
purely pseudo-Anosov surface subgroups of Mod(S), when S is a closed orientable
surface of genus g ≥ 4, but it unknown whether these are convex cocompact.

In the setting of Kleinian groups, convex cocompactness is a restrictive case of
the more general phenomenon of geometric finiteness. Mosher [Mos06] suggested
in 2006 that there should be an analogous theory of geometrically finite subgroups
of mapping class groups, a hope that is finally coming into view now. While there
are arguably many potential formulations of what “geometrically finite” should
mean in this setting, recent work of Dowdall–Durham–Leininger–Sisto [DDLS24],
Loa [Loa21], and Udall [Uda24] has focused attention on a qualified notion called
reducibly geometrically finite (RGF), which roughly means G is hyperbolic relative
to a collection H = {H1, . . . ,Hn} of reducible subgroups Hi ≤ G for which the
coned off Cayley graph equivariantly and quasi-isometrically embeds into the curve
complex C(S); see Definition 4.1. Recall that a subgroup H ≤ Mod(S) is reducible
if there is a multicurve α on S that is preserved by every element of H.

The goal of this paper is to provide many new examples of RGF subgroups of
mapping class groups and to clarify when certain constructions yield RGF sub-
groups. These examples provide a wealth of different features and can serve as
testing ground for the continued development of the theory of geometric finiteness
in mapping class groups.

Right-Angled Artin Subgroups. One important source of interesting subgroups
in mapping class groups are the right-angled Artin groups constructed by Koberda
[Kob12] and Clay–Leininger–Mangahas [CLM12]; see also Crisp–Wiest [CW07].
Recall that to each finite simplicial graph Γ, there is an associated right-angled
Artin group (RAAG) A(Γ) defined by the presentation

A(Γ) = ⟨x1, . . . , xn | [xi, xj ] = 1 if (xi, xj) is an edge in Γ⟩
with generators x1, . . . , xn corresponding to the vertices of Γ. Given a full subgraph
Γ′ ⊂ Γ, we also use A(Γ′) ≤ A(Γ) to denote the subgroup generated by vertices
xi ∈ Γ′. Right-angled Artin groups interpolate between free groups (when there are
no edges) and free abelian groups (when Γ is a complete graph). Due to their simple
yet flexible formulation, such groups exhibit a rich variety of behaviors and play
an essential role throughout geometric group theory, including in Agol’s celebrated
resolution of the virtual Haken conjecture [Ago13]; see e.g. [Cha07, Wis12] and the
references therein.

Our first theorem addresses the question of determining when these right-angled
Artin subgroups are reducibly geometrically finite. For the statement, consider
a list S1, . . . , Sn of isotopy classes of essential subsurfaces of a surface S and let
Γ = Γ(S1, . . . , Sn) be the realization graph with vertex set {S1, . . . , Sn} and edges
representing disjointness. We say the family is admissible if for i ̸= j the surfaces
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Si ̸= Sj are non-nested and if Sj is not the annulus about a boundary component
of Si. Now take mapping classes f1, . . . , fn that are fully supported on these sub-
surfaces, meaning each fi is either a partial pseudo-Anosov supported on Si or a
Dehn twist power about the core of Si in the case that Si is an annulus.

In this setting, Koberda [Kob12] showed that for all large r the map xi → fr
i

gives an isomorphism between the RAAG A(Γ) and the subgroup ⟨fr
1 , . . . , f

r
n⟩ of

Mod(S) generated by powers of these elements. (Koberda’s result holds more gen-
erally whenever the collection f1, . . . , fn is “irredundant”, a condition that is im-
plied by our admissibility assumption on the supports S1, . . . , Sn.) This gives a
complete algebraic description of the subgroup generated by the powers fr

i . Un-
der the additional assumption that each fi is a partial pseudo-Anosov (that is, no
Si is an annulus), Clay, Leininger, and Mangahas [CLM12] independently proved
that ⟨fr

1 , . . . , f
r
n⟩ is isomorphic to A(Γ) and moreover that it equivariantly quasi-

isometrically embeds into the mapping class group (i.e., it is an undistorted sub-
group) and the Teichmüller space, thereby giving strong geometric information
about the subgroup. Later Runnels [Run21] gave an effective upper bound on the
size of the exponent r needed for these results to hold and extended the result
about undistortion in Mod(S) to also allow the fi to be Dehn twist powers, thereby
confirming a speculation made by the authors of [CLM12].

Our first theorem explains precisely when the above construction produces sub-
groups with the additional property of being reducibly geometrically finite:

Theorem A. Let f1, . . . , fn be mapping classes fully supported, respectively, on an
admissible family {S1, . . . , Sn} of subsurfaces with realization graph Γ. Suppose

(1) Γ decomposes as the disjoint union Γ1 ⊔ · · · ⊔Γm of subgraphs, with m ≥ 2;
(2) the subgroup Gk of Mod(S) generated by the elements fi supported on the

vertices of Γk is reducible for each k = 1, . . . ,m; and
(3) dS(∂Sℓ, ∂Sj) ≥ 3 for all Sℓ and Sj belonging to distinct subgraphs Γk of Γ.

Define a map Ψ: A(Γ) → Mod(S) by Ψ(xi) = fpi

i for some exponents pi ∈ Z.
Then there exists N > 0 such that whenever |pi| ≥ N for each i, the subgroup
⟨fp1

1 , . . . , fpn
n ⟩ is isomorphic to Ψ(A(Γ1)) ∗ · · · ∗Ψ(A(Γm)), and is a reducibly geo-

metrically finite group with respect to the factors {Ψ(A(Γ1)), . . . ,Ψ(A(Γm))}.

Note that the subgraphs Γk in Theorem A are not required to be connected and
that the reducibility condition in (2) is equivalent to the existence of a simple closed
curve that is disjoint from all the subsurfaces Sℓ lying in the subgraph Γk.

By combining with the above mentioned results of Koberda [Kob12, Theorem
1.1], Clay–Leininger–Mangahas [CLM12, Theorem 5.2], and Runnels [Run21, The-
orem 2], which applies to the mapping classes f1, . . . , fn above, we can strengthen
Theorem A to additionally conclude ⟨fp1

1 , . . . , fpn
n ⟩ is an undistorted right-angled

Artin subgroup:

Corollary 1.1. Under the hypotheses of Theorem A, the number N can be chosen
so that Ψ: A(Γ) → Mod(S) is an injective q.i.-embedding. In particular, the image
⟨fp1

1 , . . . , fpn
n ⟩ is undistorted in Mod(S), isomorphic to A(Γ), and RGF relative the

to the family of RAAG subgroups Ψ(A(Γk)) ∼= A(Γk) for k = 1, . . . ,m.

Remark 1.2. Theorem A is sharp in the sense that all conditions (1)–(3) are neces-
sary for the conclusion to hold for all large exponents pi (of course the conclusions
may hold for some smaller exponents as well). This is because the definition of
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RGF requires hyperbolicity relative to a family of reducible subgroups. Thus (1)
is necessary in order for the RAAG A(Γ) ∼= Ψ(A(Γ)) to be relatively hyperbolic,
which by [BDM09, Proposition 1.3] is known to hold if and only if the defining
graph Γ is disconnected, and (2) is necessary for the subgroups Ψ(A(Γk)) to be
reducible. Finally, in order for the coned-off Cayley graph to quasi-isometrically
embed into the curve complex, all elements that are not conjugate into one of the
reducible subgroups Ψ(A(Γj)) must act loxodromically on the curve complex. In
particular, the product fpℓ

ℓ f
pj

j must be pseudo-Anosov when the supports Sℓ and
Sj belong to distinct subgraphs Γk, which is not guaranteed without the separation
condition dS(∂Sℓ, ∂Sj) ≥ 3 of (3).

Combinations of reducible subgroups. Theorem A gives conditions for when
a collection of reducible elements will generate, after passing to sufficiently high
powers, an RGF subgroup of Mod(S). Our next theorems expand on this in two
orthogonal directions: firstly by generalizing from reducible elements fi to reducible
subgroups Hi, and secondly by removing the necessity of raising to powers. Note
that raising a reducible element fi to a power fpi

i corresponds to passing to a finite
index subgroup ⟨fpi

i ⟩ of the reducible group ⟨fi⟩ generated by the element. Thus
in this context, raising the elements fi to powers is roughly analogous to passing
to finite-index subgroups of the reducible groups Hi. This motivates:

Question 1.3. Given a list H1, . . . ,Hm of reducible subgroups of Mod(S):

(1) Under what conditions do theHi generate an RGF subgroup ⟨H1, . . . ,Hm⟩?
(2) Under what conditions can one pass to finite index subgroups H ′

i ≤ Hi that
generate an RGF subgroup?

In particular, what additional hypotheses are needed to guarantee the conclusion
of Theorem A without raising the elements fi to powers?

In answering Question 1.3 we will formulate our conditions in terms of how the
reducible subgroups are situated in the curve graph C(S) of the surface. To state
these, we first associate to each reducible subgroup H ≤ Mod(S) a canonical re-
ducing system ∂H (Definition 3.4), which is the multicurve consisting of all simple
closed curves with finite H–orbit and which are disjoint from all of other curves
with finite H–orbit. This is a direct generalization to subgroups of the well-studied
canonical reducing systems of reducible elements, and we use ideas from [HT85]
to show ∂H is non-empty whenever H is infinite and reducible; see Lemma 3.6.
We then say a family {H1, . . . ,Hm} of reducible subgroups is D–separated (Defi-
nition 6.5) if their canonical reducing systems have pairwise distance at least D in
the curve graph; that is dS(∂Hi, ∂Hj) ≥ D for all i ̸= j. We also say the family is
A–misaligned (Definition 8.1) if for all distinct indices i, j, k the Gromov product
(∂Hi | ∂Hk)∂Hj is at least A; this roughly means that ∂Hj lies at least distance A
from the geodesic joining ∂Hi and ∂Hk.

In Section 8 we prove the following result, which addresses Question 1.3 (1)
above:

Theorem B. There exist constants D,A > 0 such that if H = {H1, . . . ,Hn} is a
D–separated and A–misaligned family of torsion-free reducible subgroups of Mod(S),
then ⟨H1, . . . ,Hn⟩ is isomorphic to H1 ∗ · · · ∗Hn and RGF relative to H.

This generalizes a recent theorem of Loa [Loa21, Theorem 1.1], which proves
that if Hα and Hβ are abelian subgroups consisting of multitwists supported on
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multicurves α and β, then ⟨Hα, Hβ⟩ is a free product Hα ∗ Hβ and parabolically
geometrically finite (PGF) provided α and β are sufficiently far apart in the curve
graph. Recall that PGF is a more restrictive version of RGF requiring the re-
ducible subgroups to be virtual multitwist groups; see Definition 4.1. Note also
that our misalignment assumption is vacuous when there are only two subgroups
in the family H. Thus Theorem B generalizes [Loa21, Theorem 1.1] in two ways:
by allowing for arbitrary torsion-free reducible subgroups, rather than virtual mul-
titwist groups, and by accommodating families of 3 or more subgroups. We will see
in Section 9 that the A–misaligned and torsion-free assumptions are both necessary
in Theorem B.

In the setup of Theorem A, it is not hard to see that dS(∂Sj , ∂Gk) ≤ 1 for
each subsurface Sj belonging to the subgraph Γk. Thus, Theorem B allows us to
strengthen the conclusion of Theorem A in certain circumstances:

Corollary 1.4. There exist A,D > 0 so that, under the hypotheses of Theorem A,
if the subsurfaces satisfy dS(∂Sℓ, ∂Sj) ≥ D and (∂Si | ∂Sℓ)∂Sj

≥ A whenever
Si, Sj , Sℓ belong to distinct subgraphs Γk of Γ, then ⟨f1, . . . , fn⟩ itself is RGF with
respect to {G1, . . . , Gm}.

When the reducing systems ∂Hi are nearby in the curve graph, one cannot expect
the subgroup ⟨H1, . . . ,Hm⟩ to be RGF (indeed, the constant D from Theorem B is
ineffective and presumably quite large). However, our final theorem, which answers
Question 1.3(2), shows that as long the family is merely 5–separated, one can always
achieve reducible geometric finiteness by passing to finite index subgroups.

Theorem C. Let G1, . . . , Gm, be reducible subgroups of Mod(S) that are pairwise
5–separated. Then there are finite index subgroups G′

i ≤ Gi so that for any further
subgroups Hi ≤ G′

i which are still infinite, the group ⟨H1, . . . ,Hn⟩ is isomorphic to
H1 ∗ · · · ∗Hm and is RGF relative to {H1, . . . ,Hm}.

Since raising to powers is analogous to passing to finite index, Theorem C is
closely related to Theorem A and, in fact, easily implies a slight variation on this
result; this is accomplished in Theorem 7.1.

Organization of the paper. In Section 2 we discuss the notation we will use
throughout the paper and review the necessary background on hyperbolic spaces,
curve complexes, subsurface projections, mapping class groups and the distance
formula. In Section 3 we discuss reducible subgroups and their canonical reducing
systems, while in Section 4 we recall the notion of relative hyperbolicity and the
definition of reducibly geometrically finite subgroups of the mapping class group.
In Section 5 we describe the Bass–Serre tree associated to a free product and define
an equivariant map into the curve complex that will be used in the proofs of our
main theorems. In Section 6 we prove Theorem C as consequence of Theorem 6.3,
where we use in a crucial way the notion of “displacing” families, and in Section 7 we
prove Theorem A by using a technical result (Corollary 2.8) related to the Behrstock
inequality. In Section 8 we prove Theorem B generalizing ideas from Loa [Loa21]
and where we use crucially the notions of separability and misalignment. Finally
in Section 9 we discuss examples illustrating our constructions and explaining why
the assumptions of our theorems are necessary.
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2. Background and notation

2.1. Hyperbolic metric spaces. In this subsection we recall the fundamentals
of coarsely hyperbolic metric spaces, in the sense of Gromov. Throughout, (X, d)
denotes a geodesic metric space and all triangles are taken to have geodesic edges.

For x, y, z ∈ X, the Gromov product of x and y with respect to z is

(x | y)z =
1

2
(d(x, z) + d(y, z)− d(x, y)).

We note the trivial fact (coming from the triangle inequality) that

(2.1) |(y | x)z − (x | w)z| ≤ d(y, w).

We define (X, d) to be a hyperbolic metric space [CDP90, Chapitre 1, Définition
1.4] if there exists a δ > 0 such that the following holds for all x, y, z, w ∈ X:

(2.2) (x | y)w ≥ min{(x | z)w, (y | z)w} − δ.

In this case, we say (X, d) is δ-hyperbolic.
One consequence of hyperbolicity is that if (X, d) is δ-hyperbolic then geodesic

triangles are 4δ-thin, meaning for any geodesic triangle T , any edge of T is contained
in the 4δ-neighborhood of the other two edges of T [CDP90, Proposition 3.6].
Another consequence is that inner triangles of (geodesic) triangles are small, in the
following sense. Let T be a triangle with vertices x, y, z and edges [x, y], [y, z], and
[x, z]. Then, as pictured in Figure 1, there exist unique points a ∈ [x, y], b ∈ [y, z],
and c ∈ [x, z] such that d(a, x) = d(c, x), d(a, y) = d(b, y), and d(c, z) = d(b, z) (see
discussion in [BH99] page 408 before Definition 1.16). An inner triangle of T is a
geodesic triangle with vertices a, b, c. If (X, d) is a δ-hyperbolic metric space, then
each edge of an inner triangle has length ≤ 4δ. For a proof, see [BH99, Chapter
III.H Proposition 1.17] or [CDP90, Chapitre 1, Proposition 3.2].

(x | y)z

x

y

z
b

c a

Figure 1. In a hyperbolic metric space, the geodesic triangle pic-
tured here has inner triangle with vertices a, b, c within distance
4δ of each other. The Gromov product (x | y)z approximates the
distance from z to any geodesic from x to y within 4δ.
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It is easy to see that (x | y)z is always bounded above by the minimal distance
d(z, [x, y]) from z to any geodesic joining x and y. Indeed, for any t ∈ [x, y] the
triangle inequality immediately gives (x | y)z ≤ d(z, t). A fundamental feature of
hyperbolicity is a coarse inequality in the other direction as well, so that the Gromov
product coarsely measures how close a side of a geodesic triangle is to the opposite
vertex. So in hyperbolic spaces we can see this as a geometric interpretation of the
quantity. Precisely, if X is δ-hyperbolic, then for all x, y, z ∈ X one has:

(2.3) d(z, [x, y])− 4δ ≤ (x | y)z ≤ d(z, [x, y]).

For a proof, see [CDP90, Chapitre 3, Lemme 2.7]. Notice in particular that when
the Gromov product (x | y)z is small, it means that the point z is close to the
geodesic [x, y]. We will use this point of view to give us a geometric interpretation
of the local-to-global principle we will state below.

It is well known that hyperbolic metric spaces have the “local-to-global” prop-
erty, meaning that local geodesics are in fact global quasi-geodesics. This phe-
nomenon is usually formulated in terms of parameterized quasi-geodesics, see, for
instance, [CDP90, Chapitre 3]. For our purposes, it will suffice to use the follow-
ing formulation in terms of Gromov products and the reverse triangle inequality.
While this basic idea is well-known, we include a short proof for completeness. A
geometric interpretation of this statement is that if a piece-wise geodesic path is
built from long geodesic segments with angle between segments close to π, then
the path is a quasi-geodesic and the concatenation points are close to the geodesic
between the extremes.

Lemma 2.1 (Local-to-Global). Let X be δ-hyperbolic and suppose x0, . . . , xn ∈ X
are such that (xi−1 | xi+1)xi ≤ A and d(xi, xi+1) > 3A+ 14δ for each i. Then any
geodesic joining x0 and xn passes within D = A+ 6δ of each point xi and

d(x0, xn) ≥ d(x0, x1) + · · ·+ d(xn−1, xn)− 2D(n− 1).

In particular, d(x0, xn) ≤
∑n

j=1 d(xj−1, xj) ≤ 2d(x0, xn).

Proof. The proof is by induction on n. The base case n = 1 is trivial, and the case
n = 2 follows from (2.3), which provides a point y1 ∈ [x0, x2] so that d(y1, x1) ≤
A+ 4δ ≤ D and hence

d(x0, x2) = d(x0, y1) + d(y1, x2) ≥ d(x0, x1) + d(x1, x2)− 2D.

Now fix n > 2 and any index 0 < i < n. By induction, the geodesic [xi, xn]
contains a point y within D of xi+1. Since d(xi, y) + d(y, xn) = d(xi, xn), using
(2.1) we find that

(xi+1 | xn)xi
≥ (y | xn)xi

−D = d(xi, y)−D ≥ d(xi, xi+1)− 2D > A+ 2δ.

Similarly (x0 | xi−1)xi > A+ 2δ. Two applications of (2.2) now gives

A+ 2δ ≥ (xi−1 | xi+1)xi
+ 2δ ≥ min{(xi−1 | x0)xi

, (x0 | xn)xi
, (xn | xi+1)xi

}.
Since the first and last quantities in the minimum have been seen to be large, this
is only possible if (x0 | xn)xi

≤ A+2δ which, by (2.3), provides a point yi ∈ [x0, xn]
with d(yi, xi) ≤ A+ 6δ = D. Hence, again by induction, we find that

d(x0, xn) ≥ d(x0, xi) + d(xi, xn)− 2D ≥ −2D(n− 1) +

n∑
j=1

d(xj−1, xj).
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The final claim is now an immediate consequence: The upper bound on d(x0, xn) is
just the triangle inequality, and the lower bound holds since the hypotheses ensure
d(xj−1, xj) ≥ 4

3D and thus d(xj−1, xj)− 2D ≥ 1
2d(xj−1, xj) for each j. □

2.2. Relative hyperbolicity. LetG be a finitely generated group and Γ its Cayley
graph with respect to some finite generating set X. Given a finite list of subgroups

{H1, . . . ,Hl}, the associated coned-off Cayley graph Γ̂(G, {H1, . . . ,Hl}) is the graph
obtained from Γ by adding a new “coset vertex” gHi for every left coset of each
subgroup Hi and by adding edges of length 1

2 from gHi to each element in gHi. Up
to quasi-isometry, this graph does not depend on the generating set X.

In Farb’s original paper on relatively hyperbolic groups [Far98], G is declared
to be hyperbolic relative to the subgroups H1, . . . ,Hl if the coned-off Cayley graph

Γ̂(G; {H1, . . . ,Hl}) is Gromov hyperbolic and satisfies a technical bounded coset
penetration (BCP) property dictating how quasi-geodesics intersect the cosets gHi.
Bowditch later gave an equivalent definition that is better suited to our purposes:

Definition 2.2 (Bowditch [Bow12]). A group G is hyperbolic relative to a collection
{H1, . . . ,Hl} of finitely generated subgroups if it acts on a connected hyperbolic
graph T with only finitely many orbits of edges such that:

• each edge has trivial stabilizer and is contained in only finitely many circuits
of length n for each n ∈ N, and

• infinite vertex stabilizers are exactly the conjugates of the subgroups Hi.

Remark 2.3. In Definition 2.2 it is not hard to see that T is G–equivariantly quasi-

isometric to the Coned-off Cayley graph Γ̂. Indeed, the action gives an equivariant,

Lipschitz orbit map Γ → T which can be extended to Γ̂ be sending each coset vertex
gHi to the unique vertex of T with stabilizer gHig

−1. A quasi-isometric inverse is
obtained by sending a vertex of T with stabilizer gHig

−1 back to gHi.

2.3. The curve graph. For the purposes of this paper a surface is an orientable
2-dimensional manifold with compact boundary and finitely generated fundamental
group. Connected surfaces are classified by the triple (g, n, b), where g is the genus
of the surface, n is the number of punctures, and b is the number of boundary
components. The complexity of a surface is ξ(S) = 3g + n+ b− 3. A closed curve
in a surface S is a continuous map S1 → S. The curve is simple if the map is an
embedding, and essential if it is not homotopic to a point, a puncture, or a boundary
component. We consider curves as equivalent if they differ by free homotopy or
precomposition with a (possibly orientation reversing) homeomorphism of S1. For
the remainder of the paper we use the term curves to mean the equivalence class
of an essential simple closed curve. Curves are said to be disjoint if they have
disjoint representatives and are said to intersect otherwise. A multicurve is a
disjoint collection of distinct curves.

The curve graph or complex C(S) of a connected surface S with ξ(S) ≥ 1 is the
graph with vertices labeled by curves in S. When ξ(S) ≥ 2, there is an edge between
two vertices if the curves are disjoint. In the case ξ(S) = 1 the edge condition is
modified so that vertices span an edge if the curves have representatives intersecting
once in the case g = 1, or twice in the case g = 0. This modification ensures C(S)
is connected for a surface of any genus.

For an annulus, i.e. the connected surface S with g = n = 0 and b = 2, the curve
graph C(S) is defined to have vertices given by homotopy classes, rel endpoints, of
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embedded arcs [0, 1] → S with endpoints lying in distinct boundary components of
S. Two vertices are then joined by an edge if the arcs have representatives with
disjoint interiors. It is not hard to see that in this case C(S) is connected and
quasi-isometric to Z.

For any surface, the curve graph is a metric space with each edge having length
1. An essential fact of the curve graph in our setting is hyperbolicity:

Theorem 2.4 (Masur–Minsky [MM99, Theorem 1.1]). If S is an annulus or a
connected surface with ξ(S) ≥ 1, then the curve graph C(S) is Gromov hyperbolic.

2.4. Subsurface projections. By a subsurface of S, we mean a subset Y ⊂ S that
is also a surface. We always assume the subsurface Y is connected and essential,
meaning each of its boundary components is either a boundary component of S or
an essential curve in S. We write ∂Y for the multicurve consisting of boundary
components of Y that are essential in S. We shall also assume Y is an annulus or
has ξ(Y ) ≥ 1, so that Y has its own curve graph C(Y ).

Given a curve γ on S, its projection to Y is a set πY (γ) of curves in Y defined
following [MM00]: Firstly, γ and Y are said to be disjoint if they have disjoint
representatives; in this case πY (γ) is the empty set. Otherwise γ and Y are said
to intersect and we may realize γ and ∂Y in minimal position so that γ ∩ Y is
a nonempty collection of curves and proper arcs in Y . We now define projection
to Y when Y is not an annulus. For each component γ′ of γ ∩ Y , the boundary
∂Nϵ(γ

′∪∂Y ) of a sufficiently small regular neighborhood of γ′∪∂Y yields a disjoint
collection of simple (but possibly nonessential) closed curves. We then define πY (γ)
to be the set of all such curves that are essential in Y and therefore vertices of C(Y ).
Since Y is non-annular, πY (γ) ̸= ∅ when γ is not disjoint from Y .

When Y is an annulus, the definition of subsurface projection requires a bit
more care. The issue is that in this case, the two boundary components of Y are
isotopic and different choices for representatives of these boundary components (and
therefore for Y ) can alter the isotopy class of the projection of an arc to C(Y ). To
rectify this, we equip S with a complete hyperbolic structure and consider the cover
p : SY → S associated to π1(Y ). This inherits a hyperbolic structure from S and
admits a compactification SY coming from adding the (quotient of the) boundary at

infinity of S̃ = H2. The projection πY (γ) is then defined to be the compactification
of p−1(γ) in SY : this is a collection of pairwise disjoint arcs in the compact annulus
SY and so determines a (possibly empty) diameter 1 subset of the annular complex
C(Y ).

The definition of subsurface projection is extended to arbitrary sets of curves
on S by defining πY (A) to be the union of the projections of all curves in A. The
subsurface distance between any two subsets A,B of C(S) is then defined to be the
diameter of their projections to Y :

dY (A,B) := diamC(Y ) (πY (A) ∪ πY (B)) .

To ease notation, we sometimes use the shorthand dY (W,V ) := dY (∂W, ∂V ) when
W,V are subsurfaces of S. We also note the following basic fact from [MM00,
Lemma 2.2]:

(2.4) dY (α, β) ≤ 2 for any subsurface Y and disjoint multicurves α, β on S.

The following Bounded Geodesic Image Theorem (BGIT) of Masur and Minsky
will play a fundamental role in our arguments:
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Theorem 2.5 (Masur–Minsky [MM00, Theorem 3.1]). There is a constant M,
depending only on ξ(S), such that for any proper essential subsurface Y of S and
any geodesic g in C(S), if πY (v) ̸= 0 for each vertex v in g, then diamY (g) ≤ M.

We will typically use this theorem by applying its converse to compute lower
bounds for distances in the curve complex of S. The converse essentially states
that if the projection of two curves are sufficiently far apart in C(Y ), then the
geodesic between them in C(S) makes a pit stop near ∂Y .

We shall also make use of the following inequality due to Behrstock. We say
that subsurfaces X and Y overlap, denoted X ⋔ Y , if each projection πX(∂Y ) and
πY (∂X) is nonempty. Note that this is implied by dS(X,Y ) ≥ 2.

Theorem 2.6 (Behrstock [Beh06]; see also [Man13, Lemma 2.13]). There is a
constant B = 10 so that for any non-overlapping subsurfaces X,Y, Z of S one has

dY (X,Z) ≥ B =⇒ max{dX(Y, Z), dZ(X,Y )} < B.

This has the following important consequence. The basic idea of Corollary 2.7(1)
below is well-known to experts and has appeared in different contexts in the litera-
ture; see for example [Man13, Lemma 5.2] or [BBFS19, Lemma 4.6]. As we need a
precise formulation that also speaks to accumulated distance in the curve complex
(item (2) below), we include a full proof. Note that the statement is also true for
bi-infinite sequences {Yn}n∈Z.

Corollary 2.7. Let Y1, . . . , Yn be subsurfaces of S such that Yi ⋔ Yi+1 and
dYj (Yj−1, Yj+1) ≥ M+ 3B for all i, j. Then:

(1) Y1, . . . , Yn pairwise overlap and dYj
(Yi, Yk) ≥ M+ B for all i < j < k.

(2) dS(Yi, Yℓ) ≥ dS(Yj , Yk) whenever i ≤ j < k ≤ ℓ.

In particular, if dS(Yj , Yj+1) ≥ 3 for each j, then dS(Y1, Yn) ≥ n− 1.

Proof. The proof of claim (1) is morally the same as for Lemma 2.1. We induct on
n assuming the statement holds for a sequence of n−1 subsurfaces, with cases n ≤ 2
being trivial. Given Y1, . . . Yn and indices i < j < k, the subsequences Yi, . . . , Yj

and Yj , . . . , Yk satisfy the induction hypothesis and hence, the conclusion.
We claim that dYj (Yi, Yj−1) ≤ B: Indeed, if i = j − 1 this follows trivially

from Equation (2.4), and if i < j − 1 then induction ensures dYj−1(Yi, Yj) ≥ B
so that the claim follows from Theorem 2.6. Similarly we could also show that
dYj

(Yj+1, Yk) ≤ B.
From that we can conclude the desired lower bound

dYj (Yi, Yk) ≥ dYj (Yj−1, Yj+1)− dYj (Yj−1, Yi)− dYj (Yk, Yj+1)

≥ dYj (Yj−1, Yj+1)− 2B

≥ M+ B.

Note this implies dS(Yi, Yk) ≥ 2 and thus Yi ⋔ Yk, since otherwise (2.4) would
imply dYj

(Yi, Yk) ≤ 2 < M+ B. Hence Y1, . . . , Yn pairwise overlap.
For the proof of claim (2) it suffices to consider the case dS(Yj , Yk) ≥ 3, since, if

dS(Yj , Yk) = 2, the above already shows dS(Yi, Yℓ) ≥ 2. Consider indices i ≤ j <
k ≤ ℓ and choose components α ∈ ∂Yj and β ∈ ∂Yk with dS(α, β) = dS(Yj , Yk). If
i = j we set α′ = α, and if i < j then we may choose a component α′ ∈ ∂Yi that
projects to Yj . Similarly choose β′ = β if k = ℓ and otherwise choose β′ ∈ ∂Yℓ

projecting to Yk. We first claim that β′ intersects α and hence projects to Yj . If
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β′ = β this is clear, and otherwise α, β′ both project to Yk and hence by claim (1)
and (2.4) we have

dYk
(α, β′) ≥ dYk

(Yj , Yℓ)− dYk
(Yj , α)− dYk

(Yℓ, β
′)

≥ dYk
(Yj , Yℓ)− 4

≥ M+ B− 4.

which, again by (2.4), is incompatible with α′, β being disjoint.
We next claim the geodesic [α′, β′] in C(S) passes through a curve α0 /∈ {α′, β′}

disjoint from α. Indeed, if α′ = α we simply take α0 to be the next vertex along
the geodesic (this is valid since we have seen dS(α, β

′) ≥ 2). Otherwise, by claim
(1) and (2.4), we have

dYj
(α′, β′) ≥ dYj

(Yi, Yℓ)− 4 ≥ M+ B− 4 > M

so that Theorem 2.5 provides a curve α0 /∈ {α′, β′} that fails to project to Yj and
so is disjoint from α. Symmetrically, [α′, β′] contains a curve β0 /∈ {α′, β′} disjoint
from β. Therefore we conclude:

dS(Yi, Yℓ) ≥ dS(α
′, β′) ≥ 2 + dS(α0, β0) ≥ dS(α, β) = dS(Yj , Yk),

where the second inequality follows since α0, β0 are interior vertices of [α′, β′].
Finally, suppose dS(Yj , Yj+1) ≥ 3 for each j and consider a geodesic γ realizing

dS(Y1, Yn). Since for each 1 < j < n we have dYj
(Y1, Yn) ≥ M + B, Theorem 2.5

ensures the geodesic passes through a curve γj disjoint from Yj . These curves are
necessarily distinct, since γi = γk would imply dS(Yi, Yk) ≤ 2 in violation of (2).
Hence the geodesic passes through the n − 2 distinct vertices γ2, . . . , γn−2 and so
has length at least n− 1. □

We shall also need a variation on this that allows for disjoint subsurfaces within
the collection. Given a list of subsurfaces Y1, . . . , Yn of S, let:

• ι(j) denote the largest index less than j so that Yι(j) ⋔ Yj , and
• τ(j) the smallest index greater than j so that Yj ⋔ Yτ(j).

Note that for a given j, its predecessor ι(j) or successor τ(j) may not exist.

Corollary 2.8. Assume Y1, . . . , Yn satisfies the property that dYj (Yι(j), Yτ(j)) ≥
M + 6B for all j ∈ {1, . . . ,m} such that ι(j) and τ(j) both exist. Then for any
subsequence Yσ(1), . . . , Yσ(m) satisfying Yσ(j) ⋔ Yσ(j+1) for each j we have:

dYσ(j)
(Yσ(i), Yσ(k)) ≥ M+ 3B whenever σ(i) < σ(j) < σ(k).

Remark 2.9. It follows that the sequence W1, . . . ,Wm, where Wi = Yσ(i), satisfies
the hypotheses of Corollary 2.7 and thus also all of its conclusions.

Proof. We first prove the special case of a subsequence Yσ(1), Yσ(2), Yσ(3) of length
m = 3. Note that Yσ(1) ⋔ Yσ(2) ⋔ Yσ(3) implies ι(σ(2)) and τ(σ(2)) both exist.
Hence by our hypothesis and the triangle inequality it suffices to show

dYσ(2)
(Yτ(σ(2)), Yσ(3)) ≤ B+ 2 and dYσ(2)

(Yσ(1), Yι(σ(2))) ≤ B+ 2.

We prove the first of these inequalities, the other being analogous. Set a1 = σ(2),
and for k ≥ 1 suppose we have constructed a sequence σ(2) = a1 < · · · < ak ≤ σ(3)
so that ai+1 = τ(ai) for each 1 ≤ i < k. If Yak

⋔ Yσ(3), then necessarily τ(ak) ≤ σ(3)
and we may set ak+1 = τ(ak) to get a longer sequence a1 < · · · < ak+1 satisfying the
same condition. We continue recursively in this manner until we obtain a maximal



12 AOUGAB, BRAY, DOWDALL, HOGANSON, MALONI, AND WHITFIELD

sequence for which Yak
and Yσ(3) do not overlap. Thus dYσ(2)

(Yak
, Yσ(3)) ≤ 2 by

(2.4). Since a1 = σ(2) and a2 = τ(σ(2)), it now suffices to show dYa1
(Ya2

, Yak
) ≤ B.

We claim the sequence Ya1 , . . . , Yak
satisfies the hypotheses of Corollary 2.7.

Indeed, the fact aj = τ(aj−1) ensures that Yaj−1 ⋔ Yaj for each 1 < j ≤ k. This
further ensures aj−1 ≤ ι(aj). Hence, since τ(aj−1) = aj > ι(aj) is the first index
overlapping with Yaj−1

, it must be that Yaj−1
and Yι(aj) do not overlap. Therefore

their boundaries are disjoint and we conclude dYaj
(Yaj−1

, Yι(aj)) ≤ 2 by (2.4). Since

aj+1 = τ(aj), when j < k, it now follows from the triangle inequality that

dYaj
(Yaj−1

, Yaj+1
) ≥ dYaj

(Yι(aj), Yτ(aj))− 2 ≥ M+ 3B

as required. Therefore Corollary 2.7 applies to Ya1
, . . . Yak

. From this, we easily
obtain the desired bound dYa1

(Ya2 , Yak
) ≤ B: Indeed, if k = 2 this is immediate, and

if k > 2 the bound follows from Theorem 2.6 and the conclusion dYa2
(Ya1

, Yk) > B
of Corollary 2.7. This completes the proof when m = 3.

We next prove the general case by inducting on m. The cases m ≤ 2 are vac-
uous, so assume m ≥ 3 and fix i < j < k. By induction the shorter sequences
Yσ(1), . . . , Yσ(j) and Yσ(j), . . . Yσ(k) satisfy the conclusion. Therefore Corollary 2.7(1)
(c.f. Remark 2.9) implies Yσ(i) ⋔ Yσ(j) ⋔ Yσ(k). Hence the length 3 case implies the
desired bound dYσ(j)

(Yσ(i), Yσ(k)) ≥ M+ 3B. □

2.5. The mapping class group. We use Mod(S) to denote the mapping class
group of a surface S, defined by

Mod(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S),

where Homeo+(S, ∂S) denotes the group of orientation preserving homeomorphisms
of S which restrict to the identity on ∂S, and Homeo0(S, ∂S) is the normal subgroup
consisting of homeomorphisms isotopic to the identity map.

Recall that an element f ∈ Mod(S) is periodic if it has finite order in Mod(S),
is reducible if there exists a multicurve α so that f(α) = α, and is pseudo-Anosov
if there is a number λ > 1 and a transverse pair of singular measured foliations F±
on S so that f(F±) = λ±1F±. The Nielsen–Thurston classification says that every
element f of Mod(S) is either periodic, infinite-order reducible, or pseudo-Anosov;
see [FM12, Chapter 13]. The prototypical example of a non-periodic reducible
element is the Dehn twist Tα about a curve α, defined by cutting S along α and
then regluing with a full twist.

A mapping class f ∈ Mod(S) is said to be supported on a subsurface Y if it has a
representative that restricts to the identity in the complement of Y . We moreover
say f is fully supported on Y if the restriction f |Y is a pseudo-Anosov element of
Mod(Y ) or if Y is an annulus with f |Y nontrivial. In the former case we call f a
partial pseudo-Anosov with support Y and in the latter case a twist about the core
curve of the annulus. Thus any twist is simply a nontrivial power of a Dehn twist.

An element g ∈ Mod(S) is said to be pure or in normal form if it can be written
as a product g = f1 . . . fk where each fi is fully supported on some subsurface
Yi and these supporting subsurfaces have pairwise disjoint representatives (recall
that in our formulation, subsurfaces are necessarily connected and non-empty).
In this case, a supporting subsurface Yi is called a domain of g if fi is a partial
pseudo-Anosov on Yi or if fi is a twist and the annulus Yi is not homotopic into
the support Yj for any partial pseudo-Anosov factor fj . It is a fact that there is a
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uniform number N ≥ 1 depending only on S so that fN is in normal form for any
element f ∈ Mod(S) [Iva92, BLM83].

It is a crucial result of Masur and Minsky that pseudo-Anosov mapping classes
act loxodromically on the curve complex, and in fact with a uniform lower bound
on the asymptotic translation length [MM99, Proposition 3.6]. It is also easy to
see that twists acts with translation length at least 1 on the curve complex of the
associated annulus. These facts lead the following consequence for pure mapping
classes:

Corollary 2.10 ([Man13, Corollary 2.11]). There exists a constant c = c(S) > 0
such that for any pure element g ∈ Mod(S), any domain Y of g, and any curve
γ ∈ C(S) with nontrivial projection onto Y , we have

dY (g
nγ, γ) ≥ c |n| for all nontrivial n ∈ Z.

2.6. Distance formula. We shall need one more foundational result of Masur
and Minsky. A maximal multicurve has the property that every complementary
component is a pair of pants, and therefore such multicurves are deemed pants
decompositions; any pants decomposition has ξ(S) many components. A marking
on S is a pants decomposition P =

{
α1, ..., αξ(S)

}
together with a collection of

transversal curves
{
µ1, ..., µξ(S)

}
so that i(µi, αj) = 0 whenever i ̸= j and so that

µi intersects αi the minimum number of times possible.
Markings µ have the key feature that for every subsurface Y , the projection

πY (µ) is non-empty and has diameter at most 6. Masur and Minsky showed that
projections of markings to subsurfaces can be used to estimate distance in the
mapping class group:

Theorem 2.11 (Distance Formula [MM00]). For any marking µ on S and any
finite generating set X of Mod(S), there exists a constant J0 ≥ 1 such that for each
J ≥ J0 there exists D ≥ 1 such that the word length of every element f ∈ Mod(S)
can be estimated as

|f |X ≍D

∑
Y⊂S

[[dY (fµ, µ)]]J

where A ≍D B means A ≤ DB +D and B ≤ DA +D, and where [[x]]J means x
whenever x ≥ J and means 0 otherwise.

3. Reducible subgroups

In this section we gather the needed background concerning reducible subgroups
of mapping class groups.

Definition 3.1. A subgroup H ≤ Mod(S) is reducible if there is a multicurve α so
that h(α) = α for all h ∈ H. Any such α is called a reducing multicurve for H.

The following classical theorem of Ivanov generalizes the Nielsen–Thurston clas-
sification from elements to subgroups:

Theorem 3.2 (Ivanov [Iva92]). Every subgroup of Mod(S) is either finite, re-
ducible, or contains a pseudo-Anosov element.

Corollary 3.3. An infinite subgroup H of Mod(S) is virtually reducible if and only
if it is reducible.
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Proof. If H is reducible it is clearly also virtually reducible. Conversely, suppose
H has a finite-index reducible subgroup H0. If H fails to be reducible, then it
contains a pseudo-Anosov element f ∈ H by Theorem 3.2. Then fk! ∈ H0 where
k = [H : H0]. But this contradicts the fact that H0 is reducible. □

It is well known that each reducible element f has a canonical reducing system
∂f . This can be characterized in multiple ways; we follow the approach of Handel–
Thurston [HT85, §2]. Define:

• R(f) to be the set of all curves α whose orbit {fk(α) | k ∈ Z} is finite;
• ∂f to be the set of elements of R(f) that are disjoint from all other elements
of R(f).

This associates a (possibly empty) multicurve to each element f ∈ Mod(S) that
is characterized by the property that {fk(β) | k ∈ Z} is infinite for any curve β
intersecting ∂f . Note f(∂f) = ∂f by construction and that ∂f is clearly empty
whenever f is periodic or pseudo-Anosov. In [HT85, Lemma 2.2], Handel and
Thurston show ∂f is nonempty whenever f is reducible and infinite order. This
can be extended to reducible subgroups in exactly the same way:

Definition 3.4. The canonical reducing system ∂H of a subgroup H ≤ Mod(S)
consists of those elements of R(H) that are disjoint from all other elements of R(H),
where R(H) denotes the set of curves α whose orbit H · α is finite.

Remark 3.5. If H ′ ≤ H, then R(H) ⊂ R(H ′) and therefore dS(∂H
′, ∂H) ≤ 1. If,

moreover [H ′ : H] < ∞, then R(H) = R(H ′) and thus ∂H ′ = ∂H.

While it is not obvious that ∂H should be nonempty, the argument from [HT85,
Lemma 2.2] goes through with only minor adjustments to prove:

Lemma 3.6. If H ≤ Mod(S) is reducible and infinite, then ∂H is a nonempty,
reducing multicurve for H. In contrast, ∂H is empty whenever H is finite or
contains a pseudo-Anosov element.

Proof. If H is finite, then R(H) consists of all curves on S and so ∂H is empty.
Similarly, if H contains a pseudo-Anosov, then R(H) is empty and so is ∂H.

It remains to suppose H is reducible and infinite. Let us say a subsurface Y ⊆ S
is filled by a finite set {α1, . . . , αn} of curves if every curve γ of Y intersects or
equals some curve αi from the set. Following [HT85], let S denote collection of all
subsurfaces Y that are filled by some finite subset of R(H). The set S is partially
ordered by inclusion. Notice that every chain Y1 ⊊ Y2 ⊊ . . . is finite, since the
Euler characteristic must decrease at each step in a chain and all subsurfaces have
Euler characteristic bounded below by that of the entire surface. Hence S has
a maximal element Y , say filled by a finite list Γ = {α1, . . . , αn} of curves in
R(H). Since each αi has a finite H–orbit, it follows that the set of ordered tuples
{(hα1, . . . , hαn) | h ∈ H} is finite. The orbit stabilizer theorem thus implies there
is a finite-index subgroup H ′ ≤ H that fixes each curve α1, . . . , αn.

Suppose now that Y = S, meaning S is filled by Γ = {α1, . . . , αn}. By the
Alexander trick, any element fixing each curve in Γ is isotopic to the identity. Thus
H ′ is the trivial group and |H| < ∞. As this contradicts our hypothesis, it must
be that Y ̸= S is a proper subsurface.

Notice that the subsurface Y has finite H–orbit and thus its boundary ∂Y is
contained in R(H). If ∂Y is not in ∂H, then there must be some curve γ intersecting
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it with finite H-orbit. In this case Γ′ = {α1, . . . , αn, γ} ⊂ R(H) fills a strictly larger
surface Y ′, contradicting the maximality of Y in S. Therefore ∂H contains ∂Y and
is non-empty. □

Note that the above proof actually characterizes ∂H as the union of ∂Y over all
maximal subsurfaces Y in the partial order. Indeed, this union is clearly contained
in ∂H; conversely, given some α ∈ ∂H, if α is not on the boundary of any such
maximal subsurface, it must live in the interior of one. This implies that there are
curves intersecting α with finite H-orbit, contradicting the definition of ∂H.

Example 3.7. Let us illustrate some ways to construct reducible subgroups and
describe their canonical reducing systems.

• For any multicurve α ⊂ S its stabilizer stab(α) = {h ∈ Mod(S) : hα = α}
is a reducible subgroup whose boundary is precisely α. Every reducible
subgroup is naturally a subgroup of some multicurve stabilizer, namely
that of its boundary.

• Suppose Y = Y1 ⊔ · · · ⊔ Yn is a collection of disjoint, essential subsurfaces
and consider infinite subgroups Hi ≤ Mod(Yi) ≤ Mod(S) (See Figure 2).
Let H be a reducible group generated by H1, . . . ,Hn and any collection of
elements of Mod(S) preserving Y . In general, we have dS(∂Y, ∂H) ≤ 1.
If additionally each Hi contains a fully supported element, it follows that
∂H = ∂Y .

Figure 2. A disjoint union Y = Y1 ⊔ Y2 ⊔ Y3 of essential subsurfaces.

3.1. Multitwist groups. We shall also be interested in the following restricted
class of reducible subgroups, which we will call multitwist groups.

A multitwist in Mod(S) is any element f = Tα1
· · ·Tαk

that can be expressed
as a product of commuting Dehn twist Tαi ; that is, any element supported on a
disjoint union of annuli. We call a subgroup H ≤ Mod(S) a multitwist group if
every element of H is a multitwist. We note the following simple observation:

Lemma 3.8. A subgroup H is a multitwist group if and only if there is a multicurve
α = (α1, . . . , αk) so that H is contained in ⟨Tα1

, . . . , Tαk
⟩ ∼= Zk. In particular, H

is abelian and reducible.

Proof. Let C be the set of all curves αi appearing (with nontrivial power) in any
elements f = T k1

α1
, . . . , T km

αm
of H. We claim the elements of C are pairwise disjoint.

This will prove the claim since then C is a multicurve and H is contained in the
group generated by the set {Tα}α∈C .

If the claim is false, we can find two elements f = T k1
α1

· · ·T km
αm

and g = T ℓ1
β1

· · ·T ℓn
βn

so that some αi intersects some βj . In this case, let Y ⊂ S be the subsurface
filled by αi and βj . Penner’s generalization of Thurston’s construction of pseudo-
Anosov homeomorphisms [Pen88] implies that T k

αi
T−l
αj

is pseudo-Anosov on Y for
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any positive integers k, l. It follows that the normal form of fg−1 contains a partial
pseudo-Anosov factor, and in particular, it is not a multi-twist. □

We say a subgroup H ≤ Mod(S) is virtually a multitwist group if it has a
finite index subgroup H0 ≤ H that is a multitwist group. Lemma 3.8 shows that
multitwist subgroups are exactly the class of groups considered by Loa in [Loa21].

4. Geometrically finite subgroups of the mapping class group

In the classical setting of Kleinian groups, geometric finiteness can be viewed
as a relative version of convex cocompactness that allows for parabolic isometries
in certain prescribed subgroups. As an illustrative example, consider a complete,
finite-volume, cusped hyperbolic 3–manifold M , which has the feature that all
elements of π1(M) ≤ Isom(H3) are loxodromic aside from those that are conjugate
into the parabolic Z2 subgroups corresponding to the toroidal cusps of M .

Motivated by this analogy, Dowdall, Durham, Leininger and Sisto defined in
[DDLS24] the notion of parabolically geometrically finite subgroups of Mod(S) to
capture the idea of being relatively convex cocompact in a way that is compat-
ible with the presence for multitwist elements, which are precisely the parabolic
isometries of Teichmüller space. Udall [Uda24, Definition 6.4] later expanded this
definition to allow for peripheral subgroups containing more general reducible ele-
ments. This leads to the following formulation:

Definition 4.1. We say a subgroup G < Mod(S) is reducibly geometrically finite
(RGF) relative to a collection H = {H1, . . . ,Hn} of reducible subgroups of G if

(1) G is hyperbolic relative to the collection H, and

(2) the coned off Cayley graph Γ̂(G;H) of G with respect to H G–equivariantly
quasi-isometrically embeds into the curve complex C(S).

Such an subgroup is more specifically parabolically geometrically finite (PGF) rela-
tive to H if each subgroup Hi is virtually a multitwist group. We also say that G
is RGF/PGF if it is so relative to some finite collection H of subgroups.

Remark 4.2. We note that this differs slightly from Udall’s formulation [Uda24,
Definition 6.4], which additionally requires the subgroups Hi to be “virtually pure
reducible strongly undistorted;” an assumption which allows one to prove [Uda24,
Theorem 6.8] the subgroup G is undistorted in the mapping class group.

4.1. Known examples of geometrically finite subgroups. A main goal of this
paper is to present new constructions of RGF and PGF subgroups of the mapping
class group. To give context, here we survey the landscape of geometric finiteness
and review the known examples from the literature.

The notion of parabolic geometric finiteness was introduced in [DDLS24] in the
context of studying the geometry of surface group extensions associated to lattice
Veech groups. Recall that to each subgroup G ≤ Mod(S) there is an associated
π1(S)–extension group ΓG obtained by taking the preimage of G under the forget-
ful map Mod(S, p) → Mod(S) of the Birman exact sequence. Recall also that a
subgroup G ≤ Mod(S) is a Veech group if it stabilizes a Teichmüller disk D, and
that it is moreover a lattice if the quotient D/G has finite volume. In [DDLS24] it
was shown that if G is a lattice Veech group, then the associated extension ΓG is
a hierarchically hyperbolic group. This result was later extended by Bongiovanni
[Bon24] to handle all finitely generated Veech groups. Earlier work of Tang [Tan21]
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had moreover shown that finitely generated Veech groups satisfy the conditions to
be PGF. These results give evidence that finitely generated Veech groups should
qualify as “geometrically finite” and that Definition 4.1 is a reasonable formulation
of the notion.

In the spirit of the Klein–Maskit combination theorem for Kleinian groups,
Leininger and Reid [LR06] gave a combination theorem for Veech subgroups which
shows, in the simplest case, that if G ≤ Mod(S) is a Veech subgroup with a max-
imal parabolic subgroup H ≤ G, then for every “sufficiently complicated” partial
pseudo-Anosov centralizing H, the amalgamated free product G ∗H ϕGϕ−1 embeds
into Mod(S). Such combinations are interesting in part because they allow one
to construct higher-genus surface subgroups of Mod(S) with the property that all
elements are pseudo-Anosov except for a single conjugacy class. Udall [Uda24] has
recently analyzed these Leininger–Reid combinations from the new perspective of
geometric finiteness and shown they are indeed PGF. In fact, Udall proves a general
combination theorem, showing that an amalgamated free product of PGF groups
over parabolic subgroups will both embed into Mod(S) and be PGF, provided a
technical “L–local large projections” property is satisfied (analogous to the above
“sufficiently complicated” assumption on the partial pseudo-Anosov ϕ).

Finally, as indicated in Section 1, Loa [Loa21] considered free products of two
virtual multitwist subgroups H1, H2 ≤ Mod(S) and proved there is a constant
D = D(S) such that if dS(∂H1, ∂H2) ≥ D then the free product H1 ∗H2 is PGF
and embeds in Mod(S). This work was the motivation of our Theorem B.

5. Bass–Serre trees and free products

Let H = {H1, . . . ,Hn} be a family of nontrivial groups. In this section we
will describe the Bass–Serre tree T = TH associated to the abstract free product
H := H1 ∗ · · · ∗Hn; see [SW79] for a general overview of Bass–Serre tree theory.

A natural graph of groups decomposition of the free product is given by the star
graph T0 (that is, the complete bipartite graph K1,n) in which the internal vertex
and the edges are all labeled by the trivial group, and the n nodes are labeled by
the given groups H1, . . . ,Hn. The associated Bass–Serre tree T comes equipped
with an action H ↷ T of the free product and an associated quotient map T → T0.

The bipartite structure of T0 lifts to a bipartite structure on T in which we
call lifts of the node vertices type–1 and lifts of the central vertex type–2. Each
type–2 vertex has trivial stabilizer, and each type–1 vertex has stabilizer equal
to a conjugate gHig

−1 of the corresponding node vertex. By the orbit-stabilizer
theorem, the type–2 vertices are in bijective correspondence with G itself and the
type–1 vertices mapping to the Hi node in T0 are in correspondence with the set
G/Hi of cosets of Hi. Accordingly, we may label the vertices of T as follows:

• The type–1 vertex with stabilizer gHig
−1 is labeled by the coset gHi.

• The type–2 vertices are vertices labeled by group elements g ∈ H.

We write v(∗) for the vertex of T with label ∗. The vertex v(gHi) thus has valence
equal to |Hi| and is connected precisely to the vertices labeled by the elements of
the coset gHi. Correspondingly, the vertex v(g) has valence n and is connected
precisely to the vertices v(gH1), . . . ,v(gHn); see Figure 3 below.

Observe that the action of the free product H = H1 ∗ · · · ∗ Hn of the tree T
satisfies the Definition 2.2 of relative hyperbolicity. In particular, by Remark 2.3 it
is equivariantly quasi-isometric to the coned-off Cayley graph.
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Figure 3. A graph of groups decomposition forH = H1∗H2∗H3.
On the left, we see the star graph T0; on the right, the Bass–
Serre T associated to the free product. Each black type–1 vertex
corresponds to an element of the group with the identity element
v(1) labeled in the center. Each red (resp. blue, yellow) type–2
vertex corresponds to a coset of the form v(gH1) (resp. v(gH2),
v(gH3)).

5.1. Free products in mapping class groups. Now let us suppose that our
groups H1, . . . ,Hn are in fact infinite, reducible subgroups of the mapping class
group. That is, for each 1 ≤ i ≤ n we have an inclusion

Hi → Mod(S). By the universal property of the free product, these determine a
morphism

Φ: H → Mod(S)

whose image is the subgroup G = ⟨H1, . . . ,Hn⟩ ≤ Mod(S) they generate.
The homomorphism Φ induces an action of H on the set of curves, multicurves,

and subsurfaces of S; namely, if α is a (multi)curve or subsurface of S, then we write
g · α = Φ(g)α. Note that when restricted to C(S), this H–action is by isometries.
This action allows us to define an H–equivariant map

ϕ : T → C(S)
as follows: Send the type–1 vertex v(gHi) to the reducing system ∂Φ(gHig

−1) =
g · ∂Hi of the image of the corresponding stabilizer subgroup gHig

−1. Then fix a
curve ξ in C(S) to be the image v(1) and, by equivariance, define ϕ to send the
type–2 vertex v(g) to the curve g · ξ. Note that ϕ is only a coarse map since the
image of a type–1 vertex v(gHi) is an entire multicurve g ·∂Hi of diameter at most
1: this is necessary since the stabilizer gHig

−1 must fix the image but may permute
the components of g · ∂Hi.

Since T is H–equivariantly quasi-isometric to the coned-off Cayley graph of H,
in order to prove G = ⟨H1, . . . ,Hn⟩ is an RGF subgroup of Mod(S), it suffices to
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show G is isomorphic to H and that our map ϕ : T → C(S) is a quasi-isometric
embedding. We record this in the following lemma:

Lemma 5.1. Let H = {H1, . . . ,Hn} be a family of infinite reducible subgroups
Hi ≤ Mod(S). Let G = ⟨H1, . . . ,Hn⟩ ≤ Mod(S) be the subgroup they generate, T
the Bass–Serre tree for the abstract free product H = H1∗· · ·∗Hn, and ϕ : T → C(S)
the map defined above. If there exists a constant κ > 0 such that

dS(ϕ(v), ϕ(v
′)) ≥ 1

κdT (v, v
′)− κ

for all type–1 vertices v, v′ of T , then Φ: H → G is an isomorphism and G is re-
ducibly geometrically finite relative to the collection H. Furthermore, every element
of G which is not conjugate into some Hi is pseudo-Anosov.

Proof. The lemma is clear when n = 1, since then H = H1 = G is trivially RGF
relative to itself. So we assume n ≥ 2.

The map Φ is surjective by construction. To see it is injective, let h ∈ H be any
nontrivial element and consider its minset

A =

{
x ∈ T : dT (x, h · x) = inf

y∈T
dT (y, h · y)

}
.

There are two possibilities: either h acts elliptically and A consists of a single type–1
vertex (namely v(gHi) iff h ∈ gHig

−1), or else h acts loxodromically and A consists
of its bi-infinite translation axis. In either case, it is known that for every v ∈ T
the geodesic [v, h ·v] must pass through the minset A. Hence, by choosing a type–1
vertex v sufficiently far from A we may be assured that dT (v, h ·v) > κ(κ+1). The
hypothesis of the lemma then ensures

dS(ϕ(v),Φ(h)ϕ(v)) = dS(ϕ(v), ϕ(h · v)) ≥ 1
κdT (v, h · v)− κ > 1.

By construction ϕ(v) is a reducing multicurve (associated to some reducible sub-
group Φ(gHig

−1)) of diameter at most 1. Therefore the above inequality implies
Φ(h)ϕ(v) ̸= ϕ(v). In particular Φ(h) ̸= 1, proving that Φ is injective.

This proves G is a free product and so hyperbolic relative to the subgroups
H1, . . . ,Hn. By Remark 2.3, the Bass–Serre tree T is thus quasi-isometric to the

coned off Cayley Graph Γ̂ = Γ̂(G,H) defined in §2.2. Indeed, there is a bijection

between the vertices of Γ̂ and T that sends each coset vertex gHi of Γ̂ to the
corresponding type–1 vertex v(gHi) of T and each regular vertex g ∈ Γ to the
type–2 vertex v(g) of T . This map is bi-Lipschitz, since each edge of T maps to an

edge of Γ̂ and each edge of Γ̂ either maps to an edge of T (when it involves a coset
vertex) or an path of bounded length dT (v(1),v(x)) = dT (v(g),v(gx)) when it is
an edge (g, gx) of Γ labeled by an element x of the finite generating set of G.

To prove G is RGF it remains to show ϕ : T → C(S) is a quasi-isometric embed-
ding, which is easy: any adjacent vertices of T have the form v(gHi) and v(gh), for
some h ∈ Hi, and are mapped to the subsets g · ∂Hi and gh · ξ of C(S) at distance

dS (g · ∂Hi, gh · ξ) = dS(h
−1∂Hi, ξ) = dS(∂Hi, ξ).

Therefore ϕ is λ–Lipschitz for λ = maxj dS(∂Hj , ξ). Conversely, given any vertices
w1, w2 of T we may find type–1 vertices v1, v2 with dT (vi, wi) ≤ 1 and conclude

dS(ϕ(w1), ϕ(w2)) ≥ dS(ϕ(v1), ϕ(v2))− 2λ

≥ 1
κdT (v1, v2)− 2λ ≥ 1

κdT (w1, w2)− 2( 1κ + λ).
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Finally, if g ∈ G is not conjugate into some Hi, then Φ−1(g) ∈ H does not fix any
vertex of T and so acts as a loxodromic isometry. Thus dT ((Φ

−1(g))n · v, v) → ∞
for each type–1 vertex of T . Consequently dS(g

nϕ(v), ϕ(v)) → ∞ as well, which
means g is pseudo-Anosov. □

6. Displacing families and the proof of Theorem C

The following property will be key to quasi-isometrically embedding the coned
off Cayley graph for a family H of reducible subgroups.

Definition 6.1 (Displacing). A family H = {H1, . . . ,Hn} of reducible subgroups
is L–displacing if there are multicurves β1, . . . , βn such that for all i ̸= j ̸= k:

(1) Hj stabilizes βj , that is hβj = βj for all h ∈ Hj ;
(2) dS(βi, βj) ≥ 5; and
(3) for each nontrivial h ∈ Hj , there exists a subsurface Y with dS(∂Y, βj) ≤ 1

such that dY (βi, hβk) ≥ L.

Remark 6.2. Note that this definition allows for i = k.

As a concrete example to illustrate this property, suppose each Hi is generated
by a collection of fully supported mapping classes on disjoint subsurfaces as in
Example 3.7. If the translation length of each mapping class on its supporting
domain are uniformly bounded below by the L threshold (with negligible additive
constants), and the collection is at least 5–separated, then {Hi} is L–displacing. In
this case, we use βi = ∂Hi and for h ∈ Hj the Y subsurface can be taken as any of
the supporting domains for the mapping class in its normal form.

The significance of the L-displacing property is captured by the following theo-
rem, which is the main result of this section.

Theorem 6.3. If H = {H1, . . . ,Hn} is a (M + 4B)–displacing family of infinite
reducible subgroups (where M is from Theorem 2.5 and B from Theorem 2.6), then
G = ⟨H1, . . . ,Hn⟩ is isomorphic to H1 ∗· · ·∗Hn and is RGF relative to H. Further,
every element of G which is not conjugate into a factor Hi is pseudo-Anosov.

Proof. Let β1, . . . , βn be the multicurves promised in the Definition 6.1 of displac-
ing. Note that since Hi stabilizes βi we necessarily have βi ⊂ R(Hi) and thus
dS(βi, ∂Hi) ≤ 1. As in Section 5, let H = H1 ∗ · · · ∗Hn be the abstract free prod-
uct, T the Bass–Serre tree for H, and ϕ : T → C(S) the H–equivariant map. The
theorem will follow directly from Lemma 5.1 provided we can find a constant κ > 0
so that for all type–1 vertices v, v′ of T we have

(6.1) dS(ϕ(v), ϕ(v
′)) ≥ κdT (v, v

′)− κ.

a0

b0 = v(g0)

as−1 = v(gs−1Hi)

bs−1 = v(gs−1)

v(gs−1Hj) = as = v(gsHj)

bs = v(gs)

v(gsHk) = as+1 = v(gs+1Hk)

br−1 = v(gr−1)

ar

Figure 4. The notation for a path in the Bass–Serre tree from
the proof of Theorem 6.3.
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To that end, choose any type–1 vertices v, v′ ∈ T and consider the geo-
desic between them: If dT (v, v

′) = 2r this is an alternating sequence v =
a0, b0, a1, b1, . . . , br−1, ar = v′ of type–1 vertices as and type–2 vertices bs. For
0 ≤ s ≤ r, each type–1 vertex has the form as = v(gHi) for some g ∈ H and
1 ≤ i ≤ n; accordingly let us write β′

s = g · βi. Note this is well-defined since if
gHi = g′Hi then g−1g′ ∈ Hi stabilizes βi and so g · βi = g(g−1g′) · βi = g′ · βi. By
the definition of ϕ we also note that

(6.2) dS(β
′
s, ϕ(as)) = dS(g · βi, g · ∂Hi) ≤ 1.

Next, for each 0 ≤ s ≤ r−1 let gs ∈ H be the unique element so that bs = v(gs).
Then for any 0 < s < r, the type–1 vertices as−1, as, as+1 are labeled by cosets
containing the elements gs−1 or gs (see Figure 4); thus there are indices i ̸= j ̸= k
in {1, . . . , n} so that as−1 = v(gs−1Hi) and as = v(gs−1Hj) = v(gsHj) and as+1 =

v(gsHk). In particular, gs−1Hj = gsHj and thus g−1
s−1gs ∈ Hj . See Figure 4. Notice

that for each s < r, since as, as+1 are adjacent to bs = v(gs), there are indices i ̸= j
so that β′

s = gs · βi and β′
s+1 = gs · βj . Hence

(6.3) dS(β
′
s, β

′
s+1) = dS(gs · βi, gs · βj) ≥ 5

by the definition of displacing.
Since our family H is displacing, we are provided a subsurface Y with

dS(∂Y, βj) ≤ 1 so that for 0 < s < r, we have

(6.4) M+4B ≤ dY (βi, (g
−1
s−1gs) ·βk) = dgs−1·Y (gs−1 ·βi, gs ·βk) = dYs

(β′
s−1, β

′
s+1),

where here and henceforth we write Ys = gs−1 · Y . To round out the notation,
let Y0, Yr denote any annulus corresponding to a component of β′

0 and β′
r respec-

tively. In this way, we obtain a sequence of subsurfaces Y0, . . . , Yr and multicurves
β′
0, . . . , β

′
r with dS(∂Ys, β

′
s) ≤ 1 for each s. It now follows from Equation (6.3) that

dS(Ys, Ys+1) ≥ 3. Moreover, Equation (2.4) and Equation (6.4) imply

dYs
(Ys−1, Ys+1) ≥ dYs

(β′
s−1, β

′
s+1)− 4 ≥ M+ 3B.

Therefore the subsurfaces Y0, . . . , Yr satisfy Corollary 2.7 and we may conclude
dS(Y0, Yr) ≥ r and thus dS(β

′
0, β

′
r) ≥ r − 2. Therefore, applying Equation (6.2)

establishes the lower bound required in Equation (6.1):

dS(ϕ(v), ϕ(v
′)) = dS(ϕ(a0), ϕ(ar)) ≥ dS(β

′
0, β

′
r)− 2 ≥ r − 4 = 1

2dT (v, v
′)− 4. □

6.1. Passing to finite index. To apply Theorem 6.3, it is natural to look for
conditions that imply that a collection H of reducible subgroups is displacing, or
to have a ready source of examples. The following lemma is the key tool we will
use to construct such examples.

Lemma 6.4. Let G ≤ Mod(S) be an infinite reducible subgroup. For any L > 0 and
marking µ, there exists a finite-index subgroup G′ ≤ G such that for each nontrivial
g ∈ G′ there is a subsurface Y which is disjoint from ∂G′ = ∂G for which

dY (gµ, µ) ≥ L.

Proof. Let µ′ be a marking on S containing the reducing system ∂G. It follows from
the Distance Formula Theorem 2.11 (or, more accurately, the marking-complex
version [MM00, Theorem 6.12]) that there is a bound K (depending on µ and µ′)
so that dW (µ, ∂G) ≤ dW (µ, µ′) ≤ K for every subsurface W of S.

Fix a generating set X on Mod(S), and let D ≥ 1 be the quasi-isometry constant
associated to the threshold J = L+3K+J0 and marking µ in the Distance Formula
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Theorem 2.11. Since Mod(S) is residually finite [Gro75], there is a finite-index
subgroup Γ ≤ Mod(S) such that each nontrivial f ∈ Γ has word length |f |X ≥ 2D.

We claim that the finite-index subgroup G′ = Γ ∩ G satisfies the conclusion.
Indeed, if g ∈ G′ then |g|X > D and hence the distance formula implies there must
be some subsurface Y with dY (gµ, µ) ≥ J ≥ L + 3K (for else the right hand side
of the formula would be zero, and |g|X ≤ D). It must also be that Y is disjoint
from ∂G, since otherwise πY (∂G) ̸= ∅ and the triangle inequality would yield this
absurdity:

3K < dY (gµ, µ) ≤ dY (gµ, ∂G) + dY (∂G, µ)

= dY (gµ, g∂G) + dY (∂G, µ) (because ∂G is fixed by g ∈ G)

= dg−1Y (µ, ∂G) + dY (∂G, µ) ≤ 2K.

Finally, since G′ is finite-index in G, applying Remark 3.5 gives ∂G′ = ∂G. □

With this lemma in hand it is straight forward to prove the following proposition,
which says the L–displacing property can always be achieved by passing to finite
index subgroups, provided the original family is sufficiently separated:

Definition 6.5 (Separated). A family H = {G1, . . . , Gn} of infinite, reducible
subgroups Gi ≤ Mod(S) is D–separated if dS(∂Gi, ∂Gj) ≥ D for all i ̸= j.

Proposition 6.6. Let G = {G1, . . . , Gn} be a 5–separated family of infinite, re-
ducible subgroups Gi ≤ Mod(S). Then for any L > 0, there exist finite-index sub-
groups G′

i ≤ Gi so that for any further subgroups Hi ≤ G′
i which are still infinite,

the family H = {H1, . . . .Hn} is L–displacing.

Proof. For each 1 ≤ i ≤ n, let µi be a marking of S containing ∂Gi. Set µ = µ1.
By the marking complex version of the distance formula [MM00, Theorem 6.12],
there is a bound K ≥ 1 so that dW (ν, ν′) ≤ K for every subsurface W and all
ν, ν′ ∈ {µ = µ1, . . . , µn}.

For the given constant L > 0, apply Lemma 6.4 to each group Gi to obtain a
finite-index subgroup G′

i ≤ Gi so that for every g ∈ G′
i there is some subsurface Y

disjoint from ∂Gi so that dY (gµ, µ) ≥ L+ 5K.
We claim that for any infinite subgroups Hi ≤ G′

i, the family H = {H1, . . . ,Hn}
is L–displacing, as desired. Indeed, we use the multicurves βi = ∂Gi. Then the 5–
separation assumption on G gives dS(βi, βj) ≥ 5 for each i ̸= j, and the containment
Hi ≤ G′

i ≤ Gi ensures Hi stabilizes βi. For the final condition of Definition 6.1, fix
any indices i ̸= j ̸= k and nontrivial element h ∈ Hj . Since h ∈ Hj ≤ G′

j , there is a
subsurface Y disjoint from ∂Gj = βj so that dY (hµ, µ) ≥ L+5K by the preceding
paragraph. Since

dY (µ, µi) ≤ K and dY (hµ, hµk) = dh−1Y (µ, µk) ≤ K

by our choice of K, we have dY (µi, hµk) ≥ L+3K by the triangle inequality. Since
βl = ∂Gl is a subset of µl for 1 ≤ l ≤ n, we also have dY (βl, µl) ≤ dY (µl, µl) ≤ K
for l ∈ {i, k}. Thus we conclude the required condition for displacement:

dY (βi, hβk) ≥ dY (µi, hµk)− 2K ≥ L+K > L. □

Theorem C from the introduction is now an immediate consequence of Theo-
rem 6.3 (applied with constant L = M+ 4B) and Proposition 6.6.
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7. Right-angled Artin subgroups and the proof of Theorem A

We now turn to the task of constructing RGF right-angled Artin subgroups of
the mapping class group.

7.1. Right-angled Artin groups and normal form. Recall that a right-angled
Artin group is specified by a presentation graph Γ with vertices {xi}ni=1 and edges
E ⊂ {(xi, xj) | i ̸= j}, so that A(Γ) = ⟨x1, . . . , xn | [xi, xj ] if (xi, xj) ∈ E⟩. Each
subgraph Γ′ of Γ induces a subgroup A(Γ′) ≤ A(Γ). Neither Γ nor its subgraphs are
assumed to be connected. In fact, since we require RGF subgroups to be relatively
hyperbolic, we are solely interested in presentation graphs which decompose into
at least two components.

Suppose Γ decomposes into the disjoint union

Γ = Γ1 ⊔ · · · ⊔ Γm

of subgraphs for m ≥ 2. Then A(Γ) splits as the free product A(Γ1) ∗ · · · ∗A(Γm),
and is relatively hyperbolic with respect to its factors. Conversely, except for the
integers, any right-angled Artin group with connected presentation graph is not
relatively hyperbolic [BDM09, Proposition 1.3].

Let G be a finitely generated group with a prescribed ordered generating set
{x1, . . . , xk}.

We can decompose each element g of G as the concatenation of syllables of the
form xei

i . That is, we write
g = se11 · · · senn

where each sj is a generator xi for some i and ej ∈ Z. Such a spelling is reduced if
it satisfies the following conditions:

• Each ei ̸= 0; otherwise, remove the entire syllable s0j .

• Each sj ̸= sj+1; otherwise, replace s
ej
j s

ej+1

j+1 with s
ej+ej+1

j .
• If sj = xi and sj+1 = xl commute, then i < l; otherwise, re-order the
subword s

ej
j s

ej+1

j+1 to s
ej+1

j+1 s
ej
j .

It is a fact that when G = A(Γ) is a RAAG and the generators correspond to
the vertices of Γ, every element g of G has a unique reduced spelling which we call
the normal form of g [HM95] (see also [Cha07, CLM12]).

7.2. Reducibly geometrically finite RAAGs. As a quick application of Theo-
rem C, we explain how the technology of displacing families leads to a simple proof
the following slightly weaker version of Theorem A:

Theorem 7.1. Let {f1, . . . , fn} be mapping classes fully supported on subsurfaces
S1, . . . , Sn, respectively, with realization graph Γ. Suppose:

• Γ decomposes as the disjoint union Γ1 ⊔ · · · ⊔Γm of subgraphs, with m ≥ 2;
• the subgroup Gk of Mod(S) generated by the elements fi supported on the
vertices of Γk is reducible for all k = 1, . . . ,m; and

• dS(∂Gℓ, ∂Gj) ≥ 5.

Define a map Ψ: A(Γ) → Mod(S) by Ψ(xi) = fNki
i for some N, ki ∈ Z̸=0. Then

there exists an N > 0 such that the subgroup ⟨fNk1
1 , . . . , fNkn

n ⟩ is isomorphic to
Ψ(A(Γ1)) ∗ · · · ∗Ψ(A(Γm)) and RGF relative to {Ψ(A(Γ1)), . . . ,Ψ(A(Γm))}.

Proof. The family G = {G1, . . . , Gm} of reducible subgroups is by assumption 5–
separated. Thus we may apply Theorem C and let G′

j ≤ Gj be the resulting
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finite-index subgroups. For each generator fi ∈ Gj , there is a power Ni such that

fNi
i ∈ G′

j . Let N = N1 · · ·Nn be the product. Then fNk
i ∈ G′

j for all k ∈ Z; hence
the subgroup Hj = Ψ(A(Γj)) is an infinite subgroup of G′

j . It now follows from
Theorem C that ⟨H1, . . . Hm⟩ ∼= H1 ∗ · · · ∗Hm is reducibly geometrically finite. □

The above theorem is nearly identical to Theorem A but weaker in two key
ways. Firstly Theorem A loosens the 5–separation hypothesis dS(∂Gℓ, ∂Gj) ≥ 5 on
the subgroups to a mere 3–separation property dS(Si, Sj) ≥ 3 on the supports of
generators from distinct subgraphs (note that this is strictly weaker, since if Si is
the support of a vertex generator of Γj , then Si and ∂Gj are necessarily disjoint).
Secondly, Theorem A strengthens the conclusion by applying to any large powers
fpi

i of the generators, rather than simply those fNki
i that are multiples of some

large integer N .

Proof of Theorem A. We recall the setup of the theorem statement. Let
f1, . . . , fn ∈ Mod(S) be mapping classes fully supported on an admissible collec-
tion of subsurfaces S1, . . . , Sn. Let Γ := Γ(S1, . . . , Sn) be the associated realization
graph and suppose it decomposes as a disjoint union Γ = Γ1 ⊔ · · · ⊔ Γm of sub-
graphs Γj whose vertices generate reducible subgroups Gj ≤ Mod(S) and such that
dS(Si, Sk) ≥ 3 whenever vertices fi, fk lie in distinct subgraphs.

Since fi is fully supported on Si, it is pure and Si is its only domain. Hence
Corollary 2.10 implies dSi

(fn
i γ, γ) ≥ c |n| for any curve γ with nontrivial projection

to Si. Let D = maxi,j,k{dSj
(Si, Sk)}. We will show that N = (B + 6M + D)/c

satisfies the conclusion of the theorem. To see this, fix any tuple (p1, . . . , pn) with
|pi| ≥ N for each i. Let A(Γ) be the abstract RAAG on the graph Γ, with gen-
erators x1, . . . , xn corresponding to the vertices of Γ. Let Ψ: A(Γ) → Mod(S) the
homomorphism sending xi to fpi

i and set Hj = Ψ(A(Γj)) for j = 1, . . . ,m. We wish
to verify that the group Ψ(A(Γ)) = ⟨fp1

1 , . . . , fpn
n ⟩ is isomorphic to H1 ∗ · · · ∗ Hm

and RGF with respect to the family {H1, . . . ,Hm}.
We again use the setup of Section 5 and deduce the result from Lemma 5.1:

Let T be the Bass–Serre tree for the abstract free product H = H1 ∗ · · · ∗ Hm

and ϕ : T → C(S) the map constructed Section 5.1. Now, fix type–1 vertices
v, v′ ∈ T . If dT (v, v

′) = 2r, then the T–geodesic joining them has the form
v = a0, b0, a1, . . . , br−1, ar = v′ where each bs = v(ws) is the type–2 vertex labeled
by some element ws ∈ H. Since as is adjacent to bs and bs−1, we additionally have
as = v(ws−1HI(s)) = v(wsHI(s)) for some index I(s) ∈ {1, . . . ,m}. In particular,

we have hs = w−1
s−1ws ∈ HI(s) for 0 < s < r. Therefore w−1

0 wr−1 = h1h2 · · ·hr−1 is

evidently the unique geodesic spelling of the element w−1
0 wr−1 ∈ H1 ∗ · · · ∗Hm as

a product of elements of the factors Hj . Thus wr−1 = w0h1 · · ·hr−1.
Since hs ∈ HI(s) = Ψ(A(ΓI(s))), we may write hs = Ψ(h′

s) for some element
h′
s ∈ A(ΓI(s)). Let us write h′

s = ys,1 · · · ys,ks
in normal form for A(ΓI(s)), where

each ys,i equals x
e for some vertex generator x ∈ ΓI(s) and nonzero power e ∈ Z, and

where the generators associated to adjacent letters ys,i and ys,i+1 are distinct with
the lower-indexed generator coming first in the case they commute. We concatenate
these words and re-index

g′1 · · · g′ℓ = (y1,1 · · · y1,k1) (y2,1 · · · y2,k2) · · ·
(
yr−1,1 · · · yr−1,kr−1

)
to get a normal-form word in A(Γ) of length ℓ = k1+· · ·+kr−1. Taking the image

now expresses h1 · · ·hr−1 = Ψ(g′1 . . . g
′
ℓ) = g1 · · · gℓ as a product of elements gt =
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Ψ(g′t), each of which has the form gt = fet
ν(t) for some index ν(t) ∈ {1, . . . , n} and

exponent satisfying |et| =
∣∣ktpν(t)∣∣ ≥ N . For 0 < s < r, let σ(s) = k1+· · ·+ks−1+1

be the index of the first letter of the subword hs = Ψ(h′
s) in the above spelling

h1 · · ·hr−1 = g1 · · · gℓ; so that gσ(s) = Ψ(ys,1).
We now define a list Y1, . . . , Yℓ of subsurfaces by declaring Yt = w0g1 · · · gt ·Sν(t),

where Sν(t) is the support of the pure element gt = fet
ν(t). Since gt preserves Sν(t),

we additionally note that Yt = w0g1 · · · gt−1 · Sν(t) and that this translated surface

Yt is the support of the conjugate βt = (w0g1 · · · gt−1)gt(w0g1 · · · gt−1)
−1. Note also

that these conjugates satisfy

βt · · ·β1w0 = w0g1 · · · gt for all 0 < t ≤ ℓ.

To round out notation, let us also set Y0 = w0 · Sν(0) and Yℓ+1 = w0g1 · · · gℓ ·
Sν(ℓ+1), where ν(0), ν(ℓ + 1) ∈ {1, . . . , n} are any indices so that the subsurfaces
Sν(0), Sν(ℓ+1) lie in the respective subgraphs ΓI(0) and ΓI(r) of Γ. In particu-
lar, since fν(0) ∈ HI(0) preserves ∂HI(0) and is fully supported on Sν(0), the
multicurves ∂Sν(0) and ∂HI(0) are disjoint. Similarly ∂Sν(ℓ+1) and ∂HI(r) are
disjoint. Recalling that v = a0 = v(w0HI(0)) and v′ = ar = v(wr−1HI(r))
where wr−1 = w0h1 · · ·hr−1 = w0g1 · · · gℓ, it follows that ∂Y0 is disjoint from
w0 · ∂HI(0) = ϕ(v) and that ∂Yν(ℓ+1) is disjoint from wr−1 · ∂HI(r)) = ϕ(v′). We
also note that

dS(Y0, Y1) = dS(w0 · Sν(0), w0 · Sν(1)) = dS(Sν(0), Sν(1)) ≤ D and

dS(Yℓ, Yℓ+1) = dS(w0g1 · · · gℓ · Sν(ℓ), w0g1 · · · gℓ · Sν(ℓ+1)) = dS(Sν(ℓ), Sν(ℓ+1)) ≤ D.

Therefore, by the triangle inequality, we have

(7.1) dS(ϕ(v), ϕ(v
′)) ≥ dS(Y0, Yℓ+1)− 2 ≥ dS(Y1, Yℓ)− 2− 2D.

It hence suffices to give a lower bound on dS(Y1, Yℓ). We will accomplish this by
applying Corollary 2.8 to the sequence Y1, . . . , Yℓ and and Corollary 2.7 to the
subsequence Yσ(1), . . . , Yσ(r−1). To enable this, we first establish some facts:

Claim 7.2. Fix 1 ≤ j ≤ ℓ. If ι(j) < t < τ(j) then:

• gj and gt commute and lie in a common subword hs of h1 · · ·hr−1; that is
σ(s) ≤ j, t < σ(s+ 1) for some 0 < s < r.

• βt fixes Yj and, if t ̸= j, then Yt is disjoint from Yj and βt does not change
projections to Yj, in that πYj

(βtγ) = πYj
(γ) for every multicurve γ on S.

Proof. We only consider the case j ≤ t < τ(j), with the alternative ι(j) < t ≤ j
being symmetric. We proceed by inducting on t, with the base case t = j being
trivial. So, suppose j < t < τ(j) and that the claim holds for all j ≤ t′ < t.
Recall that Yt = βt−1 · · ·β1w0 · Sν(t). The induction hypothesis also implies Yj =
βt−1 · · ·βj · Yj = βt−1 · · ·β1w0 · Sν(j). Therefore the fact that Yj and Yt do not
overlap implies Sν(j) and Sν(t) do not overlap.

By induction we know the letters gj , . . . , gt−1 lie in a common subword hs. It
follows that gt must also lie in this subword, since all letters in the next subword
hs+1 ∈ HI(s+1) are images of generators from a distinct subgraphs ΓI(s+1) ̸= ΓI(s)

and hence are supported on surfaces that overlap Sν(j). Additionally, our admissi-
bility hypothesis ensures distinct surfaces in the family {S1, . . . , Sn} are not nested.
Therefore, since they do not overlap, Sν(j) and Sν(t) must either be disjoint or
equal. But if they are equal, then gj and gt are both powers of the same generator
fν(j) = fν(t) and hence gt also commutes with the letters gj , . . . , gt−1. This violates
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our normal form assumption on the word h′
s ∈ A(ΓI(s)) wherein commuting letters

must appear in order of increasing index. Therefore Sν(j) and Sν(t) are disjoint. It
now follows that gj and gt commute and that Yt is disjoint from Yj . Moreover, since
βt is fully supported on Yt and Yj is not the annulus about a boundary component
of Yt, it follows that βt preserves Yj and does not change projections to Yj . ♢

Claim 7.3. The sequence Y1, . . . Yℓ satisfies the hypothesis of Corollary 2.8.

Proof. Fix some index 1 < j < ℓ so that ι(j) and τ(j) both exist. To ease notation,
set β = βj−1 · · ·β1w0. Then we may write

Yj = β · Sν(j), Yι(j) = (β−1
ι(j)+1 · · ·β

−1
j−1)β · Sν(ι(j)),

and Yτ(j) = (βτ(j)−1 · · ·βj+1)βjβ · Sν(τ(j)).

By Claim 7.2, none of the elements βι(j)+1, . . . , βj−1, βj+1, . . . , βτ(j)−1 change pro-

jections to Yj . Therefore the prefixes (β−1
ι(j)+1 · · ·β

−1
j−1) and (βτ(j)−1 · · ·βj+1) above

do not effect projections and we find that

dYj
(Yι(j), Yτ(j)) = dβ·Sν(j)

(β · Sν(ι(j)), βjβ · Sν(τ(j))) = dSν(j)
(Sν(ι(j)), gj · Sν(τ(j)))

where here have used the observation β−1βjβ = gj . By hypothesis, we have gj =
fet
ν(j) where |et| ≥ N = (B+6M+D)/c and dSν(j)

(Sν(ι(j)), Sν(τ(j))) ≤ D. Therefore,

since fν(j) is fully supported on Sν(j), by Corollary 2.10 we conclude

dYj
(Yι(j), Yτ(j)) ≥ dSν(j)

(Sν(τ(j)), f
et
ν(j)Sν(τ(j)))−D ≥ Nc−D = B+ 6M. ♢

Claim 7.4. For each s we have dS(Yσ(s−1), Yσ(s)) ≥ 3 and thus Yσ(s−1) ⋔ Yσ(s).

Proof. Starting with a1 = σ(s − 1), build a sequence a1, a2, . . . by recursively
setting ai+1 = τ(ai). This must eventually yield ak+1 = τ(ak) = σ(s) for some
k, since otherwise we have ak < σ(s) < τ(ak) which, by Claim 7.2 would imply
gak

and gσ(s) lie in the same subword of h1 · · ·hr−1, violating the fact that gσ(s)
is the first letter in the subword hs. Thus Claim 7.2 now tells us the elements
βak+1

, . . . , βσ(s)−1 preserve the surface Yak
and that Sν(ak) and Sν(σ(s)) lie in distinct

subgraphs ΓI(s−1) ̸= ΓI(s). Therefore Yak
= βσ(s)−1 · · ·βak+1

· Yak
and we have

dS(Yak
, Yσ(s)) = dS(βσ(s)−1 · · ·β1w0 · Sν(ak), βσ(s)−1 · · ·β1w0 · Sσ(s))

= dS(Sν(ak), Sν(σ(s))) ≥ 3

by our assumption on the family {S1, . . . , Sn} and subgraphs Γ1, . . . ,Γm.
Now, by construction the subsequence σ(s − 1) = a1, . . . , ak+1 = σ(s) satisfies

Yai
⋔ Yai+1

for each i. Since Y1, . . . , Yℓ satisfies the hypothesis of Corollary 2.8 by
Claim 7.3, we may apply Corollary 2.7 to the subsequence and conclude that

dS(Yσ(s−1), Yσ(s)) = dS(Ya1
, Yak+1

) ≥ dS(Yak
, Yak+1

) ≥ 3. ♢

With these claims in hand, it is now trivial to complete the proof of the theo-
rem. By Claim 7.3 and Claim 7.4 we may apply Corollary 2.8 to the sequence
Y1, . . . , Yℓ to conclude the subsequence Yσ(1), Yσ(2), . . . , Yσ(r−1) satisfies the hy-
pothesis of Corollary 2.7. Therefore, since dS(Yσ(s−1), Yσ(s)) ≥ 3 for each s, we
have dS(Yσ(1), Yσ(r−2)) ≥ r − 2. Notice that Y1 = Yσ(1). If Yσ(r−1) ⋔ Yℓ, we
may also apply Corollary 2.7 to Yσ(1), . . . , Yσ(r−1), Yℓ to conclude dS(Y1, Yℓ) ≥
dS(Yσ(1), Yσ(r−1)) ≥ r− 2. Otherwise dS(Yσ(r−1), Yℓ) ≤ 1 and we have dS(Y1, Yℓ) ≥
r − 3. In either case, together with (7.1), this gives the following bound needed to
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apply Lemma 5.1:

dS(ϕ(v), ϕ(v
′)) ≥ r − 3− 2− 2D =

1

2
dT (v, v

′)− 5− 2D. □

8. Separability, misalignment and the proof of Theorem B

Now, we’ll start with a family H = {H1, . . . ,Hn} of infinite, torsion-free, re-
ducible subgroups Hi ≤ Mod(S) in aims of proving Theorem B. We’ll address the
necessity of the added torsion-free assumption in Example 9.4, but the theorem
has two special hypotheses on the family. The first is that the collection is D–
separated (Definition 6.5) meaning dS(∂Hi, ∂Hj) ≥ D for all distinct i, j. The
second condition is the following:

Definition 8.1. (Misalignment) A collection H = {H1, . . . ,Hn} of infinite re-
ducible subgroups Hi ≤ Mod(S) is A–misaligned if their C(S) Gromov products
satisfy

(∂Hi | ∂Hj)∂Hk
≥ A for all distinct indices i, j, k.

Remark 8.2. Note that the Gromov product here is by definition

(∂Hi | ∂Hj)∂Hk
:=

1

2
(dS(∂Hk, ∂Hi) + dS(∂Hj , ∂Hk)− dS(∂Hi, ∂Hj)) ,

where each distance is the diameter of the union of the two sets. Since each mul-
ticurve ∂Hi is a diameter at most 1 subset of C(S), this quantity lies within 2 of
(αi | αj)αk

for any particular choice of elements αi, αj , αk of these multicurves.

Our proof of Theorem B will roughly follow the argument of Loa [Loa21, Theorem
1.1], with adaptations to handle the more general aspects of our setup, namely
arbitrary reducible subgroups and a larger number of them. The first step is to
show that each element of a reducible group H moves curves in C(S) a definite
fraction of their distance to ∂H. This mirrors Lemma 3.1 of Loa’s argument, but
because our reducible groupH need not be a multitwist group, we use Corollary 2.10
instead of a computation in the curve graph of an annulus.

Lemma 8.3. There is a constant K ≥ 1, depending only on S, with the following
property: Let H ≤ Mod(S) be a reducible subgroup and g ∈ H an infinite order
element. Then every multicurve α on S satisfies

dS(α, gα) ≥
dS(α, ∂H)− 3

K
.

Proof. As noted in Section 2.5, there is a uniform power N ≥ 1, depending only
on S, so that gN is pure, that is, in normal form. Since g has infinite order, gN is
also nontrivial. Let Y be any domain of gN . By Corollary 2.10 there is a uniform
constant c > 0, depending only on S, such that

(8.1) dY (β, (g
N )mβ) ≥ mc

for every m ≥ 1 and every curve β that projects to Y . In particular, ∂Y must lie
in the reducing system ∂H ′ for the infinite cyclic reducible group H ′ = ⟨gN ⟩ ≤ H,
since ∂Y is invariant under gN and all curves cutting ∂Y evidently have infinite
H ′–orbit. Since the components of ∂H clearly have finite H ′–orbit and so lie in
R(H ′), we conclude that dS(∂Y, ∂H) ≤ 1 by definition of ∂H ′.

Now consider any multicurve α. If dS(α, ∂H) ≤ 3 the claim is trivially true.
So we suppose dS(α, ∂Y ) ≥ 4 which implies that each component of α intersects
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∂Y and so projects to Y . Choose m so that mc − 2 > M, the constant from the
Bounded Geodesic Image Theorem (Theorem 2.5).

Next let β ∈ α and β′ ∈ gmNα realize the diameter dS(α, g
mNα). Note that

dY (β
′, gmNβ) ≤ 2 by (2.4) since these curves are disjoint. Hence by (8.1) we get

dY (β, β
′) ≥ dY (β, g

mNβ)− 2 ≥ mc− 2 > M.

The contrapositive of Theorem 2.5 now implies that any geodesic [β, β′] ⊂ C(S)
contains a point γ with empty projection to Y . In particular, γ is disjoint from ∂Y
which is in turn disjoint from ∂H, so wet get dS(γ, ∂H) ≤ 2. Consequently,

dS(α, ∂H) ≤ dS(β, ∂H) + 1 ≤ dS(β, γ) + 3.

Similarly, since gmN fixes ∂H by definition, we find that

dS(α, ∂H) = dS(g
mNα, ∂H) ≤ dS(β

′, ∂H) + 1 ≤ dS(β
′, γ) + 3.

Combining these, and using the fact that γ ∈ [β, β′] we now conclude that

dS(α, g
mNα) = dS(β, β

′) = dS(β, γ) + dS(γ, β
′) ≥ 2(dS(α, ∂H)− 3).

On the other hand, {α, gα, . . . , gmNα} gives path from α to gmNα with mN
segments of equal length dS(α, gα). Hence by the triangle inequality we conclude

2(dS(α, ∂H)− 3) ≤ dS(α, g
mNα) ≤ mNdS(α, gα),

which proves the lemma with constant K = mN
2 , depending only on S. □

The next step is to use hyperbolicity of C(S) to achieve an upper bound for the
Gromov product of α and gα with respect to ∂H (compare [Loa21, Lemma 3.2]).

Lemma 8.4. There is a constant K ′ > 0 satisfying the following: Let g be an
infinite order element of a reducible subgroup H ≤ Mod(S). Then every multicurve
α satisfies (α | gα)∂H ≤ K ′.

Proof. Let δ be the hyperbolicity constant of C(S). Fix a component γ of ∂H and
any component α0 of α. Since g preserves ∂H, which is a multicurve, we have
dS(γ, gγ) ≤ 1. Fix a geodesic [γ, α0] from γ to α0. The image g[γ, α0] gives a
geodesic from gγ to gα0 which we denote [gγ, gα0]. We also fix a geodesic [α0, gα0],
giving us a geodesic triangle in C(S) with vertices α0, γ, gα0.

By the inner triangle formulation of hyperbolicity, there exist points z ∈
[α0, gα0], x ∈ [γ, α0], and y ∈ [γ, gα0], as illustrated in Figure 5, whose pair-
wise distances are at most 4δ. Let y′ be the closest point projection of gx
onto the geodesic [γ, gα0]. By the thin triangles definition of hyperbolicity, since
d(γ, gγ) ≤ 1, we must have d(gx, y′) ≤ 4δ + 1. By definition of inner triangle (see
Section 2.1), we have dS(gx, gγ) = dS(x, γ) = dS(y, γ). Since dS(γ, gγ) ≤ 1, it
follows that |dS(gx, γ)− dS(y, γ)| ≤ 1. The bound dS(gx, y

′) ≤ 4δ + 1 thus im-
plies |dS(y′, γ)− dS(y, γ))| ≤ 4δ + 2. But since y, y′ both lie on a geodesic [γ, gα0]
starting at γ, this implies dS(y, y

′) ≤ 4δ + 2. The triangle inequality now implies
d(x, gx) ≤ 12δ + 3.

Applying Lemma 8.3 to the curve x, we now find that

dS(x, ∂H)− 3

K
≤ dS(x, gx) ≤ 12δ + 3.

Therefore dS(x, γ) ≤ dS(x, ∂H) ≤ (12δ+3)K+3. Hence by the triangle inequality
dS(γ, z) ≤ 4δ + (12δ + 3)K + 3. Finally, by (2.3) and Remark 8.2 we conclude

(α | gα)∂H ≤ (α0 | gα0)γ + 2 ≤ dS(γ, z) + 2 ≤ 4δ + (12δ + 3)K + 5. □
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α0

γ gγ

gxx

y

z

gα0

y′

≤ 1

Figure 5. The arrangement of curves in C(S) for Lemma 8.4.

With these lemmas in hand, we are now prepared for the proof of Theorem B
from the introduction. Our goal is to show there are universal constants D,A
such that whenever the reducible subgroups {H1, . . . ,Hn} are D–separated and
A–misaligned, the subgroup they generate is reducibly geometrically finite and is
isomorphic to the free product H1 ∗ · · · ∗Hn.

Proof of Theorem B. Let K ′ be the constant from Lemma 8.4. Let A := K ′+5+ δ
and D := 3K ′ + 9 + 17δ. Consider any D–separated and A–misaligned collection
H = {H1, . . . ,Hn} of infinite, torsion-free, reducible subgroupsHi ≤ Mod(S). As in
Section 5, let T be the Bass–Serre tree for the abstract free productH = H1∗· · ·∗Hn

and ϕ : T → C(S) the equivariant map with respect to the action of H on C(S)
induced by Φ: H → G = ⟨H1, . . . ,Hn⟩ ≤ Mod(S). To prove the theorem, it
suffices to establish the lower bound required by Lemma 5.1. For this, we will use
the local-to-global principle (Lemma 2.1).

So, consider any type–1 vertices v, v′ ∈ T and let v = a0, a2, . . . , ar = v′ be the
sequence of type–1 vertices along the geodesic [v, v′] in T . For each 0 ≤ s ≤ r, choose
βs to be any component of the multicurve ϕ(as). As in the proof of Theorem 6.3,
each consecutive triple has the form as−1 = v(gHi), as = v(gHj) = v(g′Hj), and
as+1 = v(g′Hk) for some i ̸= j ̸= k and g, g′ ∈ H with h = g−1g′ ∈ Hj . Thus by
definition ϕ(as−1) = g ·∂Hi, ϕ(as) = g ·∂Hj , and ϕ(as+1) = g′ ·∂Hk. In particular,
there are unique components αi ∈ ∂Hi, αj ∈ ∂Hj and αk ∈ ∂Hk so that

βs−1 = g · αi, βs = g · αj , and βs+1 = g′ · αk = gh · αk.

Therefore we see that

(βs−1 | βs+1)βs = (g · αi | gh · αk)g·αj = (αi | h · αk)αj

where h ∈ Hj . Then by the definition of δ–hyperbolicity (2.2), Remark 8.2, and
Lemma 8.4, we observe:

min
{
(αi | h · αk)αj , (h · αk | h · αi)αj

}
− δ − 2 ≤ (αi | h · αi)αj − 2

≤ (αi | h · αi)∂Hj
≤ K ′.

Because h ∈ Hj acts isometrically on C(S) with h · ∂Hj = ∂Hj , we also know that

(h · αi | h · αk)αj
+ 2 ≥ (h · ∂Hi | h · ∂Hk)h·∂Hj

= (∂Hi | ∂Hk)∂Hj
.

If i ̸= k, this rightmost quantity is at least A by misalignment, and if i = k it is

(∂Hi | ∂Hi)∂Hj
≥ dS(∂Hi, ∂Hj)− 1 ≥ D − 1
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by separation. In either case, since min{A,D − 1} − 2 > K ′ + 2+ δ, the minimum
above must be achieved by (αi | h · αk)αj , and we conclude

(βs−1 | βs+1)βs
= (αi | h · αk)αj

≤ K ′ + 2 + δ.

By D–separation we also have

dS(βs−1, βs) ≥ dS(g · ∂Hi, g · ∂Hj)− 2 ≥ D − 2 > 3(K ′ + 2 + δ) + 14δ.

Hence we may apply Lemma 2.1 to the sequence β0, . . . , βr to conclude

dS(ϕ(v), ϕ(v
′)) ≥ dS(β0, βr) ≥

1

2

r∑
s=1

dS(βs−1, βs) ≥
D − 2

2
r =

D − 2

4
dT (v, v

′).

The conclusion of the theorem therefore follows from Lemma 5.1. □

9. Examples

In this section, we’ll include examples of collections of reducible subgroups which
satisfy some or all of the separating and misaligned conditions in our results. Propo-
sition 9.1 verifies that our results are not vacuous, while Examples 9.2, 9.3, 9.4
confirm that our assumptions are necessary for the conclusions of Theorem B and
Theorem C. It may be helpful for the reader to consider groups generated by a
collection of mapping classes fully supported on a collection of subsurfaces, as in
Example 3.7 or the setup of Clay-Leininger-Mangahas [CLM12]. Our Theorem C
additionally allows for torsion elements.

9.1. Examples which satisfy the hypotheses of Theorem B. As C(S) is
infinite-diameter, for each D > 0, one can construct collections of reducible sub-
groups which are D–separated with ease. For example, consider a collection of
curves α1, . . . , αk with max dS(αi, αj) > D + 2. It follows that for any infinite
Hi ≤ stab(αi), the collection {H1, . . . Hk} is D–separated. We’ll upgrade this setup
to produce a large collection of examples which are also arbitrarily misaligned.

Proposition 9.1. Let D′ > 8 and set D = D′ − 8. Suppose α is a multicurve and
Y an essential subsurface with dS(∂Y, α) = D′. Let g ∈ Mod(Y ) be fully supported
and for each k ∈ Z, consider the multicurve αk = gk · α. Then there is a uniform
N so that for any choice of infinite, nontrivial subgroups HkN ≤ stab(αkN ), the
following collection (hence, any subcollection) is D–separated and D–misaligned:

{. . . , H−3N , H−2N , H−N , H0, HN , H2N , . . .}

∂Y

∂H0

∂HN

∂H2N

∂H−N

∂H−2N

Figure 6. The convex-hull of the boundaries of the D–
separating, D–misaligned collection {HkN}k∈Z in C(S).
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Proof. Since dS(α, ∂Y ) > 2, we have that πY (g
kα) ̸= ∅ for all k. Fixing a

component α0 ∈ α, choose N (using Corollary 2.10) such that for all |n| ≥ N ,
we have dY (α0, g

nα0) > M. Applying the converse of Theorem 2.5 to α0

and gkNα0 for all k ∈ Z, we have that there exists a vertex γ on a geodesic
[α0, g

kN · α0] with dS(γ, ∂Y ) ≤ 1. It follows that D′ + 1 is an upper bound for
both dS(α0, γ), dS(γ, g

kNα0) and D′ − 2 is a lower bound for both dS(α0, γ) and
dS(γ, g

kN · α0). So

2D′ − 4 ≤ dS(α0, g
kN · α0) ≤ 2D′ + 2

Since gkα0 ∈ R(Hk) for all k, we have dS(g
kNα0, ∂HkN ) ≤ 1, hence

2D′ − 6 ≤ dS(α0, g
(j−i)Nα0)− 2 ≤ dS(∂HiN , ∂HjN ).

It follows that the collection {∂HkN}k∈Z is D–separated, and a straight-forward
calculation shows that it is also D–misaligned: For i, j, k pairwise distinct,

(∂HiN | ∂HjN )∂HkN
≥ 1

2

(
(2D′ − 6) + (2D′ − 6)− (2D′ + 4)

)
≥ D′ − 8 = D. □

9.2. The separating assumption for Theorem B. First we observe that D–
separating is necessary for Theorem B. Consider curves α, β with dS(α, β) = 2
and large enough geometric intersection number that the group generated by the
respective Dehn twists ⟨Tα, Tβ⟩ is a free group. The element TαTβ is infinite order
and is not conjugate into either factor, yet its orbits in C(S) are bounded. Thus

the coned-off Cayley graph Γ̂(⟨Tα, Tβ⟩, {⟨Tα⟩, ⟨Tβ⟩}) does not Mod(S)–equivariantly
quasi-isometrically embed into C(S) and ⟨Tα, Tβ⟩ is not RGF.

We use the following notation in the next two examples, which demonstrate
that while the D–separating condition is necessary, it alone is insufficient for the
conclusions of Theorem B. Fix D ≥ 8 and let M be the constant from Theorem 2.5.
Let Hα, Hβ and Hγ denote arbitrary infinite subgroups of the subgroup of Mod(S)
generated by the Dehn twists about the components of α, β, and γ respectively.
Recall from Lemma 3.8 that Hα, Hβ , and Hγ are multitwist groups and are free
abelian. For a given element T ∈ Hα, let

G := ⟨Hα, Hβ , THγT
−1⟩ and H := {Hα, Hβ , THγT

−1}.
Observe that α (resp. β, Tγ) is disjoint from ∂Hα (resp. ∂Hβ , ∂(THγT

−1)). We
will use αi, βj , γk to denote arbitrary components of α, β, and γ, respectively, and
Yi to denote the annulus about the component αi of α.

Example 9.2. We show that the multicurves α, β, γ and T may be chosen so that
H is D–separated, but does not generate a free product of Hα ∗Hβ ∗ THγT

−1.
Assume γ = β and dS(α, β) ≥ D. By raising to sufficiently high powers we may,

using Corollary 2.10, assume the element T ∈ Hα satisfies dYi
(βj , Tβj) ≥ M for

some domain Yi of T , as defined in Section 2.5. Now, since ∂Yi = αi and Tαi = αi,
we can apply the converse of Theorem 2.5 to the geodesic [βj , Tβj ] to see that

dS(∂Hβ , T∂Hβ)) ≥ dS(βj , Tβj)− 2 ≥ d(βj , αi) + d(αi, Tβj)− 4 ≥ 2D − 8 ≥ D.

Then since dS(∂Hα, ∂Hβ) = dS(α, β) ≥ D, the collection H is D–separated. How-
ever, G = ⟨Hα, Hβ⟩, and thus is not isomorphic to Hα ∗ Hβ ∗ THβT

−1 as in the
conclusions of Theorem B. We note also that the collection is only 1–misaligned.
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We note that this does not rule out that that G is RGF relative toH—in fact, the
group is RGF relative to a different collection, {Hα, Hβ}. However, this conclusion
does not hold in general, as demonstrated in the next example.

Example 9.3. Here we demonstrate that α, β, γ and T may be chosen so that H
is D–separated, but Γ̂(G,H) fails to admit a Mod(S)–equivariant quasi-isometric
embedding into C(S).

Now assume β and γ intersect but do not fill S, and α satisfies
dS(α, β), dS(α, γ) ≥ D. Then there are components αi, βj , γk such that πYi

(γk) ̸= ∅
and πYi(βj) ̸= ∅. Again using Corollary 2.10, we may assume T ∈ Hα is such that
dYi(βj , Tβj) ≥ M+ dYi(βj , γk), thus

dYi
(βj , Tγk) ≥dYi

(βj , Tβj)− dYi
(Tβj , Tγk)

=dYi
(βj , Tβj)− dYi

(βj , γk) ≥ M.

We now apply the converse of Theorem 2.5 to conclude

dS(∂Hβ , T∂Hγ) ≥ dS(βj , Tγk)− 2 ≥ dS(βj , αi) + dS(αi, γk)− 4 ≥ 2D − 6 ≥ D.

Thus, the collection H is D–separated.
Now, for any nontrivial h ∈ Hβ and g ∈ Hγ , the element hg ∈ G is an infinite

order reducible element. However, hg = hT−1g′T , where g′ ∈ THγT
−1 and T ∈

Hα, is not conjugate into any group in H and thus acts loxodromically on Γ̂(G,H).

Hence Γ̂(G,H) admits no Mod(S)–equivariant quasi-isometric embedding into the
curve complex, and G is not RGF relative to H.

9.3. The torsion-free assumption for Theorem B. Here we’ll demonstrate
the necessity of the the torsion-free assumption in Theorem B by producing an
D–separated collection {H1, H2} with H1, H2 containing torsion, but the group
⟨H1, H2⟩ does not split as the free product of the factors.

Example 9.4. Assume there exists an element σ ∈ Mod(S) of order k which
fixes a multicurve α, and that f is a pseudo-Anosov which commutes with σ. For
instance, σ could represent an order–2 homemorphism fixing a multicurve α such
that the quotient S/⟨σ⟩ is a 2–orbifold which admits a pseudo-Anosov element f̄ .
The homeomorphism f̄ lifts to a pseudo-Anosov f on S which commutes with σ.

Now, let T = Tα denote the composition of Dehn twists along each component
of α and observe that σ commutes with T . Let H1 = ⟨σ, T ⟩ and H2 = f ℓH1f

−ℓ

for ℓ large. Note that H1 and H2 are both reducible and isomorphic to Z×Zk. See
that ∂H1 = α and ∂H2 = f ℓα, so for any D > 0 we can choose ℓ large enough so
that {H1, H2} is D–separated. However, σ ∈ H2 as well since it commutes with f ,
hence ⟨H1, H2⟩ ∼= (Z ∗ Z)× Zk ̸∼= H1 ∗H2.

We show that G = ⟨H1, H2⟩ is nonetheless RGF relative to {H1, H2}. It is
straightforward that G satisfies the bounded coset penetration property with re-
spect to the subgroups H1, H2, hence G is hyperbolic relative to {H1, H2}.

Let H ′
1 = ⟨T ⟩ and H ′

2 = ⟨f ℓTf−ℓ⟩. First, see that

G = ⟨f ℓ, T, σ | [f ℓ, σ], [T, σ], σk⟩ ∼= (Z ∗ Z)× Zk

contains G′ = ⟨H ′
1, H

′
2⟩ ∼= Z∗Z as a finite-index torsion-free subgroup, hence G and

G′ are quasi-isometric. By Theorem B, G′ is RGF relative to {H ′
1, H

′
2}. We may

compose the induced quasi-isometry between Γ̂(G, {H1, H2}) and Γ̂(G′, {H ′
1, H

′
2}),

with the quasi-isometric embedding Γ̂(G′, {H ′
1, H

′
2}) → C(S) to yield the Mod(S)-

equivariant quasi-isometric embedding in the definition of RGF.
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