Math 3890: Dynamical Systems - Assignment 9

Due in-class on Wednesday, April 3

This assignment has 5 questions for a total of 55 points.

If $g: X \rightarrow X$ and $f: Y \rightarrow Y$ are self-maps of metric spaces, we say that f is a factor of g if there is a continuous surjection $h: X \rightarrow Y$ such that $h \circ g=f \circ h$ (that is, if f is semi-conjugate to g).

1. (10 points) For $k \in \mathbb{N}$, let $\sigma_{k}: \Sigma_{k} \rightarrow \Sigma_{k}$ denote the left shift on the full shift space $\Sigma_{k}=$ $\{1, \ldots, k\}^{\mathbb{N}}$. Prove that for $m<n$, the shift σ_{m} is a factor of the shift σ_{n}.
2. (10 points) Show that the topological Markov chains $\sigma_{A}: \Sigma_{A} \rightarrow \Sigma_{A}$ and $\sigma_{B}: \Sigma_{B} \rightarrow \Sigma_{B}$ associated to the matrices $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$ are topologically conjugate.

Let $\sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ be the topological Markov chain associated a transition matrix A. Let $P_{m}(\sigma)$ denote the number of points $\omega \in \Sigma_{A}$ fixed by σ^{m}. The zeta function of σ is the "generating function" of $P_{m}(\sigma)$. That is, we formally define the zeta function of σ to be the power series

$$
\zeta(z)=\exp \left(\sum_{m=1}^{\infty} \frac{z^{m}}{m} P_{m}(\sigma)\right), \quad \text { where } z \in \mathbb{C} .
$$

3. (10 points) Show that the zeta function can be rewritten as infinite product

$$
\zeta(z)=\prod_{\gamma}\left(1-z^{|\gamma|}\right)^{-1}
$$

where $\gamma=\left\{\omega, \sigma(\omega), \ldots, \sigma^{m-1}(\omega)\right\}$ denotes a periodic orbit of prime period $|\gamma|:=m$. (That is, the infinite product over all finite orbits of σ). [Hint: Use $\exp \left(\sum_{n=1}^{\infty} \frac{z^{n}}{n}\right)=\exp (-\log (1-z))$.]
4. (10 points) Show that the zeta function can be written as $\zeta(z)=1 / \operatorname{det}(I-z A)$. Deduce that $\zeta(z)$ is a rational function.
5. Calculate the zeta function $\zeta(z)$ for the following subshifts $\sigma: \Sigma_{A} \rightarrow \Sigma_{A}$.
(a) (5 points) $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, i.e., the "full shift on two symbols."
(b) (5 points) $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.
(c) (5 points) $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$.

