Math 3890: Dynamical Systems – Assignment 8

Due in-class on Wednesday, March 27

This assignment has 5 questions for a total of 60 points.

Recall that Sarkovskii's theorem says that if a continuous self-map $f: I \to I$ of an interval $I \subset \mathbb{R}$ has a point with period n, then it has a periodic point for each period that follows n in the ordering of the natural numbers given by:

$$3 \rhd 5 \rhd 7 \rhd \cdots \rhd 2 \cdot 3 \rhd 2 \cdot 5 \rhd 2 \cdot 7 \rhd \cdots \rhd 2^2 \cdot 3 \rhd 2^2 \cdot 5 \rhd 2^2 \cdot 7 \rhd \cdots \\ \cdots \rhd 2^3 \cdot 3 \rhd 2^3 \cdot 5 \rhd 2^3 \cdot 7 \rhd \cdots \rhd \cdots \rhd 2^3 \rhd 2^2 \rhd 2^2 \rhd 2 \rhd 1.$$

- 1. (10 points) In lecture we proved Sarkovskii's Theorem in the cases that n is an odd or a power of 2. Prove the remaining cases, which are $n = p2^m$ with p > 1 odd and $m \ge 1$.
- 2. (10 points) For $n \ge 1$ an integer, construct a piecewise linear map $f: I \to I$ of a compact interval I such that f has a point of period 2n + 1 but does not have a point of period 2n 1.

Recall that $\Sigma_m = \{0, 1, \ldots, m-1\}^{\mathbb{N}}$ denotes the **shift space** of all sequences $\omega = (\omega_0, \omega_2, \ldots)$ with $\omega_k \in \{0, 1, \ldots, m-1\}$ for each k. The **left shift map** $\sigma \colon \Sigma_m \to \Sigma_m$ is defined by $\sigma(\omega_0, \omega_1, \omega_2, \ldots) = (\omega_1, \omega_2, \ldots)$. For $\lambda > 1$, we put a metric d_{λ} on Σ_m defined as follows:

For
$$\omega, \omega' \in \Sigma_m$$
, $d_{\lambda}(\omega, \omega') = \begin{cases} \lambda^{-\min\{k \mid \omega_k \neq \omega'_k\}} & \text{if } \omega \neq \omega' \\ 0 & \text{if } \omega = \omega' \end{cases}$

- 3. (10 points) Fix some sequence $\omega \in \Sigma_m$ and define its stable set $S(\omega)$ to be the set of all $\alpha \in \Sigma_m$ such that $d_{\lambda}(\sigma^n(\omega), \sigma^n(\alpha)) \to 0$ as $i \to \infty$. Identify all the sequences in $S(\omega)$.
- 4. (10 points) We know that the shift map $\sigma \colon \Sigma_m \to \Sigma_m$ is chaotic and therefore has sensitive dependence on initial conditions. Find the **sensitivity constant** for $\sigma \colon (\Sigma_m, d_\lambda) \to (\Sigma_m, d_\lambda)$. That is, find the largest constant $\Delta > 0$ such that for all $\omega \in \Sigma_m$ and $\epsilon > 0$ there exists some $\omega' \in \Sigma_m$ such that $d_\lambda(\omega, \omega') < \epsilon$ and $d_\lambda(\sigma^n(\omega), \sigma^n(\omega')) \ge \Delta$ for some $n \in \mathbb{N}$.
- 5. Let X and Y be metric spaces and suppose that $f: X \to X, g: Y \to Y$, and $h: X \to Y$ are continuous maps such that $h \circ f = g \circ h$, as in the diagram below. Assume also that h is surjective. Here we prove, in particular, that if f is chaotic then g is chaotic.

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & X \\ \downarrow h & & \downarrow h \\ Y & \stackrel{g}{\longrightarrow} & Y \end{array}$$

- (a) (5 points) Prove that if D is a dense subset of X, then h(D) is a dense subset of Y.
- (b) (5 points) Let $\operatorname{Per}(f) \subset X$ and $\operatorname{Per}(g) \subset Y$ denote the periodic points of f and g respectively. Prove that $h(\operatorname{Per}(f)) \subset \operatorname{Per}(g)$.
- (c) (5 points) Prove that if f is topologically transitive, then g is topologically transitive.
- (d) (5 points) Prove that if f is mixing, then g is mixing.