Math 3890: Dynamical Systems - Assignment 8

Due in-class on Wednesday, March 27

This assignment has 5 questions for a total of $\mathbf{6 0}$ points.

Recall that Sarkovskii's theorem says that if a continuous self-map $f: I \rightarrow I$ of an interval $I \subset \mathbb{R}$ has a point with period n, then it has a periodic point for each period that follows n in the ordering of the natural numbers given by:

$$
\begin{aligned}
3 \triangleright 5 \triangleright 7 \triangleright & \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots \triangleright 2^{2} \cdot 3 \triangleright 2^{2} \cdot 5 \triangleright 2^{2} \cdot 7 \triangleright \cdots \\
& \cdots \triangleright 2^{3} \cdot 3 \triangleright 2^{3} \cdot 5 \triangleright 2^{3} \cdot 7 \triangleright \cdots \triangleright \cdots \triangleright 2^{3} \triangleright 2^{2} \triangleright 2^{2} \triangleright 2 \triangleright 1 .
\end{aligned}
$$

1. (10 points) In lecture we proved Sarkovskii's Theorem in the cases that n is an odd or a power of 2 . Prove the remaining cases, which are $n=p 2^{m}$ with $p>1$ odd and $m \geq 1$.
2. (10 points) For $n \geq 1$ an integer, construct a piecewise linear map $f: I \rightarrow I$ of a compact interval I such that f has a point of period $2 n+1$ but does not have a point of period $2 n-1$.

Recall that $\Sigma_{m}=\{0,1, \ldots, m-1\}^{\mathbb{N}}$ denotes the shift space of all sequences $\omega=\left(\omega_{0}, \omega_{2}, \ldots\right)$ with $\omega_{k} \in\{0,1, \ldots, m-1\}$ for each k. The left shift map $\sigma: \Sigma_{m} \rightarrow \Sigma_{m}$ is defined by $\sigma\left(\omega_{0}, \omega_{1}, \omega_{2}, \ldots\right)=$ $\left(\omega_{1}, \omega_{2}, \ldots\right)$. For $\lambda>1$, we put a metric d_{λ} on Σ_{m} defined as follows:

$$
\text { For } \omega, \omega^{\prime} \in \Sigma_{m}, \quad d_{\lambda}\left(\omega, \omega^{\prime}\right)= \begin{cases}\lambda^{-\min \left\{k \mid \omega_{k} \neq \omega_{k}^{\prime}\right\}} & \text { if } \omega \neq \omega^{\prime} \\ 0 & \text { if } \omega=\omega^{\prime}\end{cases}
$$

3. (10 points) Fix some sequence $\omega \in \Sigma_{m}$ and define its stable set $S(\omega)$ to be the set of all $\alpha \in \Sigma_{m}$ such that $d_{\lambda}\left(\sigma^{n}(\omega), \sigma^{n}(\alpha)\right) \rightarrow 0$ as $i \rightarrow \infty$. Identify all the sequences in $S(\omega)$.
4. (10 points) We know that the shift map $\sigma: \Sigma_{m} \rightarrow \Sigma_{m}$ is chaotic and therefore has sensitive dependence on initial conditions. Find the sensitivity constant for $\sigma:\left(\Sigma_{m}, d_{\lambda}\right) \rightarrow\left(\Sigma_{m}, d_{\lambda}\right)$. That is, find the largest constant $\Delta>0$ such that for all $\omega \in \Sigma_{m}$ and $\epsilon>0$ there exists some $\omega^{\prime} \in \Sigma_{m}$ such that $d_{\lambda}\left(\omega, \omega^{\prime}\right)<\epsilon$ and $d_{\lambda}\left(\sigma^{n}(\omega), \sigma^{n}\left(\omega^{\prime}\right)\right) \geq \Delta$ for some $n \in \mathbb{N}$.
5. Let X and Y be metric spaces and suppose that $f: X \rightarrow X, g: Y \rightarrow Y$, and $h: X \rightarrow Y$ are continuous maps such that $h \circ f=g \circ h$, as in the diagram below. Assume also that h is surjective. Here we prove, in particular, that if f is chaotic then g is chaotic.

(a) (5 points) Prove that if D is a dense subset of X, then $h(D)$ is a dense subset of Y.
(b) (5 points) Let $\operatorname{Per}(f) \subset X$ and $\operatorname{Per}(g) \subset Y$ denote the periodic points of f and g respectively. Prove that $h(\operatorname{Per}(f)) \subset \operatorname{Per}(g)$.
(c) (5 points) Prove that if f is topologically transitive, then g is topologically transitive.
(d) (5 points) Prove that if f is mixing, then g is mixing.
