Math 3890: Dynamical Systems - Assignment 7

Due in-class on Wednesday, March 20

This assignment has 3 questions for a total of 65 points.

For a fixed integer $m \geq 2$, let Σ_{m} denote the shift space $\Sigma_{m}=\left\{\left(\omega_{k}\right)_{k=0}^{\infty} \mid \omega_{k} \in\{0,1, \ldots, m-1\}\right\}$ of all infinite sequences $\omega=\left(\omega_{0}, \omega_{1}, \omega_{2}, \ldots\right)$ of numbers $\omega_{k} \in\{0, \ldots, m-1\}$. Define the left shift map on $\sigma: \Sigma_{m} \rightarrow \Sigma_{m}$ by $\sigma\left(\omega_{0}, \omega_{1}, \omega_{2}, \ldots\right)=\left(\omega_{1}, \omega_{2}, \ldots\right)$, and define a metric d on Σ_{m} by:

$$
\text { For } \omega, \omega^{\prime} \in \Sigma_{m}, \quad d\left(\omega, \omega^{\prime}\right)= \begin{cases}2^{-\min \left\{k \mid \omega_{k} \neq \omega_{k}^{\prime}\right\}} & \text { if } \omega \neq \omega^{\prime} \\ 0 & \text { if } \omega=\omega^{\prime}\end{cases}
$$

1. Consider the metric space $\left(\Sigma_{m}, d\right)$ and the shift map $\sigma: \Sigma_{m} \rightarrow \Sigma_{m}$.
(a) (5 points) Prove that $\left(\Sigma_{m}, d\right)$ is complete.
(b) (5 points) Prove that Σ_{m} is compact. [Hint: Use sequential compactness.]
(c) (5 points) Show that σ is 2 -Lipschitz and therefore continuous.
(d) (5 points) How many fixed points does σ^{n} have?
2. Let $\Sigma^{\prime} \subset \Sigma_{2}$ be the set of all sequences ω satisfying the condition: If $\omega_{j}=0$ then $\omega_{j+1}=1$. That is, Σ^{\prime} consists of those sequences that never have repeated zeros.
(a) (5 points) Show that σ preserves Σ^{\prime} and that Σ^{\prime} is a closed subset of Σ_{2}.
(b) (5 points) Show that periodic points of $\sigma: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ are dense in Σ^{\prime}.
(c) (5 points) Find a point $\omega \in \Sigma^{\prime}$ whose orbit $\left\{\sigma^{n}(\omega) \mid n \in \mathbb{N}\right\}$ is dense in Σ^{\prime}.
(d) (5 points) How many fixed points for σ, σ^{2}, and σ^{3} are there in Σ^{\prime} ?
(e) (5 points) Find a recursive formula for the number of fixed points of $\sigma^{n}: \Sigma^{\prime} \rightarrow \Sigma^{\prime}$ in terms of the number of fixed points for σ^{n-1} and σ^{n-2}.
3. Let $I=[0,1]$ be the unit interval and $f: I \rightarrow I$ a continuous function. Here we construct a new continuous function whose periods are exactly twice the periods of f. Define the double of f to be the function $F: I \rightarrow I$ with graph (illustrated below) produced as follows: Divide I into thirds, compress the graph of f into the upper left corner of $I \times I$, and fill in the rest of the graph of F as illustrated. Observe that F maps $\left[0, \frac{1}{3}\right]$ into $\left[\frac{2}{3}, 1\right]$ and vice versa.

(a) (5 points) Give a formula for $F(x)$ in terms of f.
(b) (5 points) Show that F has a unique fixed point p and that $p \in\left[\frac{1}{3}, \frac{2}{3}\right]$.
(c) (5 points) Prove that if $y \in I$ is periodic point for F that is not the unique fixed point, then either y or $F(y)$ lies in $\left[0, \frac{1}{3}\right]$ and that, in these respective cases, either $3 y$ or $3 F(y)$ is a periodic point for f.
(d) (5 points) Prove that $x \in I$ is a periodic point for f with period n if and only if $x / 3$ is periodic for F with period $2 n$.
