Math 3890: Dynamical Systems - Assignment 6

Due in-class on Wednesday, February 20

This assignment has 6 questions for a total of 60 points.

Recall that we have a continuous projection $\pi: \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}$ from the real numbers to the circle $K=\mathbb{R} / \mathbb{Z}$ given by $\pi(x)=[x]$. A lift of a map $f: K \rightarrow K$ is any map $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $\pi \circ F=f \circ \pi$. The degree of a continuous map $f: K \rightarrow K$ is the number

$$
\operatorname{deg}(f)=F(x+1)-F(x) \in \mathbb{Z}
$$

where F is any lift and $x \in \mathbb{R}$ is arbitrary.

1. (10 points) Let $f: K \rightarrow K$ be a continuous map. Suppose that $x_{0}, y_{0} \in \mathbb{R}$ are chosen such that $\pi\left(y_{0}\right)=f\left(\pi\left(x_{0}\right)\right)$. Prove that there is a unique continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $F\left(x_{0}\right)=y_{0}$ and F is a lift of f (i.e., $\pi \circ F=f \circ \pi$).
2. (10 points) Suppose that $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in \mathbb{R} for which there exists a constant $L \geq 0$ such that

$$
a_{m+n} \leq a_{m}+a_{n}+L \quad \text { for all } m, n \in \mathbb{N} .
$$

Prove that $\left\{\frac{a_{n}}{n}\right\}_{n \in \mathbb{N}}$ either converges to a real number $x \in \mathbb{R}$ or else converges to $-\infty$ (meaning that for all K there exists N so that $n \geq N$ implies $\left.\frac{a_{n}}{n} \leq K\right)$.
3. (10 points) Prove that degree is multiplicative: If $f, g: K \rightarrow K$ are continuous maps, then

$$
\operatorname{deg}(f \circ g)=\operatorname{deg}(f) \operatorname{deg}(g) .
$$

4. (a) (5 points) Is the function $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by $F(x)=x+\frac{1}{2} \sin (x)$ the lift of a continuous map of the circle?
(b) (5 points) Is the function $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by $F(x)=x+4 \pi \sin (2 \pi x)$ the lift of a circle homeomorphism?
5. For $c, b \in \mathbb{R}$, let $F: \mathbb{R} \rightarrow \mathbb{R}$ be the map given by $F(x)=x+c+b \sin (2 \pi x)$.
(a) (5 points) Show that if $|2 \pi b|<1$ then F is the lift of an orientation preserving circle homeomorphism f.
(b) (5 points) Show that if additionally $|c|<|b|$, then f has rotation number $\rho(f) \equiv 0 \bmod 1$.
6. (10 points) Let $c_{1}, c_{2} \in\left(0, \frac{1}{2 \pi}\right)$. Show that

$$
\begin{aligned}
& F_{1}(x)=x+c_{1} \sin ^{2}(2 \pi x), \quad \text { and } \\
& F_{2}(x)=x-c_{2} \cos ^{2}(2 \pi x)
\end{aligned}
$$

are lifts of circle maps f_{1}, f_{2} with the same rotation number.

