Math 3890: Dynamical Systems – Assignment 5

Due in-class on Wednesday, February 13

This assignment has 6 questions for a total of 60 points.

1. (10 points) Consider metric on the circle \mathbb{R}/\mathbb{Z} given by

$$d([x], [y]) = \min\{|a - b| : a \in [x], b \in [y]\}.$$

Show that for any α , the rotation $R_{\alpha} \colon \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ given by $R_{\alpha}([x]) = [x + \alpha]$ is an isometry (that is $d(R_{\alpha}([x]), R_{\alpha}([y])) = d([x], [y]))$.

2. (10 points) Given an example of a compact metric space X, a homeomorphism $T: X \to X$, and a point $x \in X$ such that $\{T^n(x) \mid n \in \mathbb{Z}\}$ is dense but $\{T^n(x) \mid n \in \mathbb{N}\}$ is not dense.

Recall that a continuous map $f: X \to X$ of a compact metric space is **uniquely ergodic** if for every continuous function $\varphi: X \to \mathbb{R}$ there is a constant C_f such that $\frac{1}{n} \sum_{i=0}^{n-1} \varphi(f^i(x))$ converges to C_f for each $x \in X$.

- 3. (10 points) Show that a contracting map on a compact metric space is uniquely ergodic.
- 4. (10 points) Give an example of a homeomorphism $T: X \to X$ on a compact metric space such that $\frac{1}{n} \sum_{i=0}^{n-1} \varphi(T^i(x))$ converges for every $x \in X$ and continuous function $\varphi: X \to \mathbb{R}$, but T is NOT uniquely ergodic.
- 5. (10 points) What is the frequency of the leading digit of $\{3^n\}$? That is, for $d \in \{1, \ldots, 9\}$, find the limit of $\frac{1}{n} \#\{i = 1, \ldots, n \mid d \text{ is the leading digit of } 3^n\}$.
- 6. (10 points) What is the frequency of the second leading digit of $\{2^n\}$? That is, for $d \in \{0, \ldots, 9\}$, find the limit of $\frac{1}{n} \#\{i = 1, \ldots, n \mid d \text{ is the second digit of } 2^n\}$.