Math 3890: Dynamical Systems - Assignment 5

Due in-class on Wednesday, February 13

This assignment has 6 questions for a total of 60 points.

1. (10 points) Consider metric on the circle \mathbb{R} / \mathbb{Z} given by

$$
d([x],[y])=\min \{|a-b|: a \in[x], b \in[y]\} .
$$

Show that for any α, the rotation $R_{\alpha}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ given by $R_{\alpha}([x])=[x+\alpha]$ is an isometry (that is $\left.d\left(R_{\alpha}([x]), R_{\alpha}([y])\right)=d([x],[y])\right)$.
2. (10 points) Given an example of a compact metric space X, a homeomorphism $T: X \rightarrow X$, and a point $x \in X$ such that $\left\{T^{n}(x) \mid n \in \mathbb{Z}\right\}$ is dense but $\left\{T^{n}(x) \mid n \in \mathbb{N}\right\}$ is not dense.

Recall that a continuous map $f: X \rightarrow X$ of a compact metric space is uniquely ergodic if for every continuous function $\varphi: X \rightarrow \mathbb{R}$ there is a constant C_{f} such that $\frac{1}{n} \sum_{i=0}^{n-1} \varphi\left(f^{i}(x)\right)$ converges to C_{f} for each $x \in X$.
3. (10 points) Show that a contracting map on a compact metric space is uniquely ergodic.
4. (10 points) Give an example of a homeomorphism $T: X \rightarrow X$ on a compact metric space such that $\frac{1}{n} \sum_{i=0}^{n-1} \varphi\left(T^{i}(x)\right)$ converges for every $x \in X$ and continuous function $\varphi: X \rightarrow \mathbb{R}$, but T is NOT uniquely ergodic.
5. (10 points) What is the frequency of the leading digit of $\left\{3^{n}\right\}$? That is, for $d \in\{1, \ldots, 9\}$, find the limit of $\frac{1}{n} \#\left\{i=1, \ldots, n \mid d\right.$ is the leading digit of $\left.3^{n}\right\}$.
6. (10 points) What is the frequency of the second leading digit of $\left\{2^{n}\right\}$? That is, for $d \in$ $\{0, \ldots, 9\}$, find the limit of $\frac{1}{n} \#\left\{i=1, \ldots, n \mid d\right.$ is the second digit of $\left.2^{n}\right\}$.

