Math 3890: Dynamical Systems - Assignment 4

Due in-class on Wednesday, February 6

This assignment has 5 questions for a total of 51 points.

1. Let $f:[0,1] \rightarrow[0,1]$ be a differentiable map with $\left|f^{\prime}(x)\right| \leq 1$ for all x.
(a) (7 points) Show that the set of fixed points of f is nonempty and connected (that is, either a point or an interval).
(b) (7 points) Show that every periodic point of f has period 1 or 2 .

For the following problems, let $0<\alpha<1$ be irrational and let T : $K \rightarrow K$ be the associated rotation of the circle $K=\{z \in \mathbb{C}| | z \mid=1\}$ given by $T(z)=e^{2 \pi i \alpha} z$. Alternately, we view the circle K with \mathbb{R} / \mathbb{Z} (the real line with x and $x+1$ identified for). From this perspective, we have a bijection $[0,1) \leftrightarrow K$ (sending $x \in[0,1)$ to $e^{2 \pi i x}$) and the rotation T is given by the map

$$
T(x)=x+\alpha \quad \bmod 1=(x+\alpha)-\lfloor x+\alpha\rfloor,
$$

where $\lfloor y\rfloor \in \mathbb{Z}$ denotes the integer part of $y \in \mathbb{R}($ so $\lfloor y\rfloor \leq y<\lfloor y\rfloor+1)$.
2. (10 points) Set $\alpha_{0}=\alpha$ and let $c_{0} \in \mathbb{N}$ satisfy $c_{0} \alpha_{0}<1<\left(c_{0}+1\right) \alpha_{0}$. Show that $c_{0}=\left\lfloor\frac{1}{\alpha_{0}}\right\rfloor$ and that $T^{c_{0}+1}(0) \in[0, \alpha)$.
3. (10 points) Denote $\delta_{1}=1-c_{0} \alpha_{0}>0$. Let $c_{1} \in \mathbb{N}$ satisfy $c_{1} \delta_{1}<\alpha_{0}<\left(c_{1}+1\right) \delta_{1}$. Show that $c_{1}=\left\lfloor\frac{1}{\alpha_{1}}\right\rfloor$, where $\delta_{1}=\alpha_{1} \alpha_{0}$, and that $0<\alpha_{1}<1$. Deduce that

$$
T^{c_{0} c_{1}+1}(0)=T^{c_{0}\left(c_{1}-1\right)}\left(T^{c_{0}+1}(0)\right) \in\left[0, \delta_{1}\right) .
$$

4. (10 points) Continuing inductively, given $0<\alpha_{n}<1$, choose $c_{n} \in \mathbb{N}$ and $0<\alpha_{n+1}<1$ such that $1=\alpha_{n}\left(c_{n}+\alpha_{n+1}\right)$. Show that

$$
\left.\alpha=\frac{1}{c_{0}+\frac{1}{c_{1}+\ldots}} \quad \text { (i.e., }\left(c_{0}, c_{1}, \ldots\right) \text { is the continued fraction expansion of } \alpha\right)
$$

5. (7 points) If α is an irrational number of the form $\alpha=1 /\left(a_{0}+\frac{1}{c}\right)$ where $c>10^{50}$ and $a_{0} \in \mathbb{N}$, then what can one say about the distribution of the orbit $\left\{T^{n}(0) \mid n \in \mathbb{N}\right\}$ of 0 ? (For example, does it take a short or long time for the orbit to return close to 0 ?)
