Math 3890: Dynamical Systems – Assignment 2

Due in-class on Wednesday, January 23

This assignment has 3 questions for a total of 63 points.

Recall that a sequence $\{x_n\}_{n\in\mathbb{N}}$ in a metric space X converges to a point $x \in X$ if for every open set $U \subset X$ containing x there exists $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \ge N$, and that the sequence is Cauchy if for every $\epsilon > 0$ there exists N such that $d(x_n, x_m) \le \epsilon$ whenever $m, n \ge N$. A metric space is complete if every Cauchy sequence converges (to some point).

1. (10 points) Let ℓ^{∞} denote the set of bounded sequences of real numbers. That is, ℓ^{∞} is the set of sequences $\{x_n\}_{n\in\mathbb{N}}$ in \mathbb{R} for which there exists some M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$. Equip ℓ^{∞} with the metric

$$d(\{x_n\}, \{y_n\}) = \sup_{n \in \mathbb{N}} |x_n - y_n|.$$

Prove that (ℓ^{∞}, d) is a complete metric space.

A metric space is *sequentially compact* if every sequence in it admits a convergent subsequence. In class we proved that compact metric spaces are sequentially compact; the point of the next problem is to prove the converse.

- 2. Let (X, d) be a sequentially compact metric space.
 - (a) (10 points) Prove that for every open cover \mathcal{U} of X, there exists $\delta > 0$ such that any set with with diameter less than δ is contained in some element of \mathcal{U} . (The *diameter* of a subset $C \subset X$ is diam $(C) = \sup\{d(c_1, c_2) \mid c_1, c_2 \in C\}$). Such a number δ is called a *Lebesgue number* for the covering \mathcal{U} .
 - (b) (10 points) Prove that for any $\epsilon > 0$ there exists a finite covering of X by ϵ -balls. That is: For each $\epsilon > 0$ there is a finite set $F \subset X$ such that $X = \bigcup_{x \in F} B_{\epsilon}(x)$.
 - (c) (10 points) Use parts (a) and (b) above to prove that X is compact.

The next problem proves that every closed interval [a, b] in \mathbb{R} is compact, which is the key ingredient needed for the Heine–Borel Theorem.

- 3. Consider \mathbb{R} with the standard Euclidean metric d(x, y) = |x y|, and for a < b consider the closed interval let $I = [a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}.$
 - (a) (10 points) Prove that every sequence $\{x_n\}$ in [a, b] admits a monotonic subsequence. That is, a subsequence $y_j = x_{n_j}$ (where $n_1 < n_2 < \cdots$) such that either $y_j \leq y_{j+1}$ for all j, or else $y_j \geq y_{j+1}$ for all j.
 - (b) (10 points) Prove that every monotonic sequence in [a, b] is Cauchy.
 - (c) (3 points) Conclude that [a, b] is compact.