Math 3890: Dynamical Systems - Assignment 1

Due in-class on Wednesday, January 16

This assignment has 5 questions for a total of 58 points.

1. For $n \in \mathbb{N}$, a_{n} denote the the last three digits digit of the number 2^{n} (that is, a_{n} is the remainder when 2^{n} is divided by 1000).
(a) (7 points) Prove that the sequence $\left\{a_{n}\right\}$ (starting with $n=3$) is periodic with period at most 100 .
(b) (7 points) Prove that $a_{n}+a_{n+50}=1000$ for every $n \geq 3$.
2. Fix $p, q \in \mathbb{N}$ relatively prime and let $b_{n} \in\{0, \ldots, 9\}$ denote the ones digit of the number $\frac{p}{q} n^{2}$.
(a) (7 points) Prove that the sequence $\left\{b_{n}\right\}$ is periodic with period at most $10 q$.
(b) (7 points) Prove that the initial $10 q+1$ terms $b_{0}, b_{1}, \ldots, b_{10 q}$ form a palindromic string.
3. (10 points) Let let d_{1} and d_{2} be equivalent metrics on a set Y. Prove that a subset $U \subset Y$ is open with respect to the metric d_{1} if and only if it is open with respect to the metric d_{2}

Below, let (X, d) be a metric space. Recall that for a subset $Y \subset X$, the closure of Y is the intersection \bar{Y} of all closed subsets of X that contain Y, and the interior of Y is the union \dot{Y} of all open subsets of Y that are contained in Y. Recall also that Y^{\prime} denotes the set of accumulation points (aka limit points) of Y, and that $Y^{c}=X \backslash Y$ denotes the complement of Y.
4. (10 points) Let A be a subset of X. Prove that $\bar{A}=A \cup A^{\prime}$
5. (10 points) Let A be a subset of X. Prove that $\AA=\overline{A c}^{c}$

