Math 7210: Riemannian Geometry - Homework 2

Due in class: Wednesday, January 25, 2017

1. (from $\# 0.7$ of do Carmo) Let $C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$ be a right circular cylinder, and let $A: C \rightarrow C$ be the symmetry with respect to the origin, that is $A(x, y, z)=(-x,-y,-z)$. Let M be the quotient space of C with respect to the equivalence relation $p \sim A(p)$, and let $\pi: C \rightarrow M$ be the projection $\pi(p)=\{p, A(p)\}$.
(a) Show that 1 is a regular value of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x^{2}+y^{2}$; meaning that the derivative $d_{p} f$ is surjective for all $p \in f^{-1}(1)$. It thus follows from the submersion theorem that $C=f^{-1}(1)$ is a submanifold of \mathbb{R}^{3} of dimension 2 .
(b) Show that it is possible to give M a differentiable structure such that π is a local diffeomorphism.
(c) Prove that M is non-orientable.
2. (from $\# 0.8$ of do Carmo) Let M and N be differentiable manifolds and let $\varphi: M \rightarrow N$ be a local diffeomorphism. Prove that if N is orientable, then M is orientable.
3. (from $\# 0.11$ of do Carmo) Let us consider the two following differentiable structures on the real line $\mathbb{R}:\left(\mathbb{R}, \varphi_{1}\right)$, where $\varphi_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is given by $\varphi_{1}(x)=x$ for $x \in \mathbb{R} ;\left(\mathbb{R}, \varphi_{2}\right)$, where $\varphi_{2}: \mathbb{R} \rightarrow \mathbb{R}$ is given by $\varphi_{2}(x)=x^{3}$ for $x \in \mathbb{R}$. Show that
(a) the identity mapping $i:\left(\mathbb{R}, \varphi_{1}\right) \rightarrow\left(\mathbb{R}, \varphi_{2}\right)$ is not a diffeomorphism; therefore the maximal structures determined by $\left(\mathbb{R}, \varphi_{1}\right)$ and $\left(\mathbb{R}, \varphi_{2}\right)$ are distinct.
(b) the mapping $f:\left(\mathbb{R}, \varphi_{1}\right) \rightarrow\left(\mathbb{R}, \varphi_{2}\right)$ given by $f(x)=x^{3}$ is a diffeomorphism; that is, even though the differentiable structures $\left(\mathbb{R}, \varphi_{1}\right)$ and $\left(\mathbb{R}, \varphi_{2}\right)$ are distinct, they determine diffeomorphic differentiable manifolds.
4. Let X, Y, Z be the vector fields on \mathbb{R}^{3} given by

$$
X=z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}, \quad Y=x \frac{\partial}{\partial z}-z \frac{\partial}{\partial x}, \quad Z=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} .
$$

(a) Show that the map $L: \mathbb{R}^{3} \rightarrow \Gamma\left(\mathbb{R}^{3}\right)$ deined by $(a, b, c) \mapsto a X+b Y+c Z$ is an isomorphism from \mathbb{R}^{3} onto a subspace of the vector space $\Gamma\left(\mathbb{R}^{3}\right)$ of vector fields on \mathbb{R}^{3}.
(b) Show that, under this isomorphism, the bracket of vector fields corresponds to the cross product of vectors in \mathbb{R}^{3}; that is, show $L((a, b, c) \times(d, e, f))=[L(a, b, c), L(d, e, f)]$.
(c) Compute the flow of the vector field $a X+b Y+c Z$.

