Math 7210: Riemannian Geometry – Homework 2

Due in class: Wednesday, January 25, 2017

- 1. (from #0.7 of do Carmo) Let $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ be a right circular cylinder, and let $A: C \to C$ be the symmetry with respect to the origin, that is A(x, y, z) = (-x, -y, -z). Let M be the quotient space of C with respect to the equivalence relation $p \sim A(p)$, and let $\pi: C \to M$ be the projection $\pi(p) = \{p, A(p)\}$.
 - (a) Show that 1 is a regular value of the function $f: \mathbb{R}^3 \to \mathbb{R}$ given by $f(x, y, z) = x^2 + y^2$; meaning that the derivative $d_p f$ is surjective for all $p \in f^{-1}(1)$. It thus follows from the submersion theorem that $C = f^{-1}(1)$ is a submanifold of \mathbb{R}^3 of dimension 2.
 - (b) Show that it is possible to give M a differentiable structure such that π is a local diffeomorphism.
 - (c) Prove that M is non-orientable.
- 2. (from #0.8 of do Carmo) Let M and N be differentiable manifolds and let $\varphi \colon M \to N$ be a local diffeomorphism. Prove that if N is orientable, then M is orientable.
- 3. (from #0.11 of do Carmo) Let us consider the two following differentiable structures on the real line \mathbb{R} : (\mathbb{R}, φ_1) , where $\varphi_1 \colon \mathbb{R} \to \mathbb{R}$ is given by $\varphi_1(x) = x$ for $x \in \mathbb{R}$; (\mathbb{R}, φ_2) , where $\varphi_2 \colon \mathbb{R} \to \mathbb{R}$ is given by $\varphi_2(x) = x^3$ for $x \in \mathbb{R}$. Show that
 - (a) the identity mapping $i: (\mathbb{R}, \varphi_1) \to (\mathbb{R}, \varphi_2)$ is not a diffeomorphism; therefore the maximal structures determined by (\mathbb{R}, φ_1) and (\mathbb{R}, φ_2) are distinct.
 - (b) the mapping $f: (\mathbb{R}, \varphi_1) \to (\mathbb{R}, \varphi_2)$ given by $f(x) = x^3$ is a diffeomorphism; that is, even though the differentiable structures (\mathbb{R}, φ_1) and (\mathbb{R}, φ_2) are distinct, they determine diffeomorphic differentiable manifolds.
- 4. Let X, Y, Z be the vector fields on \mathbb{R}^3 given by

$$X = z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z}, \qquad Y = x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x}, \qquad Z = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$$

- (a) Show that the map $L: \mathbb{R}^3 \to \Gamma(\mathbb{R}^3)$ defined by $(a, b, c) \mapsto aX + bY + cZ$ is an isomorphism from \mathbb{R}^3 onto a subspace of the vector space $\Gamma(\mathbb{R}^3)$ of vector fields on \mathbb{R}^3 .
- (b) Show that, under this isomorphism, the bracket of vector fields corresponds to the cross product of vectors in \mathbb{R}^3 ; that is, show $L((a, b, c) \times (d, e, f)) = [L(a, b, c), L(d, e, f)].$
- (c) Compute the flow of the vector field aX + bY + cZ.