Math 7210: Riemannian Geometry – Homework 1

Due in class: Wednesday, January 18, 2017

For M a smooth manifold and $p \in M$, recall that $C_p^{\infty}(M)$ denotes the set of germs of smooth functions at p. That is, $C_p^{\infty}(M)$ is the set of equivalence classes of pairs (U, f), where $U \subset M$ is an open neighborhood of p and $f: U \to \mathbb{R}$ is smooth, and two pairs (U, f), (V, g) are equivalent if f and g agree on a neighborhood of p. Recall that a derivation of M at p is a linear function $D: C_p^{\infty}(M) \to \mathbb{R}$ that satisfies the Leibniz rule:

$$D(fg) = f(p)D(g) + g(p)D(f),$$
 for all $f, g \in C_p^{\infty}(M)$.

The set of derivations of M at p is an \mathbb{R} -vector space and is denoted $\mathcal{D}_p^{\infty}(M)$.

1. Let M be a smooth manifold and let $p \in M$ be a point. Show that if $D: C_p^{\infty}(M) \to \mathbb{R}$ is a derivation of M at p, then D(c) = 0 for any constant function c.

From calculus, we know that if $f: \mathbb{R} \to \mathbb{R}$ is differentiable at a, then we may write f(x) = f(a) + g(x)(x-a) for some function $g: \mathbb{R} \to \mathbb{R}$ with g(a) = f'(a). In higher dimensions, Taylor's theorem with remainder says that for any smooth function $f: B_r(p) \to \mathbb{R}$ defined on the ball of radius r > 0 about $p = (p_1, \ldots, p_n) \in \mathbb{R}^n$, we may write

$$f(x) = f(p) + \sum_{i=1}^{n} g_i(x)(x_i - p_i)$$

for some smooth functions $g_1, \ldots, g_n \colon B_r(p) \to \mathbb{R}$ whose values at p are given by $g_i(p) = \frac{\partial f}{\partial x_i}(p)$.

- 2. Let $p = (p_1, \ldots, p_n)$ be a point in the manifold \mathbb{R}^n . We saw in class that for each $i = 1, \ldots, n$, the i^{th} partial derivative $\frac{\partial}{\partial x_i}$ (at p) is a derivation of \mathbb{R}^n at p. In this problem you will prove that the set $\beta = \{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\}$ is a basis for the vector space $\mathcal{D}_p(\mathbb{R}^n)$ of derivations at p.
 - (a) (easy) Show that β is a linearly independent subset of $\mathcal{D}_p(M)$.
 - (b) (harder) Show that β generates $\mathcal{D}_p(M)$. (*Hint:* Use Taylor's theorem with remainder, above.)
- 3. (Exercise 0.1 of do Carmo) Let M and N be differentiable manifolds, and let $\{(U_{\alpha}, \mathbf{x}_{\alpha})\}$, $\{(V_{\beta}, \mathbf{y}_{\beta})\}$ be differentiable structures on M and N, respectively. Consider the cartesian product $M \times N$ and the mappings $\mathbf{z}_{\alpha\beta}(p,q) = (\mathbf{x}_{\alpha}(p), \mathbf{y}_{\beta}(q)), p \in U_{\alpha}, q \in V_{\beta}$. Prove that $\{(U_{\alpha} \times V_{\alpha}, \mathbf{z}_{\alpha\beta})\}$ is a differentiable structure on $M \times N$ in which the projections $\pi_1 \colon M \times N \to M$ and $\pi_2 \colon M \times N \to N$ are differentiable. With this differentiable structure $M \times N$ is called the product manifold of M with N.
- 4. (Exercise 0.2 of do Carmo) Prove that the tangent bundle TM of a smooth manifold M is orientable (even though M may not be).