Math 3200: Intro to Topology - Homework 13

Due (at the start of class): Thursday, April 21
This assignment has 9 questions for a total of 100 points. Justify all your answers.
Problems in this assignment refer to the following small table of knots:

Figure 1: Knot table; licensed under Public Domain via Wikimedia Commons - http://commons. wikimedia.org/wiki/File:Knot_table.svg\#mediaviewer/File:Knot_table.svg

1. (10 pts) We have seen that knots 3_{1} and 6_{1} are 3 -colorable. Fine one more knot in the table above that is 3 -colorable and show your coloring.
2. (10 pts) Prove the negative curl elimination formula for the bracket polynomial. That is, if D is a diagram that contains a negative curl and E is the diagram obtained from D by eliminating that curl, then $\langle D\rangle=-A^{-3}\langle E\rangle$.
3. (10 pts) Show that if the link diagram L is changed to L^{\prime} by elimination of a negative curl, then the Kauffman polynomials of L and L^{\prime} are equal; that is $X_{L}=X_{L^{\prime}}$.
4. (10 pts) Calculate the bracket polynomial of the Figure Eight knot 4_{1}.
5. (10 pts) Calculate the bracket polynomial of the knot 51 .
6. (10 pts) Calculate the Kauffman polynomial of the knot 5_{1}.
7. Consider the oriented Whitehead link W :

(a) (10 pts) Calculate the bracket polynomial $\langle W\rangle$ for the Whitehead link W shown above (you may use our previous calculations for diagrams with fewer crossings).
(b) (10 pts) Calculate the writhe $\omega(W)$ and the Kauffman polynomial X_{W} for the oriented Whitehead link W shown above. Use your answer, if possible, to decide: Is W oriented isotopic to its mirror image W^{*} ? (Recall that W^{*} is the oriented diagram obtained by interchanging the overpass and underpass at each crossing of W).

The original Jones polynomial V_{L} of a knot or link L is obtained from the Kauffman polynomial X_{L} by the substitution $A=t^{-1 / 4}$.
8. (10 pts) Find the Jones polynomial of the Figure Eight knot 4_{1}.
9. (10 pts) Use the skein relation to show that the Jones polynomial satisfies the relation

$$
t^{-1} V_{L+}-t V_{L-}+\left(t^{-1 / 2}-t^{1 / 2}\right) V_{L_{0}}=0,
$$

where L_{+}, L_{-}, and L_{0} are three projections that are identical except at one place where they differ as in the figure below:

