Math 3200: Intro to Topology – Homework 13

Due (at the start of class): Thursday, April 21

This assignment has 9 questions for a total of 100 points. Justify all your answers.

Problems in this assignment refer to the following small table of knots:

Figure 1: Knot table; licensed under Public Domain via Wikimedia Commons – http://commons. wikimedia.org/wiki/File:Knot_table.svg#mediaviewer/File:Knot_table.svg

- 1. (10 pts) We have seen that knots 3_1 and 6_1 are 3-colorable. Fine one more knot in the table above that is 3-colorable and show your coloring.
- 2. (10 pts) Prove the negative curl elimination formula for the bracket polynomial. That is, if D is a diagram that contains a negative curl and E is the diagram obtained from D by eliminating that curl, then $\langle D \rangle = -A^{-3} \langle E \rangle$.
- 3. (10 pts) Show that if the link diagram L is changed to L' by elimination of a negative curl, then the Kauffman polynomials of L and L' are equal; that is $X_L = X_{L'}$.
- 4. (10 pts) Calculate the bracket polynomial of the Figure Eight knot 4_1 .
- 5. (10 pts) Calculate the bracket polynomial of the knot 5_1 .
- 6. (10 pts) Calculate the Kauffman polynomial of the knot 5_1 .
- 7. Consider the oriented Whitehead link W:

(a) (10 pts) Calculate the bracket polynomial $\langle W \rangle$ for the Whitehead link W shown above (you may use our previous calculations for diagrams with fewer crossings).

(b) (10 pts) Calculate the writhe $\omega(W)$ and the Kauffman polynomial X_W for the oriented Whitehead link W shown above. Use your answer, if possible, to decide: Is W oriented isotopic to its mirror image W^* ? (Recall that W^* is the oriented diagram obtained by interchanging the overpass and underpass at each crossing of W).

The original **Jones polynomial** V_L of a knot or link L is obtained from the Kauffman polynomial X_L by the substitution $A = t^{-1/4}$.

- 8. (10 pts) Find the Jones polynomial of the Figure Eight knot 4_1 .
- 9. (10 pts) Use the skein relation to show that the Jones polynomial satisfies the relation

$$t^{-1}V_{L+} - tV_{L-} + (t^{-1/2} - t^{1/2})V_{L_0} = 0,$$

where L_+ , L_- , and L_0 are three projections that are identical except at one place where they differ as in the figure below:

