Math 3200: Intro to Topology - Homework 11
 Due (at the start of class): Thursday, April 7

This assignment has 10 questions for a total of 100 points. Justify all your answers.
If (X, d) is a metric space and A, B are subsets, let us define the distance between A and B as

$$
d(A, B):=\operatorname{glb}\{d(a, b) \mid a \in A \text { and } b \in B\}
$$

where glb is the greatest lower bound. (Note that this definition makes sense because the set $\{d(a, b) \mid a \in A$ and $b \in B\} \subset \mathbb{R}$ is bounded below by 0 .)

1. (10 pts) Let (X, d) be a metric space and A a subset of X. Prove that the function $f_{A}: X \rightarrow \mathbb{R}$ defined by $f_{A}(x)=d(\{x\}, A)$ is continuous.
2. (10 pts) Let K be a compact subset of a metric space (X, d). Prove that for any $p \in X$, there exist points $a, b \in K$ such that $d(p, a) \leq d(p, k)$ and $d(p, b) \geq d(p, k)$ for all $k \in K$. (That is, a and b are, respectively, closest and furthest points from p in K.)
3. (10 pts) Let (X, d) be a metric space. Prove that if A and B are disjoint compact subsets of X, then $d(A, B)>0$.
4. (10 pts) Provide an example of a closed sets A and B in a metric space (X, d) such that A and B are disjoint but $d(A, B)=0$.
5. (10 pts) Let X be an infinite set with the finite complement topology, and let A be an infinite subset of X. Describe A^{\prime} and $\mathrm{Cl}(A)$.

A topological space is called limit point compact if every infinite subset of X has a limit point.
6. (10 pts) Suppose that X is a limit point compact space and that A is a closed subset of X. Does it follow that A is limit point compact in the subspace topology? Provide a proof or counterexample.
7. (10 pts) If X is limit point compact and $f: X \rightarrow Y$ is continuous, does it follow that $f(X)$ is limit point compact? Provide a proof or counterexample.
8. (10 pts) Suppose that $f: X \rightarrow Y$ is a function between metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ such that $d_{Y}(f(a), f(b)) \leq d_{X}(a, b)$ for all $a, b \in X$. (Such a function is said to be 1 -Lipschitz.) Prove that f is continuous.
A set C in Euclidean space \mathbb{R}^{n} is said to be convex if C contains every "line" between points of C, that is, if for all $x, y \in C$ and $t \in[0,1]$ one has $(1-t) x+t y \in C$.
9. (10 pts) Consider \mathbb{R}^{n} with the standard Euclidean metric. Prove that for all $x \in \mathbb{R}^{n}$ and $\epsilon>0$ the open ball $B(x, \epsilon)$ is convex.

A function $f: X \rightarrow X$ from a metric space (X, d) to itself is called a contraction if there is a number positive number $\lambda<1$ such that $d(f(x), f(y)) \leq \lambda d(x, y)$ for all $x, y \in X$.
10. (10 pts) Suppose that (X, d) is a compact metric space and that $f: X \rightarrow X$ is a contraction. Prove that f has a unique fixed point. That is, prove there is a unique $p \in X$ such that $f(p)=p$. (Hint: Define $f^{1}=f$ and $f^{n+1}=f \circ f^{n}$. Consider the intersection of the sets $\left.A_{n}=f^{n}(X).\right)$

