Math 3200: Intro to Topology - Homework 7

Due (at the start of class): Thursday, March 3
This assignment has $\mathbf{7}$ questions for a total of 100 points. Justify all your answers.

1. Recall that Binary space B is the metric space (B, d), where B is the set of all infinite sequences $\left(x_{1}, x_{2}, \ldots\right)$ with each $x_{i} \in\{0,1\}$, and the metric is defined by $d(x, y)=0$ if $x=y$ and otherwise $d(x, y)=1 / \min \left\{i \mid x_{i} \neq y_{i}\right\}$. Let $Z \subset B$ be the subset consisting of all sequences that are eventually zero (see Homework 6 problem 4).
(a) (10 pts) Prove or disprove: Z is open.
(b) (10 pts) Prove or disprove: Z is closed.
(c) (10 pts) What is Z^{\prime}, the set of all limit points of Z ? (Prove your answer, of course).

Recall that if X is a topological space and $Y \subset X$, then a subset $A \subset Y$ is said to be open in Y if A is an open set in the subspace topology on Y. Similarly, A is said to be closed in Y if A is closed in the subspace topology on Y.
2. Let X be a topological space and let $Y \subset X$ be a subset. Give Y the subspace topology.
(a) (10 pts) Prove that $C \subset Y$ is closed in Y if and only if $C=D \cap Y$ for some closed set D in X.
(b) (10 pts) Suppose A is open in Y and Y is open in X. Prove that A is open in X.
3. (10 pts) Let X be a topological space and let $Y \subset X$ be a subset of X. Suppose $A \subset Y$ and $p \in Y$. Prove that p is a limit point of A with respect to the subspace topology on Y if and only if p is a limit point of A with respect to the original topology on X.
4. (10 pts) Let X and Y be topological spaces. Suppose that \mathcal{C} is a basis for X and that \mathcal{D} is a basis for Y. Prove that the collection

$$
\mathcal{E}=\{C \times D \mid C \in \mathcal{C} \text { and } D \in \mathcal{D}\}
$$

is a basis for a topology on $X \times Y$ and that basis generates the product topology on $X \times Y$.
5. (10 pts) Show that if X and Y are Hausdorff topological spaces, then so is the product $X \times Y$.
6. (10 pts) Let X and Y be topological spaces, and assume $A \subset X$ and $B \subset Y$. Prove that the subspace topology on $A \times B$ (considered as a subset of $X \times Y$) is the same as the product topology on $A \times B$ (where A has the subspace topology inherited from X and B has the subspace topology inherited from Y).
7. (10 pts) Is the finite complement topology on \mathbb{R}^{2} the same as the product topology on \mathbb{R}^{2} that results from taking the product $\mathbb{R}_{f c} \times \mathbb{R}_{f c}$, where $\mathbb{R}_{f c}$ denotes the set \mathbb{R} with the finite complement topology? Justify your answer.

