Math 3200: Intro to Topology - Homework 6

Due (at the start of class): Thursday, February 25
This assignment has 10 questions for a total of 110 points. Justify all your answers.

1. (10 points) Suppose that $f: X \rightarrow Y$ is an injective function. Prove that $f^{-1}(f(A))=A$ for every subset $A \subset X$.
2. (10 points) Suppose that that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions such that $g \circ f$ is bijective and g is injective. Prove that f is bijective.
3. (10 points) Prove that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions and $A \subset Z$ is a subset, then

$$
f^{-1}\left(g^{-1}(A)\right)=(g \circ f)^{-1}(A)
$$

For Questions 4-5 below, recall that Binary space is the set B of all infinite sequences of the form $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$, where $x_{n} \in\{0,1\}$ for each $n \in \mathbb{N}$. In class we saw that B is uncountable.
4. (10 points) Let $Z \subset B$ be the subset of Binary space consisting of all sequences that are eventually 0 . That is Z consists of all points $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ in B with the property that there exists $K \in \mathbb{N}$ such that $x_{i}=0$ for all $i \geq K$. Is Z countable or uncountable? Justify your answer.
5. (10 points) Recall that Fibonacci space F is the subset of B consisting of all points $x=$ $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ in B such that if $n \in \mathbb{N}$ and $x_{n}=1$ then $x_{n+1}=0$? Prove that F is uncountable by describing a bijection $h: B \rightarrow F$. (It would be tedious to write down a precise formula for h; instead just give a clear explanation of how the function h is defined an why it is bijective).

For the remaining questions, recall that a function $f: X \rightarrow Y$ between topological spaces is continuous if $f^{-1}(U)$ is open for every open set $U \subset Y$.
6. (10 points) Using the above definition, prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is continuous (where \mathbb{R} is given the standard topology).
7. (10 points) Suppose $f: X \rightarrow Y$ is a continuous function, $A \subset X$, and $p \in X$. Prove that if p is a limit point of A and $f(p) \notin f(A)$, then $f(p)$ is a limit point of $f(A)$.

Recall that a function $f: X \rightarrow Y$ is said to be continuous at the point $p \in X$ if for every neighborhood U of $f(p)$ there exists a neighborhood V of p such that $f(V) \subset U$.
8. (10 points) Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at precisely one point (where \mathbb{R} has the standard topology).
9. (10 points) Let $f: X \rightarrow Y$ be a function of topological spaces. Prove that f is continuous if and only if f is continuous at p for each point $p \in X$.
10. Let X be a topological space, and suppose that $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ are both continuous functions (where \mathbb{R} has the standard topology).
(a) (10 points) Prove that the set $\{x \in X \mid f(x) \leq g(x)\}$ is closed in X.
(b) (10 points) Let $h: X \rightarrow \mathbb{R}$ be the function $h(x)=\min \{f(x), g(x)\}$. Prove h is continuous.

