Math 3200: Intro to Topology – Homework 5

Due (at the start of class): Thursday, February 11

This assignment has 8 questions for a total of 100 points. Justify all your answers.

- 1. (10 points) Prove or give a counter example: In a metric space (X, d), for each $\epsilon > 0$ and $p \in X$, the closed ball $\overline{B}(p, \epsilon)$ is the closure of the open ball $B(p, \epsilon)$.
- 2. (10 points) Let (X, d) be a metric space and let $A \subset X$ be a subset. Prove that A is closed in X if and only if whenever $\{p_i\}_{i=1}^{\infty}$ is a sequence in A that converges to a point $q \in X$, it follows that $q \in A$.

For **Questions 3–4**, recall that a topological space (X, \mathcal{T}) is said to be **Hausdorff** if for all $p, q \in X$ with $p \neq q$, there exists a neighborhood U of p and a neighborhood V of q such that $U \cap V = \emptyset$.

- 3. (10 points) Let X be a Hausdorff topological space. Prove that if $\{p_i\}_{i=1}^{\infty}$ is a sequence in X that converges to the point $p \in X$ and also converges to the point $q \in X$, then p = q.
- 4. (10 points) Prove or give a counterexample: If A is a subset of a Hausdorff topological space X and p is a limit point of \overline{A} , then p is a limit point of A.

For **Question 5**, Recall that a set S of real numbers is said to be **bounded below** if there exists $b \in \mathbb{R}$ such that $b \leq x$ for all $x \in S$. Any such number b is said to be a **lower bound** for S. A lower bound $g \in \mathbb{R}$ is said to be a **greatest lower bound** for S if $g \geq b$ for every lower bound b of S. It is a property of the real numbers that every subset $S \subset \mathbb{R}$ that is bounded below has a unique greatest lower bound. This greatest lower bound is called the **infimum** of S and denoted $\inf(S)$. Note that $\inf(S)$ is characterized by the property that $\inf(S)$ is a lower bound and that for all $\epsilon > 0$, $\inf(S) + \epsilon$ is NOT a lower bound for S.

5. (10 points) Let A be a subset of a metric space (X, d). For $p \in X$, define

$$d(p, A) := \inf\{d(p, x) \mid x \in A\}.$$

(Note that the infimum exists because 0 is a lower bound for $\{d(p,x) \mid x \in A\}$). Prove that d(y,A) = 0 if and only if $y \in \overline{A}$.

- 6. (10 points) Prove or give a counter example: If C is a non-empty, closed subset of a metric space (X, d) and $p \in X \setminus C$, then there exists $q \in C$ such that $d(p, q) \leq d(p, x)$ for all $x \in C$.
- 7. Choose a relation \subset , \supset , or = to place in each blank below so that the statement holds for every function $f: X \to Y$ between sets X and Y. Justify your answer. Moreover, if your answer is not "=", then provide an example showing that equality need not hold.
 - (a) (10 points) For every subset $A \subset X$, one has $A = f^{-1}(f(A))$.
 - (b) (10 points) For every subset $B \subset Y$, one has $B _ f(f^{-1}(B))$.
 - (c) (10 points) For all subsets $A_1, A_2 \subset X$, one has $f(A_1) \cap f(A_2) = f(A_1 \cap A_2)$.
- 8. (10 points) Let X bet a three-element, set $X = \{a, b, c\}$. Equip X with the topology $\mathcal{T} = \{\emptyset, X, \{a\}, \{b, c\}\}$. Let $U = \{a, b\}$ and $V = \{c\}$. What are U', \overline{U}, V' , and \overline{V} ?