Math 3200: Intro to Topology - Homework 5
 Due (at the start of class): Thursday, February 11

This assignment has 8 questions for a total of 100 points. Justify all your answers.

1. (10 points) Prove or give a counter example: In a metric space (X, d), for each $\epsilon>0$ and $p \in X$, the closed ball $\bar{B}(p, \epsilon)$ is the closure of the open ball $B(p, \epsilon)$.
2. (10 points) Let (X, d) be a metric space and let $A \subset X$ be a subset. Prove that A is closed in X if and only if whenever $\left\{p_{i}\right\}_{i=1}^{\infty}$ is a sequence in A that converges to a point $q \in X$, it follows that $q \in A$.

For Questions 3-4, recall that a topological space (X, \mathcal{T}) is said to be Hausdorff if for all $p, q \in X$ with $p \neq q$, there exists a neighborhood U of p and a neighborhood V of q such that $U \cap V=\emptyset$.
3. (10 points) Let X be a Hausdorff topological space. Prove that if $\left\{p_{i}\right\}_{i=1}^{\infty}$ is a sequence in X that converges to the point $p \in X$ and also converges to the point $q \in X$, then $p=q$.
4. (10 points) Prove or give a counterexample: If A is a subset of a Hausdorff topological space X and p is a limit point of \bar{A}, then p is a limit point of A.

For Question 5, Recall that a set S of real numbers is said to be bounded below if there exists $b \in \mathbb{R}$ such that $b \leq x$ for all $x \in S$. Any such number b is said to be a lower bound for S. A lower bound $g \in \mathbb{R}$ is said to be a greatest lower bound for S if $g \geq b$ for every lower bound b of S. It is a property of the real numbers that every subset $S \subset \mathbb{R}$ that is bounded below has a unique greatest lower bound. This greatest lower bound is called the infimum of S and denoted $\inf (S)$. Note that $\inf (S)$ is characterized by the property that $\inf (S)$ is a lower bound and that for all $\epsilon>0, \inf (S)+\epsilon$ is not a lower bound for S.
5. (10 points) Let A be a subset of a metric space (X, d). For $p \in X$, define

$$
d(p, A):=\inf \{d(p, x) \mid x \in A\} .
$$

(Note that the infimum exists because 0 is a lower bound for $\{d(p, x) \mid x \in A\}$). Prove that $d(y, A)=0$ if and only if $y \in \bar{A}$.
6. (10 points) Prove or give a counter example: If C is a non-empty, closed subset of a metric space (X, d) and $p \in X \backslash C$, then there exists $q \in C$ such that $d(p, q) \leq d(p, x)$ for all $x \in C$.
7. Choose a relation \subset, \supset, or $=$ to place in each blank below so that the statement holds for every function $f: X \rightarrow Y$ between sets X and Y. Justify your answer. Moreover, if your answer is not "=", then provide an example showing that equality need not hold.
(a) (10 points) For every subset $A \subset X$, one has $A _f^{-1}(f(A))$.
(b) (10 points) For every subset $B \subset Y$, one has $B-f\left(f^{-1}(B)\right)$.
(c) (10 points) For all subsets $A_{1}, A_{2} \subset X$, one has $f\left(A_{1}\right) \cap f\left(A_{2}\right)-f\left(A_{1} \cap A_{2}\right)$.
8. (10 points) Let X bet a three-element, set $X=\{a, b, c\}$. Equip X with the topology $\mathcal{T}=\{\emptyset, X,\{a\},\{b, c\}\}$. Let $U=\{a, b\}$ and $V=\{c\}$. What are $U^{\prime}, \bar{U}, V^{\prime}$, and \bar{V} ?

