Math 3200: Intro to Topology – Homework 4

Due (at the start of class): Thursday, February 4

This assignment has 4 questions for a total of 110 points. Justify all of your answers.

1. In \mathbb{R} , let \mathcal{B}_{ℓ} be the collection

$$\mathcal{B}_{\ell} := \{ [a, b) \subset \mathbb{R} \mid a, b \in \mathbb{R} \text{ and } a < b \}.$$

- (a) (10 points) Prove that \mathcal{B}_{ℓ} is a basis for a topology on \mathbb{R} .
- (b) (10 points) Let \mathbb{R}_{ℓ} denote the set \mathbb{R} equipped with the topology generated by \mathcal{B}_{ℓ} ; we call this the *lower limit topology*. Determine whether the lower limit topology is *finer*, *coarser*, equal to, or not comparable to the standard topology on \mathbb{R} .
- (c) (10 points) In the topological space \mathbb{R}_{ℓ} , determine the set of limit points of $A = (0, 1) \cup \{2\}$.
- 2. (10 points) Recall that a subset A in a topological space X is said to be **dense** if $\overline{A} = X$. Prove that the set \mathbb{Q} of rational numbers is dense in \mathbb{R} (with the standard topology).
- 3. Choose a relation \subset , \supset , or = to place in each blank below so that the statement holds for every topological space X and all subsets $A, B \subset X$. Justify your answer. Moreover, if your answer is not "=", then provide an example showing that equality need not hold.
 - (a) (10 points) $\operatorname{Cl}(X \setminus A) \ _ \ X \setminus \operatorname{Int}(A)$
 - (b) (10 points) $\overline{A} \cup \overline{B} _ \overline{A \cup B}$
 - (c) (10 points) $\overline{A} \cap \overline{B} _ \overline{A \cap B}$
- 4. (40 points) Let A and B be subsets of a topological space X. For each statement below, either provide a proof (if it is true) or a counterexample (if it is false).
 - (a) If p is a limit point of A or p is a limit point of B, then p is a limit point of $A \cup B$.
 - (b) If p is a limit point of $A \cap B$, the p is a limit point of A and p is a limit point of B.
 - (c) If p is a limit point of A and p is a limit point of B, then p is a limit point of $A \cap B$.
 - (d) If p is a limit point of $A \cup B$, then p is a limit point of A or p is a limit point of B.