Math 3200: Intro to Topology – Homework 3

Due (at the start of class): Thursday, January 28

This assignment has 9 questions for a total of 90 points.

- 1. (10 points) Give an example of an infinite collection of open subsets of \mathbb{R}^m (with the standard metric) whose intersection is not open.
- 2. (10 points) Give an example of an infinite collection of closed subsets of \mathbb{R}^m (with the standard metric) whose union is not closed.

In questions 3–7, let (X, d) be a metric space.

- 3. (10 points) Let V be an open subset of X and let $x \in V$. Prove that $V \setminus \{x\}$ is an open subset of X.
- 4. (10 points) Let $p \in X$ and r > 0. Prove that the closed ball $\overline{B}(p,r)$ is a closed subset of X.
- 5. (10 points) Show that the complement of a finite subset of X is open. That is, let $F = \{x_1, \ldots, x_k\}$ be a subset of X. Prove that the complement $X \setminus F = \{y \in X \mid y \notin F\}$ is an open subset of X.
- 6. (10 points) Let $p, q \in X$ with $p \neq q$. Prove that there exists open subsets U_1 and U_2 of X such that $p \in U_1, q \in U_2$, and $U_1 \cap U_2 = \emptyset$.
- 7. (10 points) Let A be a subset of X. Suppose there exists D > 0 such that whenever $x, y \in A$ and $x \neq y$, then $d(x, y) \geq D$. Either prove that A is a closed subset of (X, d), or else construct a counter example showing that A need not be closed. Sometimes the set A is called the *set of guests at a bad party*.

In questions 8–9, let (X, \mathcal{T}) be a topological space.

- 8. (10 points) Prove that the intersection of any collection of closed subsets of X is closed.
- 9. (10 points) Suppose that A is a subset of X such that for every $x \in A$ there is an open set U containing x such that $U \subset A$. Prove that A is an open set in (X, \mathcal{T}) .