Math 3200: Intro to Topology - Homework 3
Due (at the start of class): Thursday, January 28
This assignment has 9 questions for a total of $\mathbf{9 0}$ points.

1. (10 points) Give an example of an infinite collection of open subsets of \mathbb{R}^{m} (with the standard metric) whose intersection is not open.
2. (10 points) Give an example of an infinite collection of closed subsets of \mathbb{R}^{m} (with the standard metric) whose union is not closed.

In questions 3-7, let (X, d) be a metric space.
3. (10 points) Let V be an open subset of X and let $x \in V$. Prove that $V \backslash\{x\}$ is an open subset of X.
4. (10 points) Let $p \in X$ and $r>0$. Prove that the closed ball $\bar{B}(p, r)$ is a closed subset of X.
5. (10 points) Show that the complement of a finite subset of X is open. That is, let $F=$ $\left\{x_{1}, \ldots, x_{k}\right\}$ be a subset of X. Prove that the compliment $X \backslash F=\{y \in X \mid y \notin F\}$ is an open subset of X.
6. (10 points) Let $p, q \in X$ with $p \neq q$. Prove that there exists open subsets U_{1} and U_{2} of X such that $p \in U_{1}, q \in U_{2}$, and $U_{1} \cap U_{2}=\emptyset$.
7. (10 points) Let A be a subset of X. Suppose there exists $D>0$ such that whenever $x, y \in A$ and $x \neq y$, then $d(x, y) \geq D$. Either prove that A is a closed subset of (X, d), or else construct a counter example showing that A need not be closed. Sometimes the set A is called the set of guests at a bad party.

In questions 8-9, let (X, \mathcal{T}) be a topological space.
8. (10 points) Prove that the intersection of any collection of closed subsets of X is closed.
9. (10 points) Suppose that A is a subset of X such that for every $x \in A$ there is an open set U containing x such that $U \subset A$. Prove that A is an open set in (X, \mathcal{T}).

