Math 3200: Intro to Topology – Homework 2

Due (at the start of class): Thursday, January 21

This assignment has 5 questions for a total of 60 points.

1. (10 points) Fix real numbers a < b, and let \mathcal{F} be the set of all continuous functions $f: [a, b] \to \mathbb{R}$. For $f, g \in \mathcal{F}$, define

$$d(f,g) := \int_a^b |f(x) - g(x)| \, dx$$

Using appropriate theorems from calculus, prove that (\mathcal{F}, d) is a metric space.

In the problems below, let d denote the standard Euclidean distance function on \mathbb{R}^n .

2. (10 points) If $p, q \in \mathbb{R}^n$, $p \neq q$, and $r = \frac{1}{2}d(p,q)$, prove that

$$\overline{B}(p,r) \cap B(q,r) = \emptyset.$$

3. (10 points) Suppose $p, q \in \mathbb{R}^n$ are such that $p \neq q$. Prove that there exits r > 0 such that

$$\overline{B}(p,r) \cap \overline{B}(q,r) = \emptyset$$

4. (10 points) For $x, y \in \mathbb{R}^n$ and $0 \le t \le 1$, set p := x + t(y - x). Prove that

$$d(x,p) + d(p,y) = d(x,y).$$

5. Let d be the standard Euclidean distance on \mathbb{R}^2 (as above), and let d_T be the *taxicab* distance function on \mathbb{R}^2 defined by

$$d_T(x,y) = |x_1 - y_1| + |x_2 - y_2|$$
, for $x = (x_1, x_2)$ and $y = (y_1, y_2)$.

(a) (10 points) Prove that for all $x, y \in \mathbb{R}^2$ one has:

$$\frac{1}{2} d_T(x,y) \le d(x,y) \le \sqrt{2} d_T(x,y).$$

(*Hint:* Think about the maximum metric d_M .)

(b) (10 points) Let A be a subset of \mathbb{R}^2 . Prove that A is open in the metric space (\mathbb{R}^2, d) if and only if A is open in the metric space (\mathbb{R}^2, d_T) .