This assignment has 5 questions for a total of 60 points.

1. (10 points) Fix real numbers $a<b$, and let \mathcal{F} be the set of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$. For $f, g \in \mathcal{F}$, define

$$
d(f, g):=\int_{a}^{b}|f(x)-g(x)| d x .
$$

Using appropriate theorems from calculus, prove that (\mathcal{F}, d) is a metric space.
In the problems below, let d denote the standard Euclidean distance function on \mathbb{R}^{n}.
2. (10 points) If $p, q \in \mathbb{R}^{n}, p \neq q$, and $r=\frac{1}{2} d(p, q)$, prove that

$$
\bar{B}(p, r) \cap B(q, r)=\emptyset .
$$

3. (10 points) Suppose $p, q \in \mathbb{R}^{n}$ are such that $p \neq q$. Prove that there exits $r>0$ such that

$$
\bar{B}(p, r) \cap \bar{B}(q, r)=\emptyset
$$

4. (10 points) For $x, y \in \mathbb{R}^{n}$ and $0 \leq t \leq 1$, set $p:=x+t(y-x)$. Prove that

$$
d(x, p)+d(p, y)=d(x, y)
$$

5. Let d be the standard Euclidean distance on \mathbb{R}^{2} (as above), and let d_{T} be the taxicab distance function on \mathbb{R}^{2} defined by

$$
d_{T}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|, \quad \text { for } x=\left(x_{1}, x_{2}\right) \text { and } y=\left(y_{1}, y_{2}\right) .
$$

(a) (10 points) Prove that for all $x, y \in \mathbb{R}^{2}$ one has:

$$
\frac{1}{2} d_{T}(x, y) \leq d(x, y) \leq \sqrt{2} d_{T}(x, y)
$$

(Hint: Think about the maximum metric d_{M}.)
(b) (10 points) Let A be a subset of \mathbb{R}^{2}. Prove that A is open in the metric space $\left(\mathbb{R}^{2}, d\right)$ if and only if A is open in the metric space $\left(\mathbb{R}^{2}, d_{T}\right)$.

