Math 3200: Intro to Topology – In-class presentation challenge problems

Here^{*} are some challenge problems. Please let me know if you would like to volunteer to present a **clear and well-thought-out** solution to the class. Good presentations will earn bonus points for the homework.

I – General questions

- 1. Let X be an uncountable set with the countable complement topology and let $A \subset X$. Describe A' and Int(A) and Cl(A) in the cases that (i) A is finite, (ii) A is countably infinite, and (iii) A is uncountable.
- 2. Prove or give a counterexample: If A is a subset of a topological space X, then the derived set A' is closed.
- 3. Does Sequence Proposition 2 ($q \in \overline{A} \iff$ there is a sequence in A converging to q) hold in arbitrary topological spaces? Provide a proof or counterexample.
- 4. Does Sequence Proposition 3 ($q \in A' \iff$ there is a sequence with distinct terms in A converging to A) hold in arbitrary Hausdorff spaces? Provide a proof or counterexample.
- 5. Is Fibonacci space homeomorphic to Binary space?
- 6. Let *B* be Binary space. Is *B* homeomorphic to $B \times B$? Note: This problem was mostly explained in class, though some details were omitted. If you would still like to present this problem (for perhaps less bonus than other problems), please give a very clear and to-the-point presentation that fills in all the details.
- 7. Prove or give a counterexample: If A and B are compact subsets of a topological space, then $A \cap B$ is compact.
- 8. Prove or give a counterexample: If C is a non-empty, closed subset of \mathbb{R}^n (with the standard metric) and $p \in \mathbb{R}^n \setminus C$, then there exists $q \in C$ such that for every $x \in C$, $d(p,q) \leq d(p,x)$. (That is, there is a point of c closest to p.)
- 9. Prove or disprove. If X is a topological space, then following statements are equivalent:
 - 1. For every $p \in X$, $\{p\}$ is closed in X.
 - 2. For every $A \subset X$, the derived set A' is closed in X.
- 10. If X is a compact and Hausdorff topological space, is it true that every sequence in X has a convergent subsequence? Provide a proof or counterexample.

^{*}This list is from April 5, 2016; for the most up-to-date and expansive list, check the course webpage

II – Variation on countable complement topology

Let X be an uncountable set and fix a point $p \in X$. Define \mathcal{T} to be the set of all subsets U of X such that either

- $p \in U$ and $X \setminus U$ is countable, or
- $p \notin U$

Prove or disprove the following:

11. \mathcal{T} is a topology.

12. \mathcal{T} is closed under countable intersections

13. (X, \mathcal{T}) is Hausdorff

- 14. No sequence of distinct terms in X (with the topology \mathcal{T}) converges.
- 15. The point p is a limit point of X (with the topology \mathcal{T}). In fact $X' = \{p\}$

III – Answer Space

Let B be Binary space and let $S = \{y, n\}$ be a set with exactly two elements ("yes" and "no"). Define Answer space A to be the set of all functions from B to S. That is $A = \{f : B \to \{y, n\}\}$.

(Intuitively, any question q can be encoded into an infinite string of 0's and 1's; that is q is a point of B. If $f \in A$, then $f(q) \in S$ is an answer to the question q. Thus A consists of all answers to all "yes"-or-"no" questions.)

Define a topology on A as follows. First, a *basic open subset of* A is a set of the form $U_{(F,f)}$, where F is a finite subset of B, $f \in A$, and $g \in A$ is in $U_{(F,f)}$ if and only if g(x) = f(x) for all $x \in F$. The, open sets in A are those that are arbitrary unions of basic open sets.

Define the Yes Man to be the element $\gamma \in A$ such that $\gamma(x) = y$ for all $x \in B$. Define the Mostly No subspace M of A by $\varphi \in M$ if and only if $\varphi(x) = n$ for all but finitely many $x \in B$.

Prove or disprove the following:

- 16. $U_{(F,f)} = U_{(F,g)}$ for all $g \in U_{(F,f)}$.
- 17. $U_{(F_1,f)} \cap U_{(F_2,f)} = U_{(F_1 \cap F_2,f)}$
- 18. If we include the empty set in the topology defined above, then we have indeed defined a topology on A. (In the remaining problems, we understand A to be endowed with the topology just described).
- 19. A is Hausdorff

20.
$$\gamma \in \overline{M}$$

- 21. No sequence in M converges to γ
- 22. Extra extra credit: A is compact

IV – Answer Space with a different topology

Suppose we define a different topology on A by replacing the finite subsets F of B in the discussion above by *compact* subsets F of B.

23. Investigate all of the questions in the previous problem with respect to this new topology on A (if indeed it is a topology).

V – Order completeness of Binary space

Define a relation \leq on Binary space B as follows. If $x = (x_1, x_2, x_3, ...)$ and $y = (y_1, y_2, y_3, ...)$ are points of B, then $x \leq y$ if and only if

- x = y, or
- $x \neq y$ and $x_n < y_n$ where $n = \min\{i \in \mathbb{N} \mid x_i \neq y_i\}$
- 24. Verify that \leq satisfies the following properties:
 - 1. For every $x, y \in B$, either $x \leq y$ or $y \leq x$.
 - 2. For every $x, y \in B$, if $x \leq y$ and $y \leq x$, then x = y.
 - 3. For every $x, y, z \in B$, if $x \le y \le z$, then $x \le z$.
- 25. Show that (B, \leq) is order complete in the following sense. If $\{x_i\}_{i=1}^{\infty}$ is a sequence of points in B that is increasing (i.e., $x_1 \leq x_2 \leq x_3 \leq \cdots$), then $\{x_i\}_{i=1}^{\infty}$ converges in B.
- 26. Using the binary representation of real numbers and the order completeness of B, prove that [0,1] is order complete.