Math 3200: Intro to Topology - In-class presentation challenge problems

Here* are some challenge problems. Please let me know if you would like to volunteer to present a clear and well-thought-out solution to the class. Good presentations will earn bonus points for the homework.

I - General questions

1. Let X be an uncountable set with the countable complement topology and let $A \subset X$. Describe A^{\prime} and $\operatorname{Int}(A)$ and $\mathrm{Cl}(A)$ in the cases that (i) A is finite, (ii) A is countably infinite, and (iii) A is uncountable.
2. Prove or give a counterexample: If A is a subset of a topological space X, then the derived set A^{\prime} is closed.
3. Does Sequence Proposition $2(q \in \bar{A} \Longleftrightarrow$ there is a sequence in A converging to $q)$ hold in arbitrary topological spaces? Provide a proof or counterexample.
4. Does Sequence Proposition $3\left(q \in A^{\prime} \Longleftrightarrow\right.$ there is a sequence with distinct terms in A converging to A) hold in arbitrary Hausdorff spaces? Provide a proof or counterexample.
5. Is Fibonacci space homeomorphic to Binary space?
6. Let B be Binary space. Is B homeomorphic to $B \times B$? Note: This problem was mostly explained in class, though some details were omitted. If you would still like to present this problem (for perhaps less bonus than other problems), please give a very clear and to-the-point presentation that fills in all the details.
7. Prove or give a counterexample: If A and B are compact subsets of a topological space, then $A \cap B$ is compact.
8. Prove or give a counterexample: If C is a non-empty, closed subset of \mathbb{R}^{n} (with the standard metric) and $p \in \mathbb{R}^{n} \backslash C$, then there exists $q \in C$ such that for every $x \in C, d(p, q) \leq d(p, x)$. (That is, there is a point of c closest to p.)
9. Prove or disprove. If X is a topological space, then following statements are equivalent:
10. For every $p \in X,\{p\}$ is closed in X.
11. For every $A \subset X$, the derived set A^{\prime} is closed in X.
12. If X is a compact and Hausdorff topological space, is it true that every sequence in X has a convergent subsequence? Provide a proof or counterexample.
[^0]
II - Variation on countable complement topology

Let X be an uncountable set and fix a point $p \in X$. Define \mathcal{T} to be the set of all subsets U of X such that either

- $p \in U$ and $X \backslash U$ is countable, or
- $p \notin U$

Prove or disprove the following:
11. \mathcal{T} is a topology.
12. \mathcal{T} is closed under countable intersections
13. (X, \mathcal{T}) is Hausdorff
14. No sequence of distinct terms in X (with the topology \mathcal{T}) converges.
15. The point p is a limit point of X (with the topology \mathcal{T}). In fact $X^{\prime}=\{p\}$

III - Answer Space

Let B be Binary space and let $S=\{y, n\}$ be a set with exactly two elements ("yes" and "no"). Define Answer space A to be the set of all functions from B to S. That is $A=\{f: B \rightarrow\{y, n\}\}$.
(Intuitively, any question q can be encoded into an infinite string of 0 's and 1 's; that is q is a point of B. If $f \in A$, then $f(q) \in S$ is an answer to the question q. Thus A consists of all answers to all "yes"-or-"no" questions.)
Define a topology on A as follows. First, a basic open subset of A is a set of the form $U_{(F, f)}$, where F is a finite subset of $B, f \in A$, and $g \in A$ is in $U_{(F, f)}$ if and only if $g(x)=f(x)$ for all $x \in F$. The, open sets in A are those that are arbitrary unions of basic open sets.

Define the Yes Man to be the element $\gamma \in A$ such that $\gamma(x)=y$ for all $x \in B$. Define the Mostly No subspace M of A by $\varphi \in M$ if and only if $\varphi(x)=n$ for all but finitely many $x \in B$.
Prove or disprove the following:
16. $U_{(F, f)}=U_{(F, g)}$ for all $g \in U_{(F, f)}$.
17. $U_{\left(F_{1}, f\right)} \cap U_{\left(F_{2}, f\right)}=U_{\left(F_{1} \cap F_{2}, f\right)}$
18. If we include the empty set in the topology defined above, then we have indeed defined a topology on A. (In the remaining problems, we understand A to be endowed with the topology just described).
19. A is Hausdorff
20. $\gamma \in \bar{M}$
21. No sequence in M converges to γ
22. Extra extra credit: A is compact

IV - Answer Space with a different topology

Suppose we define a different topology on A by replacing the finite subsets F of B in the discussion above by compact subsets F of B.
23. Investigate all of the questions in the previous problem with respect to this new topology on A (if indeed it is a topology).

V - Order completeness of Binary space

Define a relation \leq on Binary space B as follows. If $x=\left(x_{1}, x_{2}, x_{3} \ldots\right)$ and $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ are points of B, then $x \leq y$ if and only if

- $x=y$, or
- $x \neq y$ and $x_{n}<y_{n}$ where $n=\min \left\{i \in \mathbb{N} \mid x_{i} \neq y_{i}\right\}$

24 . Verify that \leq satisfies the following properties:

1. For every $x, y \in B$, either $x \leq y$ or $y \leq x$.
2. For every $x, y \in B$, if $x \leq y$ and $y \leq x$, then $x=y$.
3. For every $x, y, z \in B$, if $x \leq y \leq z$, then $x \leq z$.
4. Show that (B, \leq) is order complete in the following sense. If $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a sequence of points in B that is increasing (i.e., $x_{1} \leq x_{2} \leq x_{3} \leq \cdots$), then $\left\{x_{i}\right\}_{i=1}^{\infty}$ converges in B.
5. Using the binary representation of real numbers and the order completeness of B, prove that $[0,1]$ is order complete.

[^0]: *This list is from April 5, 2016; for the most up-to-date and expansive list, check the course webpage

