Math 7210: Riemannian Geometry - Homework 2

Due in class: Wednesday, September 4, 2019

1. (from $\# 0.5$ of do Carmo) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be given by

$$
f(x, y, z)=\left(x^{2}-y^{2}, x y, x z, y z\right), \quad(x, y, z)=p \in \mathbb{R}^{3} .
$$

Let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere with the origin $0 \in \mathbb{R}^{3}$. Observe that the restriction $\varphi=\left.F\right|_{S^{2}}$ is such that $\varphi(p)=\varphi(-p)$, and consier the mapping $\tilde{\varphi}: P^{2}(\mathbb{R}) \rightarrow \mathbb{R}^{4}$ given by

$$
\tilde{\varphi}([p])=\varphi(p), \quad[p]=\text { equiv. class of } p=\{p,-p\}
$$

Prove that
(a) $\tilde{\varphi}$ is an immersion.
(b) $\tilde{\varphi}$ is injective; together with (a) and the compactness of $P^{2}(\mathbb{R})$, this implies that $\tilde{\varphi}$ is an embedding.
2. (from $\# 0.8$ of do Carmo) Let M and N be differentiable manifolds and let $\varphi: M \rightarrow N$ be a local diffeomorphism. Prove that if N is orientable, then M is orientable.
3. (from $\# 0.9$ of do Carmo) Let $G \times M \rightarrow M$ be a properly discontinuous action of a group G on a differentiable manifold M.
(a) Prove that the manifold M / G (Example 4.8) is orientable if and only if there exists an orientation of M that is preserved by all the diffeomorphisms of G.
(b) Use (a) to show that the projective plane $P^{2}(\mathbb{R})$, the Klein bottle and the Möbius band are non-orientable.
(c) Prove that $P^{n}(\mathbb{R})$ is orientable if and only if n is odd.
4. Let X, Y, Z be the vector fields on \mathbb{R}^{3} given by

$$
X=z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}, \quad Y=x \frac{\partial}{\partial z}-z \frac{\partial}{\partial x}, \quad Z=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} .
$$

(a) Show that the map $L: \mathbb{R}^{3} \rightarrow \Gamma\left(\mathbb{R}^{3}\right)$ deined by $(a, b, c) \mapsto a X+b Y+c Z$ is an isomorphism from \mathbb{R}^{3} onto a subspace of the vector space $\Gamma\left(\mathbb{R}^{3}\right)$ of vector fields on \mathbb{R}^{3}.
(b) Show that, under this isomorphism, the bracket of vector fields corresponds to the cross product of vectors in \mathbb{R}^{3}; that is, show $L((a, b, c) \times(d, e, f))=[L(a, b, c), L(d, e, f)]$.
(c) Compute the flow of the vector field $a X+b Y+c Z$.

