Math 7210: Riemannian Geometry - Homework 1

Due in class: Wednesday, August 28, 2019

For M a smooth manifold and $p \in M$, recall that $C_{p}^{\infty}(M)$ denotes the set of germs of smooth functions at p. That is, $C_{p}^{\infty}(M)$ is the set of equivalence classes of pairs (U, f), where $U \subset M$ is an open neighborhood of p and $f: U \rightarrow \mathbb{R}$ is smooth, and two pairs $(U, f),(V, g)$ are equivalent if f and g agree on a neighborhood of p. Recall that a derivation of M at p is a linear function $D: C_{p}^{\infty}(M) \rightarrow \mathbb{R}$ that satisfies the Leibniz rule:

$$
D(f g)=f(p) D(g)+g(p) D(f), \quad \text { for all } f, g \in C_{p}^{\infty}(M)
$$

The set of derivations of M at p is an \mathbb{R}-vector space and is denoted $\mathcal{D}_{p}^{\infty}(M)$.

1. Let M be a smooth manifold and let $p \in M$ be a point. Show that if $D: C_{p}^{\infty}(M) \rightarrow \mathbb{R}$ is a derivation of M at p, then $D(c)=0$ for any constant function c.

From calculus, we know that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a, then we may write $f(x)=f(a)+$ $g(x)(x-a)$ for some function $g: \mathbb{R} \rightarrow \mathbb{R}$ with $g(a)=f^{\prime}(a)$. In higher dimensions, Taylor's theorem with remainder says that for any smooth function $f: B_{r}(p) \rightarrow \mathbb{R}$ defined on the ball of radius $r>0$ about $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{n}$, we may write

$$
f(x)=f(p)+\sum_{i=1}^{n} g_{i}(x)\left(x_{i}-p_{i}\right)
$$

for some smooth functions $g_{1}, \ldots, g_{n}: B_{r}(p) \rightarrow \mathbb{R}$ whose values at p are given by $g_{i}(p)=\frac{\partial f}{\partial x_{i}}(p)$.
2. Let $p=\left(p_{1}, \ldots, p_{n}\right)$ be a point in the manifold \mathbb{R}^{n}. We saw in class that for each $i=1, \ldots, n$, the $i^{\text {th }}$ partial derivative $\frac{\partial}{\partial x_{i}}$ (at p) is a derivation of \mathbb{R}^{n} at p. In this problem you will prove that the set $\beta=\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$ is a basis for the vector space $\mathcal{D}_{p}\left(\mathbb{R}^{n}\right)$ of derivations at p.
(a) (easy) Show that β is a linearly independent subset of $\mathcal{D}_{p}(M)$.
(b) (harder) Show that β spans $\mathcal{D}_{p}(M)$.
(Hint: Use Taylor's theorem with remainder, above.)
3. (Exercise 0.1 of do Carmo) Let M and N be differentiable manifolds, and let $\left\{\left(U_{\alpha}, \mathbf{x}_{\alpha}\right)\right\}$, $\left\{\left(V_{\beta}, \mathbf{y}_{\beta}\right)\right\}$ be differentiable structures on M and N, respectively. Consider the cartesian product $M \times N$ and the mappings $\mathbf{z}_{\alpha \beta}(p, q)=\left(\mathbf{x}_{\alpha}(p), \mathbf{y}_{\beta}(q)\right), p \in U_{\alpha}, q \in V_{\beta}$. Prove that $\left\{\left(U_{\alpha} \times V_{\alpha}, \mathbf{z}_{\alpha \beta}\right)\right\}$ is a differentiable structure on $M \times N$ in which the projections $\pi_{1}: M \times N \rightarrow M$ and $\pi_{2}: M \times N \rightarrow N$ are differentiable. With this differentiable structure $M \times N$ is called the product manifold of M with N.

