Distribution Measures for Pointsets on the Sphere
Peter J. Grabner
Technical University of Graz
Austria

Let S^d be the unit sphere in \mathbb{R}^{d+1} and x_1, \ldots, x_N be N points in S^d (for some notions used later, we will need that the points are pairwise distinct).

There are essentially two types of measures for quality of the distribution of N points in S^d:

- “combinatorial” measures:
 - discrepancy:
 \[
 D_N^C(x_n) = \sup_{A \in \mathcal{C}} \left| \frac{1}{N} \sum_{n=1}^{N} \chi_A(x_n) - \sigma_d(A) \right|
 \]
 where \mathcal{C} is any “suitable” system of subsets of S^d, for instance caps or slices. σ_d denotes the normalized surface measure.
 - dispersion:
 \[
 \delta_N(x_n) = \sup_{x \in S^d} \min_{k} |x - x_k|,
 \]
 i.e. the radius of the largest spherical cap not containing any point x_n

- “analytical” measures:
 - error in equal weight numerical integration:
 \[
 I_N(f) = \left| \sum_{n=1}^{N} f(x_n) - \int_{S^d} f(x) \, d\sigma_d(x) \right|
 \]
 - Lipschitz-discrepancy:
 \[
 \sup_{f \in \text{Lip}_1} I_N(f),
 \]
 where Lip_1 denotes the set of all continuous functions with $|f(x) - f(y)| \leq |x - y|$.
 - energy:
 \[
 \sum_{\substack{i,j=1 \\ i \neq j}}^{N} g(|x_i - x_j|),
 \]
 where g is a monotonically decreasing function with a singularity at 0, for example $g(r) = r^{-\alpha}$.

We will discuss relations between these different measures and point out why it is especially difficult to relate “combinatorial” to “analytical” measures.