Planar hypohamiltonian graphs

Carol T. Zamfirescu
czamfirescu@gmail.com

Conference on Cycles in Graphs
Dept. Math., Vanderbilt Univ. in Nashville, TN, USA
1 June 2012
A graph G is called hypohamiltonian, if G is non-hamiltonian, but $G - v$ is hamiltonian for any $v \in V(G)$

Starting point of the study of hypohamiltonian graphs: Sousselier, 1963

Smallest hypohamiltonian graph: the Petersen graph (Kempe, 1886)

In 1966, Gallai asked whether any connected graph possesses a vertex which lies on all longest paths

Motivated by above question, denote by $C_{j}^{k} (P_{j}^{k}) \ [C_{j}^{k} (P_{j}^{k})]$ the smallest order of a [planar] k-connected graph in which any j vertices are avoided by some longest cycle (path)
Definitions and History

- $C_1^j = C_1^j = 3j + 3$ (sharp!) are given by the following simple construction (Thomassen, 1976)

- $C_2^1 = 10$ and $C_3^1 = 10$ due to Petersen’s graph
- Nothing is known for C_4^1
\[C^1_2 = 15, \text{ Thomassen (1976)} \]
\[\overline{C_3^1} \leq 124, \text{ Grünbaum (1974)} \]

- Each vertex is missed by a cycle of length \(121 = n - 3 \)
Due to a theorem of Tutte from 1956 we know that for all j

$$C^j_4 = C^j_5 = \infty$$

Chvátal asked in 1972 whether there exist planar hypohamiltonian graphs.

Grünbaum conjectured their nonexistence.

Thomassen proved in 1976 that there are infinitely many.

His smallest example has order 105, so $C^1_3 \leq 105$
Theorem (Hatzel, 1979)

There exists a planar hypohamiltonian graph on 57 vertices, and we have $C_3^1 \leq 57$, $P_3^1 \leq 224$, $C_3^2 \leq 6758$ and $P_3^2 \leq 26378$.
Theorem (CTZ and T. Zamfirescu, 2007)

There exists a planar hypohamiltonian graph on 48 vertices, and we have $C_3^1 \leq 48$, $P_3^1 \leq 188$, $C_3^2 \leq 4277$ and $P_3^2 \leq 16926$.
Theorem (Araya and Wiener, 2011)

There exists a planar hypohamiltonian graph on 42 vertices, and we have $C^1_3 \leq 42$, $P^1_3 \leq 164$, $C^2_3 \leq 3701$ and $P^2_3 \leq 14694$.
Theorem (Jooyandeh, McKay, Östergård, Pettersson, and CTZ)

There exists a planar hypohamiltonian graph on 40 vertices, and we have $C_3^1 \leq 40$, $P_3^1 \leq 156$, $C_3^2 \leq 2625$ and $P_3^2 \leq 10350$.
The Araya-Wiener Theorem

Theorem (Araya and Wiener, 2011)

There exists a planar hypohamiltonian graph on \(n \) vertices for every \(n \geq 76 \).

Theorem (CTZ)

There exists a planar hypohamiltonian graph on \(n \) vertices for every \(n \geq 48 \).
Sketch of the proof:

- Let G be a graph with a 4-cycle $(v_1, v_2, v_3, v_4) = C$. Define $\text{Th}(G^C)$ as the graph obtained from G by deleting the edges (v_1, v_4) and (v_2, v_3) and adding a new 4-cycle (v'_1, v'_2, v'_3, v'_4) and the edges (v_i, v'_i) to G.

- This operation was introduced by Thomassen in 1981, where he (essentially) proved the following:

- Let G be a planar non-hamiltonian graph having a 4-cycle $(a, b, c, d) = C$. Then $\text{Th}(G^C)$ is also a planar non-hamiltonian graph.

- Let G be a planar hypohamiltonian graph having a 4-cycle $(a, b, c, d) = C$ and suppose that the vertices a, b, c, d have degree 3. Then $\text{Th}(G^C)$ is also a planar hypohamiltonian graph.
Exemplifying the application of the Thomassen operation Th
In the following we can put $\text{Th}(G^C) = \text{Th}(G)$, as C will be unique.

Consider the following planar hypohamiltonian graphs: the Araya-Wiener graph Γ, the new 45-vertex graph Λ_{45}, the 48-vertex graph Z, and the new 51-vertex graph Λ_{51}.

Prove that $\text{Th}(\Gamma), \text{Th}(\Lambda_{45}), \text{Th}(Z), \text{and } \text{Th}(\Lambda_{51})$ are planar hypohamiltonian graphs.

Use the Thomassen operation:

- $\Gamma \leadsto 42 + 4k$
- $\Lambda_{45} \leadsto 45 + 4k$
- $Z \leadsto 48 + 4p$
- $\Lambda_{51} \leadsto 51 + 4k$
The Thomassen Operation
Grinbergian Graphs
Cubic Case and Crossing Number

Proof

Carol T. Zamfirescu, email: czamfirescu@gmail.com
TU Dortmund, Germany

Planar hypohamiltonian graphs
Theorem (Grinberg, 1968)

Given a planar graph G, a hamiltonian cycle C in G, and f_i (f'_i) i-gons inside (outside) of C, we have

$$\sum_i (i - 2)(f_i - f'_i) = 0.$$
Consider

\[I_j = \{ i \in \mathbb{N} : i \geq 3 \text{ and } i = j \text{ mod. } 3 \}, \]

and let \(P_j \) be the family of all polygons for which their number of vertices lies in \(I_j \). We call a graph Grinbergian, if it is planar and of one of the following four types.

Type 1. Every face but one belongs to \(P_2 \).

Type 2. Every face belongs to \(P_2 \), except for five quadrilaterals, one of which (i) is adjacent to the other four, and (ii) has two non-adjacent cubic vertices.

Type 3. Every face belongs to \(P_2 \), except for three faces which share a common cubic vertex and belong to the same \(P_j \), \(j \in \{0, 1\} \).

Type 4. Every face is a quadrilateral, and \(f \) is odd.
Using Grinberg’s Criterion it is easily seen that every Grinbergian graph is non-hamiltonian.

Every Grinbergian hypohamiltonian graph is either of Type 1, in which case its exceptional face belongs to P_1, or of Type 2.

Theorem (Jooyandeh, McKay, Östergård, Pettersson, and CTZ)

There exist exactly seven hypohamiltonian graphs of Type 1 which have order 42, and none on fewer vertices.
The smallest known planar **cubic** hypohamiltonian graph has 70 vertices.

Theorem (Araya and Wiener, 2011)

There exist planar cubic hypohamiltonian graphs of order \(n \) for every even \(n \geq 86 \).

Theorem (CTZ)

There exist planar cubic hypohamiltonian graphs of order \(n \) for every even \(n \geq 74 \).
Theorem (CTZ)

For every $k \geq 0$ there exists an $n_0(k)$ such that for all $n \geq n_0$ there exists a hypohamiltonian graph which has order n and crossing number k.

Closing Remarks

- There exist infinitely many planar hypohamiltonian graphs with trivial automorphism group
Theorem (CTZ)

For every $k \geq 0$ there exists an $n_0(k)$ such that for all $n \geq n_0$ there exists a hypohamiltonian graph which has order n and crossing number k.

Closing Remarks

- There exist infinitely many planar hypohamiltonian graphs with trivial automorphism group.
- By a Theorem of Thomassen planar hypohamiltonian graphs have minimum degree 3. Denote by p_k the order of the smallest planar hypohamiltonian graph G with maximum degree k. We have $44 \leq p_3 \leq 70$, $18 \leq p_4 \leq 40$, $18 \leq p_5 \leq 40$ and $18 \leq p_6 \leq 42$.

Carol T. Zamfirescu, email: czamfirescu@gmail.com