Proper Trees and Contractible Hamiltonian Cycles in Combinatorial 2-Manifolds

Ashish K. Upadhyay

Department of Mathematics, Indian Institute of Technology Patna

International Conference on Cycles in Graphs
Vanderbilt University
Nashville, Tennessee, USA
May 30 - June 2, 2012
Outline

1. Combinatorial 2-Manifolds
 - Examples
 - Dual

2. Proper Tree: Triangulated Surfaces
 - Properties
 - Results

3. Proper Tree: Polyhedral Maps
 - Properties
 - Results

4. A Remark

5. Future Work
Outline

1. Combinatorial 2-Manifolds
 - Examples
 - Dual

2. Proper Tree: Triangulated Surfaces
 - Properties
 - Results

3. Proper Tree: Polyhedral Maps
 - Properties
 - Results

4. A Remark

5. Future Work
Preliminary Terms

- **Simplicial Complex**: Let V be a finite set. A finite collection K of subsets of V is called a simplicial complex if the subset of a member of K is again a member. Each subset of K is called a face. We usually identify a 2-dimensional simplicial complex with the set of faces in it.

- **Geometric carrier**: Let X be a finite simplicial complex and $V(X) = \{v_1, \ldots, v_n\}$. Choose a set of n points $\{x_1, \ldots, x_n\}$ in \mathbb{R}^N (for some sufficiently large N) in such a way that a subset $S = \{x_{j_1}, \ldots, x_{j_{i+1}}\}$ of $i + 1$ points is affinely independent if $\sigma = \{v_{j_1}, \ldots, v_{j_{i+1}}\}$ is a simplex of X. The convex set spanned by S is called the geometric simplex corresponding to σ and denoted by $|\sigma|$.
Preliminary Terms

- **Simplicial Complex**: Let V be a finite set. A finite collection K of subsets of V is called a simplicial complex if the subset of a member of K is again a member. Each subset of K is called a face. We usually identify a 2-dimensional simplicial complex with the set of faces in it.

- **Geometric carrier**: Let X be a finite simplicial complex and $V(X) = \{v_1, \ldots, v_n\}$. Choose a set of n points $\{x_1, \ldots, x_n\}$ in \mathbb{R}^N (for some sufficiently large N) in such a way that a subset $S = \{x_{j_1}, \ldots, x_{j_{i+1}}\}$ of $i + 1$ points is affinely independent if $\sigma = \{v_{j_1}, \ldots, v_{j_{i+1}}\}$ is a simplex of X. The convex set spanned by S is called the geometric simplex corresponding to σ and denoted by $|\sigma|$.
Since $V(X)$ is finite we can choose N so that $\sigma \cap \gamma = \emptyset$ implies $|\sigma| \cap |\gamma| = \emptyset$. The set
\[X := \{ |\sigma| : \sigma \in X, \sigma \cap \gamma = \emptyset \Rightarrow |\sigma| \cap |\gamma| = \emptyset \} \]

is called a geometric simplicial complex corresponding to X or a geometric realization of X. The topological space $|X| := \cup_{\sigma \in X} |\sigma|$ is called a geometric carrier of X.

\[K := \{\{a\}, \{u\}, \{v\}, \{w\}\} \]
\[\cup \{\{au\}, \{aw\}, \{uv\}, \{uw\}, \{vw\}\} \]
\[\cup \{\{auw\}, \{uvw\}\} \]
Link of a vertex: If v is a vertex of a simplicial complex X, then the link of v in X, denoted by $\text{lk}_X(v)$ (or $\text{lk}(v)$), is the simplicial complex $\{ \tau \in X : v \notin \tau, \{v\} \cup \tau \in X \}$.

Combinatorial 2-manifold: A finite 2-dimensional simplicial complex K is called a combinatorial 2-manifold if $|K|$, i.e. the geometric carrier of K is a topological 2-manifold. It is clear that a finite simplicial complex K is a combinatorial 2-manifold if and only if link of each vertex $\text{lk}_K(v)$ in K is a cycle for each vertex v of K.
- **Link of a vertex:** If \(v \) is a vertex of a simplicial complex \(X \), then the *link* of \(v \) in \(X \), denoted by \(\text{lk}_X(v) \) (or \(\text{lk}(v) \)), is the simplicial complex \(\{ \tau \in X : v \notin \tau, \{v\} \cup \tau \in X \} \).

- **Combinatorial 2-manifold:** A finite 2-dimensional simplicial complex \(K \) is called a *combinatorial 2-manifold* if \(|K| \), i.e., the geometric carrier of \(K \) is a topological 2-manifold. It is clear that a finite simplicial complex \(K \) is a combinatorial 2-manifold if and only if link of each vertex \(\text{lk}_K(v) \) in \(K \) is a cycle for each vertex \(v \) of \(K \).
Example

Four degree-regular combinatorial 2-manifolds of positive Euler characteristic.
Example

Some degree regular orientable combinatorial 2-manifolds of Euler characteristic 0, $n \geq 7$.

$$
\begin{array}{cccccc}
3 & 4 & 5 & 6 & 7 \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\quad \cdots \quad
\begin{array}{cccc}
1 & 2 & 3 \\
n & 1 & 2 & 3 \\
\end{array}
$$

$T_{n,1,2}$

$T_{n-2,n-1,n}$

$T_{6,2,2}$

$T_{4,4,2}$
Example

Some degree regular non-orientable combinatorial 2-manifolds of Euler characteristic 0.
Example

An orientable degree-regular combinatorial 2-manifolds of Euler characteristic -2 on vertex set $\{0, 1, \ldots, 11\}$.
Example

An orientable degree-regular combinatorial 2-manifolds of Euler characteristic -2 on vertex set $\{0, 1, \ldots, 11\}$.
In the dual of the triangulation (which is a $\{7, 3\}$ - equivelar map on same surface) the corresponding object is a tree, and in fact it is a peculiar tree which we later named as Proper tree.

D. Barnette (UCDavis): “it looks to me like such a tree might be a necessary and sufficient condition for a contractable Hamiltonian circuit. Can the condition “equiveler” be relaxed? I know it’s easy to get triangulation’s without Hamiltonian circuits by capping faces, but this introduces lots of three valent vertices. What if you put a lower limit on the valence of vertices?”

This has motivated us to undertake the current work.
In the dual of the triangulation (which is a $\{7, 3\}$ - equivelar map on same surface) the corresponding object is a tree, and in fact it is a peculiar tree which we later named as **Proper tree**.

D. Barnette (UCDavis): “*it looks to me like such a tree might be a necessary and sufficient condition for a contractable Hamiltonian circuit. Can the condition "equiveler" be relaxed? I know it’s easy to get triangulation’s without Hamiltonian circuits by capping faces, but this introduces lots of three valent vertices. What if you put a lower limit on the valence of vertices?*”

This has motivated us to undertake the current work.
In the dual of the triangulation (which is a $\{7,3\}$ - equivelar map on same surface) the corresponding object is a tree, and in fact it is a peculiar tree which we later named as Proper tree.

D. Barnette (UCDavis): “it looks to me like such a tree might be a necessary and sufficient condition for a contractable Hamiltonian circuit. Can the condition "equiveler" be relaxed? I know it’s easy to get triangulation’s without Hamiltonian circuits by capping faces, but this introduces lots of three valent vertices. What if you put a lower limit on the valence of vertices?”

This has motivated us to undertake the current work.
Outline

1. Combinatorial 2-Manifolds
 - Examples
 - Dual

2. Proper Tree: Triangulated Surfaces
 - Properties
 - Results

3. Proper Tree: Polyhedral Maps
 - Properties
 - Results

4. A Remark

5. Future Work
Proper Tree: Let K be a $\{p, q\}$-equivelar map on n vertices and T be a tree on $n - 2$ vertices in the edge graph of dual map of K. We say that T is a proper tree if:

1. whenever two vertices u_1 and u_2 of T belong to a face F (in fact they lie on the boundary cycle of F), a path $P[u_1u_2]$ joining u_1 and u_2 in boundary of F belongs to T, and
2. any path P in T which lies in a face F is of length at most $q - 2$, were $q = \text{deg}(K)$.
Proper Tree: Let K be a $\{p, q\}$-equivelar map on n vertices and T be a tree on $n - 2$ vertices in the edge graph of dual map of K. We say that T is a proper tree if:

1. whenever two vertices u_1 and u_2 of T belong to a face F (in fact they lie on the boundary cycle of F), a path $P[u_1u_2]$ joining u_1 and u_2 in boundary of F belongs to T, and

2. any path P in T which lies in a face F is of length at most $q - 2$, were $q = \text{deg}(K)$.
Definition & Example

Proper Tree: Let K be a $\{p, q\}$-equivelar map on n vertices and T be a tree on $n - 2$ vertices in the edge graph of dual map of K. We say that T is a proper tree if:

1. Whenever two vertices u_1 and u_2 of T belong to a face F (in fact they lie on the boundary cycle of F), a path $P[u_1u_2]$ joining u_1 and u_2 in boundary of F belongs to T, and
2. Any path P in T which lies in a face F is of length at most $q - 2$, were $q = \text{deg}(K)$.
Properties of Proper Tree

- Let $v \in V(T)$ be a vertex in a proper tree T. Then $\deg(v) \leq 3$.

- Let T be a proper tree and m be the number of vertices of degree 3 in T. Then the number of vertices of degree one in $T = m + 2$.

- Let T be a proper tree in a polyhedral map M of type $\{q, 3\}$ on a surface S. Then $T \cap F \neq \emptyset$ for any face F of M.

- Let K be a n vertex equivelar triangulation of a surface S. Let M denote the dual map corresponding to K and T be a $n - 2$ vertex proper tree in M. Let D denote the subcomplex of K which is dual of T. Then D is a triangulated 2-disk and the boundary of D $\bd(D)$ is a Hamiltonian cycle in K.
Properties of Proper Tree

- Let \(v \in V(T) \) be a vertex in a proper tree \(T \). Then \(\text{deg}(v) \leq 3 \).

- Let \(T \) be a proper tree and \(m \) be the number of vertices of degree 3 in \(T \). Then the number of vertices of degree one in \(T = m + 2 \).

- Let \(T \) be a proper tree in a polyhedral map \(M \) of type \(\{q, 3\} \) on a surface \(S \). Then \(T \cap F \neq \emptyset \) for any face \(F \) of \(M \).

- Let \(K \) be a \(n \) vertex equivelar triangulation of a surface \(S \). Let \(M \) denote the dual map corresponding to \(K \) and \(T \) be a \(n - 2 \) vertex proper tree in \(M \). Let \(D \) denote the subcomplex of \(K \) which is dual of \(T \). Then \(D \) is a triangulated 2-disk and the boundary of \(D \) \(\text{bd}(D) \) is a Hamiltonian cycle in \(K \).
Properties of Proper Tree

- Let \(v \in V(T) \) be a vertex in a proper tree \(T \). Then \(\deg(v) \leq 3 \).

- Let \(T \) be a proper tree and \(m \) be the number of vertices of degree 3 in \(T \). Then the number of vertices of degree one in \(T = m + 2 \).

- Let \(T \) be a proper tree in a polyhedral map \(M \) of type \(\{ q, 3 \} \) on a surface \(S \). Then \(T \cap F \neq \emptyset \) for any face \(F \) of \(M \).

- Let \(K \) be a \(n \) vertex equivelar triangulation of a surface \(S \). Let \(M \) denote the dual map corresponding to \(K \) and \(T \) be a \(n-2 \) vertex proper tree in \(M \). Let \(D \) denote the subcomplex of \(K \) which is dual of \(T \). Then \(D \) is a triangulated 2-disk and the boundary of \(D \) \(\text{bd}(D) \) is a Hamiltonian cycle in \(K \).
Properties of Proper Tree

- Let \(v \in V(T) \) be a vertex in a proper tree \(T \). Then \(\deg(v) \leq 3 \).

- Let \(T \) be a proper tree and \(m \) be the number of vertices of degree 3 in \(T \). Then the number of vertices of degree one in \(T = m + 2 \).

- Let \(T \) be a proper tree in a polyhedral map \(M \) of type \(\{q, 3\} \) on a surface \(S \). Then \(T \cap F \neq \emptyset \) for any face \(F \) of \(M \).

- Let \(K \) be a \(n \) vertex equivelar triangulation of a surface \(S \). Let \(M \) denote the dual map corresponding to \(K \) and \(T \) be a \(n - 2 \) vertex proper tree in \(M \). Let \(D \) denote the subcomplex of \(K \) which is dual of \(T \). Then \(D \) is a triangulated 2-disk and the boundary of \(D bd(D) \) is a Hamiltonian cycle in \(K \).
Theorem: Let S denote a surface which has an equivelar triangulation K. The edge graph $EG(K)$ of K has a contractible Hamiltonian cycle if and only if the edge graph of dual map M corresponding to K has a proper tree.

Map & Polyhedral Map: A Map on a surface S is an embedding of a finite simple graph G such that the closure of components of $S \setminus G$ is p-gonal 2-disc for $p \geq 3$. The components are also called facets.

The map M is called a Polyhedral Map if non-empty intersection of any two facets of the map is either a vertex or an edge. The $\{p, q\}$ - equivelar maps are examples of polyhedral maps.
Theorem: Let S denote a surface which has an equivelar triangulation K. The edge graph $EG(K)$ of K has a contractible Hamiltonian cycle if and only if the edge graph of dual map M corresponding to K has a proper tree.

Map & Polyhedral Map: A Map on a surface S is an embedding of a finite simple graph G such that the closure of components of $S \setminus G$ is p-gonal 2-disc for $p \geq 3$. The components are also called facets.

The map M is called a Polyhedral Map if non-empty intersection of any two facets of the map is either a vertex or an edge. The $\{p, q\}$ - equivelar maps are examples of polyhedral maps.
Outline

1. Combinatorial 2-Manifolds
 - Examples
 - Dual

2. Proper Tree: Triangulated Surfaces
 - Properties
 - Results

3. Proper Tree: Polyhedral Maps
 - Properties
 - Results

4. A Remark

5. Future Work
Jointly with D. Maity

Definition: Consider a polyhedral map K on a surface S that has n vertices. Let M denote the dual map of K and $T := (V, E)$ denote a tree in the edge graph $EG(M)$ of M. We say that T is a proper tree if the following conditions hold:

1. \[\sum_{i=1}^{k} \deg(v_i) = n + 2(k - 1), \] where $V = \{v_1, v_2, ..., v_k\}$ and $\deg(v)$ denotes degree of v in $EG(M)$

2. Whenever two vertices u_1 and u_2 of T lie on a face F in M, a path $P[u_1, u_2]$ joining u_1 and u_2 in the boundary ∂F of F is a subtree of T, and

3. Any path P in T which lies in a face F of M is of length at most $q - 2$, where $q = \text{length of } (\partial F)$.
Jointly with D. Maity

Definition: Consider a polyhedral map K on a surface S that has n vertices. Let M denote the dual map of K and $T := (V, E)$ denote a tree in the edge graph $EG(M)$ of M. We say that T is a proper tree if the following conditions hold:

1. $\sum_{i=1}^{k} \deg(v_i) = n + 2(k - 1)$, where $V = \{v_1, v_2, ..., v_k\}$ and $\deg(v)$ denotes degree of v in $EG(M)$

2. Whenever two vertices u_1 and u_2 of T lie on a face F in M, a path $P[u_1, u_2]$ joining u_1 and u_2 in the boundary ∂F of F is a subtree of T, and

3. Any path P in T which lies in a face F of M is of length at most $q - 2$, where $q = \text{length of } (\partial F)$.
General Case

Jointly with D. Maity

Definition: Consider a polyhedral map K on a surface S that has n vertices. Let M denote the dual map of K and $T := (V, E)$ denote a tree in the edge graph $EG(M)$ of M. We say that T is a proper tree if the following conditions hold:

1. $\sum_{i=1}^{k} \deg(v_i) = n + 2(k - 1)$, where $V = \{v_1, v_2, ..., v_k\}$ and $\deg(v)$ denotes degree of v in $EG(M)$
2. Whenever two vertices u_1 and u_2 of T lie on a face F in M, a path $P[u_1, u_2]$ joining u_1 and u_2 in the boundary ∂F of F is a subtree of T, and
3. Any path P in T which lies in a face F of M is of length at most $q - 2$, where $q = \text{length of } (\partial F)$.
General Case

Jointly with D. Maity

Definition: Consider a polyhedral map K on a surface S that has n vertices. Let M denote the dual map of K and $T := (V, E)$ denote a tree in the edge graph $EG(M)$ of M. We say that T is a proper tree if the following conditions hold:

1. $\sum_{i=1}^{k} \deg(v_i) = n + 2(k - 1)$, where $V = \{v_1, v_2, ..., v_k\}$ and $\deg(v)$ denotes degree of v in $EG(M)$
2. whenever two vertices u_1 and u_2 of T lie on a face F in M, a path $P[u_1, u_2]$ joining u_1 and u_2 in the boundary ∂F of F is a subtree of T, and
3. any path P in T which lies in a face F of M is of length at most $q - 2$, where $q = \text{length of } (\partial F)$.
Properties

- Let T be a proper tree in a general polyhedral map M on a surface S. Then $T \cap F \neq \emptyset$ for any facet F of M.

- Let K be a n vertex polyhedral map and M denote the dual polyhedron corresponding to K. Let T be a k vertex proper tree in M. If D denotes the subcomplex of K which is dual of T then D is a 2-disk and the boundary ∂D of D is a Hamiltonian cycle in $EG(K)$.

- The results are also true, in particular, in case of equivelar maps.
Properties

- Let T be a proper tree in a general polyhedral map M on a surface S. Then $T \cap F \neq \emptyset$ for any facet F of M.

- Let K be a n vertex polyhedral map and M denote the dual polyhedron corresponding to K. Let T be a k vertex proper tree in M. If D denotes the subcomplex of K which is dual of T then D is a 2-disk and the boundary ∂D of D is a Hamiltonian cycle in $EG(K)$.

- The results are also true, in particular, in case of equivelar maps.
Properties

- Let T be a proper tree in a general polyhedral map M on a surface S. Then $T \cap F \neq \emptyset$ for any facet F of M.

- Let K be a n vertex polyhedral map and M denote the dual polyhedron corresponding to K. Let T be a k vertex proper tree in M. If D denotes the subcomplex of K which is dual of T then D is a 2-disk and the boundary ∂D of D is a Hamiltonian cycle in $EG(K)$.

- The results are also true, in particular, in case of equivelar maps.
Results

- **Theorem:** The edge graph $EG(K)$ of a map K on a surface has a contractible Hamiltonian cycle if and only if the edge graph of corresponding dual map of K has a proper tree. □

- Let M denote the dual map of a n vertex $\{p, q\}$-equivelar map K on a surface S. If $\frac{n-2}{p-2} = m$ is an integer then M has an admissible proper tree on m vertices.
Results

- **Theorem**: The edge graph $EG(K)$ of a map K on a surface has a contractible Hamiltonian cycle if and only if the edge graph of corresponding dual map of K has a proper tree. □

- Let M denote the dual map of a n vertex $\{p, q\}$-equivelar map K on a surface S. If $\frac{n-2}{p-2} = m$ is an integer then M has an admissible proper tree on m vertices.
Outline

1. Combinatorial 2-Manifolds
 - Examples
 - Dual

2. Proper Tree: Triangulated Surfaces
 - Properties
 - Results

3. Proper Tree: Polyhedral Maps
 - Properties
 - Results

4. A Remark

5. Future Work
Remarks

- **Remark:** Observe that if the map K is \{p, q\}-equivelar then \(k = \frac{n - 2}{p - 2} \). Thus, for an equivelar triangulation on \(n \) vertices the proper tree has exactly \(n - 2 \) vertices.

- In this work we have also given an algorithm to find out CHC in equivelar maps.

- The work is ongoing.
Remarks

- **Remark**: Observe that if the map K is $\{p, q\}$-equivelar then
 \[k = \frac{n - 2}{p - 2} \]
 Thus, for an equivelar triangulation on n vertices the proper tree has exactly $n - 2$ vertices.

- In this work we have also given an algorithm to find out CHC in equivelar maps.

- The work is ongoing.
Remarks

- **Remark**: Observe that if the map K is $\{p, q\}$-equivelar then $k = \frac{n - 2}{p - 2}$. Thus, for an equivelar triangulation on n vertices the proper tree has exactly $n - 2$ vertices.
- In this work we have also given an algorithm to find out CHC in equivelar maps.
- The work is ongoing.
Outline

1. Combinatorial 2-Manifolds
 - Examples
 - Dual

2. Proper Tree: Triangulated Surfaces
 - Properties
 - Results

3. Proper Tree: Polyhedral Maps
 - Properties
 - Results

4. A Remark

5. Future Work
Where does this lead to

- In a 2005 paper Mori and Nakamoto have shown that any two triangulations on the projective plane with \(n \) vertices can be transformed into each other by at most \(8n-26 \) diagonal flips, up to isotopy. To prove it, we focus on triangulations on the projective plane with contractible Hamilton cycles.

- In particular they have proved that \(G \) and \(H \) be two triangulations on the projective plane with \(n \) vertices, each of which has a contractible Hamilton cycle. Then \(G \) and \(H \) can be transformed into each other by at most \(6n - 12 \) diagonal flips, preserving their Hamilton cycles.

- This will be one of the directions we will be looking at.

- Another obvious question will be looking for similar results about non-contractible Hamiltonian cycles.
Where does this lead to

- In a 2005 paper Mori and Nakamoto have shown that any two triangulations on the projective plane with n vertices can be transformed into each other by at most $8n-26$ diagonal flips, up to isotopy. To prove it, we focus on triangulations on the projective plane with contractible Hamilton cycles.

- In particular they have proved *Let G and H be two triangulations on the projective plane with n vertices, each of which has a contractible Hamilton cycle. Then G and H can be transformed into each other by at most $6n – 12$ diagonal flips, preserving their Hamilton cycles.*

- This will be one of the directions we will be looking at.

- Another obvious question will be looking for similar results about non-contractible Hamiltonian cycles.
Where does this lead to

- In a 2005 paper Mori and Nakamoto have shown that any two triangulations on the projective plane with \(n \) vertices can be transformed into each other by at most \(8n-26 \) diagonal flips, up to isotopy. To prove it, we focus on triangulations on the projective plane with contractible Hamilton cycles.

- In particular they have proved \(\text{Let } G \text{ and } H \text{ be two triangulations on the projective plane with } n \text{ vertices, each of which has a contractible Hamilton cycle. Then } G \text{ and } H \text{ can be transformed into each other by at most } 6n - 12 \text{ diagonal flips, preserving their Hamilton cycles.} \)

- This will be one of the directions we will be looking at.

- Another obvious question will be looking for similar results about non-contractible Hamiltonian cycles.
Where does this lead to

- In a 2005 paper Mori and Nakamoto have shown that any two triangulations on the projective plane with \(n \) vertices can be transformed into each other by at most \(8n-26 \) diagonal flips, up to isotopy. To prove it, we focus on triangulations on the projective plane with contractible Hamilton cycles.

- In particular they have proved *Let \(G \) and \(H \) be two triangulations on the projective plane with \(n \) vertices, each of which has a contractible Hamilton cycle. Then \(G \) and \(H \) can be transformed into each other by at most \(6n - 12 \) diagonal flips, preserving their Hamilton cycles.*

- This will be one of the directions we will be looking at.

- Another obvious question will be looking for similar results about non-contractible Hamiltonian cycles.
Questions, Comments, Suggestions!!

Thank You
Questions, Comments, Suggestions!!

Thank You