Disjoint paths in tournaments

Paul Seymour, Princeton University

joint with Maria Chudnovsky, Alexandra Fradkin and Alex Scott
The k disjoint paths problem in digraphs

Given k pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$ of a digraph G, decide whether there are disjoint directed paths in G where the ith path is from s_i to t_i ($1 \leq i \leq k$).
The k disjoint paths problem in digraphs

Given k pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$ of a digraph G, decide whether there are disjoint directed paths in G where the ith path is from s_i to t_i ($1 \leq i \leq k$).

Theorem (Fortune, Hopcroft, Wyllie, 1980)

This is NP-complete, even for $k = 2$.
Theorem

If the input digraph is a tournament:

- the two edge-disjoint paths problem is solvable in polynomial time (Bang-Jensen, 1991)
- the two vertex-disjoint paths problem is solvable in polynomial time (Bang-Jensen and Thomassen, 1992).
Theorem

If the input digraph is a tournament:
- the two edge-disjoint paths problem is solvable in polynomial time (Bang-Jensen, 1991)
- the two vertex-disjoint paths problem is solvable in polynomial time (Bang-Jensen and Thomassen, 1992).

Theorem (Our results)

For all fixed k, if the input digraph is a tournament:
- the k edge-disjoint paths problem is solvable in polynomial time (Fradkin, S., 2009)
- the k vertex-disjoint paths problem is solvable in polynomial time (Chudnovsky, Scott, S., 2010).
Vertex-disjoint undirected case

Two steps:

- If tree-width is at least $f(k)$, delete some vertex that does not change the problem.
Vertex-disjoint undirected case

Two steps:

- If tree-width is at least $f(k)$, delete some vertex that does not change the problem.
- If tree-width is less than $f(k)$, solve directly with dynamic programming.
Edge-disjoint case
Edge-disjoint case

Theorem

If there is a big widget of either kind, then identifying u, v does not change whether the paths exist.
Theorem

If there is a big widget of either kind, then identifying u, v does not change whether the paths exist.

What if there is no big widget? Need to allow parallel edges.
Edge-disjoint case

Theorem

Tournaments without the first widget of size \(t \) can be ordered with back-degree at most \(f(t) \).
Edge-disjoint case

Theorem

Tournaments without the first widget of size t can be ordered with back-degree at most $f(t)$.

Theorem

Tournaments without either kind of widget of size t can be ordered with cutwidth at most $f(t)$.
Edge-disjoint case

Algorithm for k edge-disjoint paths problem in a tournament:

- If there is a big widget (size at least $f(k)$), identify its ends and repeat;
Edge-disjoint case

Algorithm for k edge-disjoint paths problem in a tournament:

- If there is a big widget (size at least $f(k)$), identify its ends and repeat;
- If there is no big widget, thin out parallel edges, get bounded cutwidth, use dynamic programming.
Edge-disjoint case

Algorithm for k edge-disjoint paths problem in a tournament:

- If there is a big widget (size at least $f(k)$), identify its ends and repeat;
- If there is no big widget, thin out parallel edges, get bounded cutwidth, use dynamic programming.

- Fixed parameter tractable: running time $C_k |V(G)|^5$
- Extends to digraphs with bounded stability number (not fpt any more).
Theorem (Strengthened version)

For all k, there is a polynomial-time algorithm as follows:

- **Input:** Tournament G, pairs $(s_1, t_1), \ldots, (s_k, t_k)$, and integers n_1, \ldots, n_k
- **Output:** Decides whether there exist k vertex-disjoint directed paths joining the pairs, where the $s_i - t_i$ path has length at most n_i.
Vertex-disjoint case

Linkage: k vertex-disjoint directed paths joining the pairs.

MAIN RESULT

- **Input:** Tournament G, and $(s_1, t_1), \ldots, (s_k, t_k)$.
- **Output:** Decides if there is a linkage (in polynomial time for fixed k).
Vertex-disjoint case

Idea: Construct an auxiliary digraph H, with two special vertices S_0, T_0; arrange that

- If there is a linkage in G then there is an S_0, T_0-path in H
- If there is an S_0, T_0-path in H then there is a linkage in G
Vertex-disjoint case

Idea: Construct an auxiliary digraph H, with two special vertices S_0, T_0; arrange that

- If there is a linkage in G then there is an S_0, T_0-path in H
- If there is an S_0, T_0-path in H then there is a linkage in G
- H can be computed in polynomial time.
Vertex-disjoint case

Idea: Construct an auxiliary digraph H, with two special vertices S_0, T_0; arrange that

- If there is a linkage in G then there is an S_0, T_0-path in H
- If there is an S_0, T_0-path in H then there is a linkage in G
- H can be computed in polynomial time.

(v_1, \ldots, v_k) to (v'_1, \ldots, v'_k) is a **spiderstep** if for some i, v'_i is an out-neighbour of v_i, and $v'_j = v_j$ for $j \neq i$.
Vertex-disjoint case

Idea: Construct an auxiliary digraph H, with two special vertices S_0, T_0; arrange that

- If there is a linkage in G then there is an S_0, T_0-path in H
- If there is an S_0, T_0-path in H then there is a linkage in G
- H can be computed in polynomial time.

(v_1, \ldots, v_k) to (v'_1, \ldots, v'_k) is a spiderstep if for some i, v'_i is an out-neighbour of v_i, and $v'_j = v_j$ for $j \neq i$.

First try: $V(H)$ is all k-tuples of distinct vertices of G; H-adjacency is spidersteps.
Vertex-disjoint case

Idea: Construct an auxiliary digraph H, with two special vertices S_0, T_0; arrange that

- If there is a linkage in G then there is an S_0, T_0-path in H
- If there is an S_0, T_0-path in H then there is a linkage in G
- H can be computed in polynomial time.

(v_1, \ldots, v_k) to (v'_1, \ldots, v'_k) is a spiderstep if for some i, v'_i is an out-neighbour of v_i, and $v'_j = v_j$ for $j \neq i$.

First try: $V(H)$ is all k-tuples of distinct vertices of G; H-adjacency is spidersteps.

- G-linkage \Rightarrow H-path YES (too easy)
Vertex-disjoint case

Idea: Construct an auxiliary digraph H, with two special vertices S_0, T_0; arrange that

- If there is a linkage in G then there is an S_0, T_0-path in H
- If there is an S_0, T_0-path in H then there is a linkage in G
- H can be computed in polynomial time.

(v_1, \ldots, v_k) to (v'_1, \ldots, v'_k) is a spiderstep if for some i, v'_i is an out-neighbor of v_i, and $v'_j = v_j$ for $j \neq i$.

First try: $V(H)$ is all k-tuples of distinct vertices of G; H-adjacency is spidersteps.

- G-linkage \Rightarrow H-path YES (too easy)
- H-path \Rightarrow G-linkage ??
- H computible YES
Vertex-disjoint case

Second try: $V(H)$ is all $(k + 2)$-tuples (v_1, \ldots, v_k, A, B), where $v_1, \ldots, v_k \in V(G)$ are distinct and A, B are disjoint subsets of the other vertices of G.

(v_1, \ldots, v_k, A, B) is H-adjacent to $(v'_1, \ldots, v'_k, A', B')$ if:

- (v_1, \ldots, v_k) to (v'_1, \ldots, v'_k) is a spiderstep, changing v_i
Vertex-disjoint case

Second try: $V(H)$ is all $(k + 2)$-tuples (v_1, \ldots, v_k, A, B), where $v_1, \ldots, v_k \in V(G)$ are distinct and A, B are disjoint subsets of the other vertices of G.

(v_1, \ldots, v_k, A, B) is H-adjacent to $(v'_1, \ldots, v'_k, A', B')$ if:

- (v_1, \ldots, v_k) to (v'_1, \ldots, v'_k) is a spiderstep, changing v_i
- $v'_i \in A$, and $v_i \in B'$;
Vertex-disjoint case

Second try: \(V(H) \) is all \((k + 2)\)-tuples \((v_1, \ldots, v_k, A, B)\), where \(v_1, \ldots, v_k \in V(G)\) are distinct and \(A, B\) are disjoint subsets of the other vertices of \(G\).

\((v_1, \ldots, v_k, A, B)\) is \(H\)-adjacent to \((v'_1, \ldots, v'_k, A', B')\) if:

- \((v_1, \ldots, v_k)\) to \((v'_1, \ldots, v'_k)\) is a spiderstep, changing \(v_i\)
- \(v'_i \in A\), and \(v_i \in B'\);
- \(A' \subseteq A\) and \(B \subseteq B'\).
Vertex-disjoint case

Second try: $V(H)$ is all $(k + 2)$-tuples (v_1, \ldots, v_k, A, B), where $v_1, \ldots, v_k \in V(G)$ are distinct and A, B are disjoint subsets of the other vertices of G.

(v_1, \ldots, v_k, A, B) is H-adjacent to $(v'_1, \ldots, v'_k, A', B')$ if:

- (v_1, \ldots, v_k) to (v'_1, \ldots, v'_k) is a spiderstep, changing v_i
- $v'_i \in A$, and $v_i \in B'$;
- $A' \subseteq A$ and $B \subseteq B'$.

- G-linkage \Rightarrow H-path YES (too easy)
- H-path \Rightarrow G-linkage YES
- H computible NO
Vertex-disjoint case

Ski: directed path S with $f(k)$ vertices; has first vertex $r(S)$ (rear) and last vertex $t(S)$ (tip)

Ski set: k-tuple (S_1, \ldots, S_k) of vertex-disjoint skis.
Vertex-disjoint case

Ski: directed path S with $f(k)$ vertices; has first vertex $r(S)$ (rear) and last vertex $t(S)$ (tip)

Ski set: k-tuple (S_1, \ldots, S_k) of vertex-disjoint skis.

(S_1, \ldots, S_k) to (S'_1, \ldots, S'_k) is a **skiing spider step** if

- for some i, $S_i \setminus r(S_i) = S'_i \setminus t(S'_i)$
- $S'_j = S_j$ for $j \neq i$.

Vertex-disjoint case

Ski: directed path S with $f(k)$ vertices; has first vertex $r(S)$ (rear) and last vertex $t(S)$ (tip)

Ski set: k-tuple (S_1, \ldots, S_k) of vertex-disjoint skis.

(S_1, \ldots, S_k) to (S'_1, \ldots, S'_k) is a **skiing spider step** if

- for some i, $S_i \setminus r(S_i) = S'_i \setminus t(S'_i)$
- $S'_j = S_j$ for $j \neq i$.

$P(S_1, \ldots, S_k)$: set of all other vertices complete to some $P_i \setminus t(P_i)$;
$Q(S_1, \ldots, S_k)$: set of all other vertices complete from some $P_i \setminus r(P_i)$.
Vertex-disjoint case

Skiing spider digraph: vertex set all \((k + 2)\)-tuples \((S_1, \ldots, S_k, A, B)\), where \((S_1, \ldots, S_k)\) is a ski set and \(A, B\) are disjoint subsets of the other vertices of \(G\), such that

- \(A \subseteq P(S_1, \ldots, S_k)\), and \(B \subseteq Q(S_1, \ldots, S_k)\)
- \(A \cup B = P(S_1, \ldots, S_k) \cup Q(S_1, \ldots, S_k)\).
Vertex-disjoint case

Skiing spider digraph: vertex set all \((k + 2)\)-tuples \((S_1, \ldots, S_k, A, B)\), where \((S_1, \ldots, S_k)\) is a ski set and \(A, B\) are disjoint subsets of the other vertices of \(G\), such that

- \(A \subseteq P(S_1, \ldots, S_k)\), and \(B \subseteq Q(S_1, \ldots, S_k)\)
- \(A \cup B = P(S_1, \ldots, S_k) \cup Q(S_1, \ldots, S_k)\).
Vertex-disjoint case

Skiing spider digraph: vertex set all $(k + 2)$-tuples (S_1, \ldots, S_k, A, B), where (S_1, \ldots, S_k) is a ski set and A, B are disjoint subsets of the other vertices of G, such that

- $A \subseteq P(S_1, \ldots, S_k)$, and $B \subseteq Q(S_1, \ldots, S_k)$
- $A \cup B = P(S_1, \ldots, S_k) \cup Q(S_1, \ldots, S_k)$.

(S_1, \ldots, S_k, A, B) is adjacent to $(S'_1, \ldots, S'_k, A', B')$ if

- (S_1, \ldots, S_k) to (S'_1, \ldots, S'_k) is a skiing spider step, changing S_i
- $t(S'_i) \in A$ and $r(S_i) \in B'$
- $A' \subseteq A$ and $B' \subseteq B'$.
Vertex-disjoint case

Skiing spider digraph: vertex set all \((k + 2)\)-tuples \((S_1, \ldots, S_k, A, B)\), where \((S_1, \ldots, S_k)\) is a ski set and \(A, B\) are disjoint subsets of the other vertices of \(G\), such that

- \(A \subseteq P(S_1, \ldots, S_k)\), and \(B \subseteq Q(S_1, \ldots, S_k)\)
- \(A \cup B = P(S_1, \ldots, S_k) \cup Q(S_1, \ldots, S_k)\).

\((S_1, \ldots, S_k, A, B)\) is adjacent to \((S'_1, \ldots, S'_k, A', B')\) if

- \((S_1, \ldots, S_k)\) to \((S'_1, \ldots, S'_k)\) is a skiing spider step, changing \(S_i\)
- \(t(S'_i) \in A\) and \(r(S_i) \in B'\)
- \(A' \subseteq A\) and \(B \subseteq B'\).

- \(G\)-linkage \(\Rightarrow\) \(H\)-path YES (too easy)
- \(H\)-path \(\Rightarrow\) \(G\)-linkage YES
- \(H\) computible ???
Vertex-disjoint case

\[|P(S_1, \ldots, S_k) \cap Q(S_1, \ldots, S_k)| \text{ is the confusion of } (S_1, \ldots, S_k). \]
Vertex-disjoint case

\[|P(S_1, \ldots, S_k) \cap Q(S_1, \ldots, S_k)| \] is the confusion of \((S_1, \ldots, S_k)\).

Let \(H\) be a subdigraph of the skiing spider digraph; just those \((k + 2)\)-tuples with ski sets of bounded confusion.
Vertex-disjoint case

\[|P(S_1, \ldots, S_k) \cap Q(S_1, \ldots, S_k)| \] is the confusion of \((S_1, \ldots, S_k)\).

Let \(H\) be a subdigraph of the skiing spider digraph; just those \((k + 2)\)-tuples with ski sets of bounded confusion.

- \(G\)-linkage \(\Rightarrow\) \(H\)-path \(\text{??}\)
- \(H\)-path \(\Rightarrow\) \(G\)-linkage \(\text{YES}\)
- \(H\) computible \(\text{YES}\)
Vertex-disjoint case

\[|P(S_1, \ldots, S_k) \cap Q(S_1, \ldots, S_k)| \] is the confusion of \((S_1, \ldots, S_k)\).

Let \(H\) be a subdigraph of the skiing spider digraph; just those \((k + 2)\)-tuples with ski sets of bounded confusion.

- \(G\)-linkage \(\Rightarrow\) \(H\)-path ??
- \(H\)-path \(\Rightarrow\) \(G\)-linkage YES
- \(H\) computible YES

Need a theorem: if a linkage exists, a spider can ski along it with bounded confusion at each step.
Vertex-disjoint case

Theorem (Key fact)

Let P_1, \ldots, P_k a linkage with union of minimum size. There is a numbering v_1, \ldots, v_n of $V(G)$, increasing along each P_i, such that there is no $(k + 2)$-edge planar matching as in the figure.
Vertex-disjoint case

\[s_1 \quad \cdots \quad s_k \]

\[v_1 \cdots v_i \]

\[t_1 \quad \cdots \quad t_k \]
Vertex-disjoint case
Vertex-disjoint case
Vertex-disjoint case

This proves:

Theorem

- **Input:** Tournament G, and $(s_1, t_1), \ldots, (s_k, t_k)$.
- **Output:** Decides if there is a linkage, in polynomial time (for fixed k).
Theorem

- **Input:** Tournament G, and $(s_1, t_1), \ldots, (s_k, t_k)$.
- **Output:** Decides if there is a linkage, in polynomial time (for fixed k).

More generally: digraph G is *d-path-dominant* if every vertex has an in- or out-neighbour in every d-vertex directed path.

Theorem

- **Input:** d-path-dominant digraph G, and $(s_1, t_1), \ldots, (s_k, t_k)$.
- **Output:** Decides if there is a linkage.
- **Running time:** $O(n^t)$ where $t = 6k^2d(k + d) + 13k$