Arc-disjoint paths with prescribed endvertices in generalizations of tournaments

Alessandro Maddaloni
University of Southern Denmark
Nashville, June 1 2012

Joint work with
Jørgen Bang-Jensen
Definition

Given $D = (V, A)$ and (not necessarily distinct) vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$. A **weak k-linkage** from (s_1, \ldots, s_k) to (t_1, \ldots, t_k) is a collection of k arc-disjoint routes P_1, \ldots, P_k such that P_i is an (s_i, t_i)-path (or a proper cycle containing $s_i = t_i$) for each $i \in [k]$.
Complexity of the general problem

Problem

WEAK k-LINKAGE PROBLEM: Given $D = (V, A)$ and not necessarily distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$; Does D have a weak k-linkage from (s_1, \ldots, s_k) to (t_1, \ldots, t_k)?

Theorem (Fortune, Hopcroft and Wyllie, 1980)
The weak k-linkage problem is NP-complete for $k \geq 2$.

Theorem (Shiloach, 1979)
Every k-arc-strong digraph ($d_X + (X) \geq k \forall \emptyset \subset X \subset V$) has a weak k-linkage for every choice of k pairs of terminals.
Complexity of the general problem

Problem

WEAK k-LINKAGE PROBLEM: Given $D = (V, A)$ and not necessarily distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$; Does D have a weak k-linkage from (s_1, \ldots, s_k) to $(t_1, \ldots, t_k)~?$

Theorem (Fortune, Hopcroft and Wyllie, 1980)

The weak k-linkage problem is NP-complete for $k \geq 2$.

Theorem (Shiloach, 1979)

Every k-arc-strong digraph ($d^+(X) \geq k \ \forall \emptyset \subset X \subset V$) has a weak k-linkage for every choice of k pairs of terminals.
Theorem (Fortune, Hopcroft and Wyllie, 1980)

For every fixed k the weak k-linkage problem is polynomial for acyclic digraphs.
Theorem (Fortune, Hopcroft and Wyllie, 1980)

For every fixed k the weak k-linkage problem is polynomial for acyclic digraphs.

Theorem (Bang-Jensen, 1986)

The weak 2-linkage problem is polynomial for tournaments.
Theorem (Fortune, Hopcroft and Wyllie, 1980)

For every fixed k the weak k-linkage problem is polynomial for acyclic digraphs.

Theorem (Bang-Jensen, 1986)

The weak 2-linkage problem is polynomial for tournaments.

Theorem (Fradkin-Seymour, 2011)

For every fixed α, k the weak k-linkage problem is polynomial for digraphs with independence number at most α.

\(D = (V, A) \). \(O = v_1, \ldots, v_n \) ordering of \(V \) has **cutwidth** \(\theta \) if for every \(j = 1, \ldots, n - 1 \)

\[v_j + 1 \leq \theta \]

\(D \) has cutwidth \(\theta \) if \(\exists \) \(O \) with cutwidth \(\theta \)
Theorem (Fradkin-Seymour, 2011)

For every fixed θ, k the weak k-linkage problem is polynomial for digraphs with cutwidth at most θ.
Theorem (Fradkin-Seymour, 2011)

For every fixed θ, k the weak k-linkage problem is polynomial for digraphs with cutwidth at most θ.

Corollary

For every fixed θ, k the weak k-linkage problem is polynomial, for digraphs with at most θ directed cycles.
H an induced subdigraph of D is a module if

$$\forall a, b \in V(H), \; v \in V(D \setminus H) \; \mu(va) = \mu(vb), \; \mu(av) = \mu(bv).$$

(If D is simple, we simply say that every vertex of H must have the same in and out neighborhood)
D is decomposable if \exists partition of V into modules $H_1, \ldots H_s$, $s \geq 2$. We write $D = S[H_1, \ldots, H_s]$, where S is the adjacency (or quotient) digraph of $H_1, \ldots H_s$.

\[D = S[H_1, \ldots, H_s] \]
D is **decomposable** if \exists partition of V into modules H_1, \ldots, H_s, $s \geq 2$. We write $D = S[H_1, \ldots, H_s]$, where S is the adjacency (or quotient) digraph of H_1, \ldots, H_s.

\[S = \begin{array}{c}
H_1 \\
\rightarrow \\
H_2 \\
\rightarrow \\
H_3
\end{array} \]
Decomposable digraphs

A digraph D is decomposable if \exists partition of V into modules H_1, \ldots, H_s, $s \geq 2$. We write $D = S[H_1, \ldots, H_s]$, where S is the adjacency (or quotient) digraph of H_1, \ldots, H_s.

![Diagram](image)

Φ class of digraphs. D is totally Φ-decomposable if either $D \in \Phi$ or $D = S[H_1, \ldots, H_s]$, with $S \in \Phi$ and H_i totally Φ-decomposable, $i = 1, \ldots, s$.

The digraph in the figure is totally Φ-decomposable with $\Phi = P_3 \cup C_3 \cup P_1$.
We say that a class of digraph Φ is bombproof if

- \exists poly algorithm to find a total Φ-decomposition
- For every fixed k, c, weak k-linkage is poly on

 $\Phi(c) := \{ D' \mid \exists D \in \Phi \ D' \text{ is obtained from } D \text{ blowing up } \leq c \text{ vertices to digraphs of size } \leq c \}$
We say that a class of digraph Φ is bombproof if

- \exists poly algorithm to find a total Φ-decomposition
- For every fixed k, c, weak k-linkage is poly on
 $\Phi(c) := \{D' | \exists D \in \Phi \ D' \text{ is obtained from } D \text{ blowing up } \leq c \text{ vertices to digraphs of size } \leq c\}$

If $\Phi = \{P_3\}$, then

is in $\Phi(3)$
Main theorem

Let Φ be a bombproof class of digraphs. For every fixed k the weak k-linkage problem is polynomial for totally Φ-decomposable digraphs.
Main theorem

Let Φ be a bombproof class of digraphs. For every fixed k the weak k-linkage problem is polynomial for totally Φ-decomposable digraphs.

Lemma

A YES instance has always a k-weak linkage using
- At most $2k$ arcs inside any module
- No arc inside any module without terminals
Algorithm

Given D totally Φ-decomposable, Π list of terminals and F set of arcs of bounded size, decides whether $D \setminus F$ has a weak-linkage for Π.

1. Find a total Φ-decomposition $D = S[H_1, \ldots, H_s]$. If $\Pi = \emptyset$ output YES. If $D \in \Phi$ decide the problem with a poly algorithm on $\langle D \setminus F, \Pi \rangle$.

2. Find the modules K_1, \ldots, K_l containing terminals.
(3) For every partition $\Pi = \Pi_i \cup \Pi_e$ and for every choice of sets of $\leq 2k$ arcs $F_1 \subset A(K_1), \ldots, F_l \subset A(K_l)$
 - Run recursively the algorithm on $\langle K_1, F \cup F_1, \Pi_i \cap K_1 \rangle, \ldots, \langle K_l, F \cup F_l, \Pi_i \cap K_l \rangle$. If they are all YES
 - Blow up the vertices of S corresponding to K_1, \ldots, K_l to the digraphs formed by F_1, \ldots, F_l. Run a poly algorithm on $\langle S(\text{blown}) \setminus F, \Pi_e \rangle$. If it is YES, output YES

(4) Output NO
$D = (V, A)$ is **quasi-transitive** if $xy, yz \in A$ implies that $zx \in A$ or $xz \in A$.

Theorem (Bang-Jensen and Huang)

Let D be a digraph which is quasi-transitive.

- If D is not strong, then $D = T[H_1, \ldots, H_t]$, where T is a transitive oriented graph (\Rightarrow acyclic) and H_1, \ldots, H_t are strong quasi-transitive.

- If D is strong, then $D = S[Q_1, Q_2, \ldots, Q_s]$, where S is strong semicomplete and Q_1, \ldots, Q_s are either single vertices or non-strong quasi-transitive.
The class Φ_1

$\Phi_1 := \text{Semicomplete digraphs} \cup \text{Acyclic digraphs}$

By the previous characterization quasi-transitive digraphs are totally Φ_1-decomposable.
The class Φ_1

$\Phi_1 := \text{Semicomplete digraphs } \cup \text{ Acyclic digraphs}$

By the previous characterization quasi-transitive digraphs are totally Φ_1-decomposable.

Lemma

Φ_1 is bombproof.

Proof sketch

A poly algorithm for total Φ_1-decomposition was given by B-J and Gutin.

Given $D \in \Phi_1$

- *If D is semicomplete, then $D(\text{blown})$ misses $O(c^3)$ arcs to be semicomplete.*
- *If D is acyclic, then $D(\text{blown})$ has $O(c \cdot (ck)^c)$ cycles.*
Corollary 1

For every fixed k there exists a polynomial algorithm for the weak k-linkage problem for quasi-transitive digraphs.
Corollary 1

For every fixed k there exists a polynomial algorithm for the weak k-linkage problem for quasi-transitive digraphs.

D is extended semicomplete if $D = S[H_1, \ldots, H_s]$, where S is semicomplete and H_1, \ldots, H_s are independent sets.

Corollary 2

For every fixed k there exists a polynomial algorithm for the weak k-linkage problem for extended semicomplete digraphs.
\(D \) is round if we can label its vertices \(v_1, \ldots, v_n \) so that \(\forall \ i, \)
\[
N^+(v_i) = \{ v_{i+1}, \ldots, v_{i+d^+(i)} \} \quad \text{and} \quad N^-(v_i) = \{ v_{i-d^-(i)}, \ldots, v_{i-1} \}.
\]
D is round if we can label its vertices v_1, \ldots, v_n so that $\forall \ i$, $N^+(v_i) = \{v_{i+1}, \ldots, v_{i+d^+(i)}\}$ and $N^-(v_i) = \{v_{i-d^-(i)}, \ldots, v_{i-1}\}$.

D is round decomposable if $D = R[H_1, \ldots, H_r]$, where R is a round digraph and H_1, \ldots, H_r are semicomplete digraphs.
The class Φ_2

$\Phi_2 := \text{Round digraphs } \cup \text{Semicomplete digraphs}$

Lemma

Φ_2 is bombproof.
The class Φ_2

$\Phi_2 := \text{Round digraphs } \cup \text{Semicomplete digraphs}$

Lemma

Φ_2 is bombproof.

Crux

D round and distinct terminals. If all reverse round enumerations have $\theta \geq 36k^3$, then YES.
Partition into consecutive intervals of size $2k$.

For $i = 1, ..., k$ color s_i, t_i with color i. Color at least one vertex of color i in all intervals.

From s_i go to the next i-vertex (if any) otherwise go to the furthest vertex (which has high d^+ and sees an i-vertex).

The paths only share high out-degree vertices \Rightarrow they are arc-disjoint.

Corollary

For every fixed k there exists a polynomial algorithm for the weak k-linkage problem for round decomposable digraphs.
D is **locally semicomplete** if $\forall x \in V(D)$, $N^+(x)$ and $N^-(x)$ induce semicomplete digraphs.

Theorem

A connected LSD is either
- *round decomposable*, or
- has independence number ≤ 2.

Using Fradkin-Seymour algorithm we get

Corollary

For every fixed k there exists a polynomial algorithm for the *weak k-linkage problem* for LSD.
Locally semicomplete digraphs (LSD)

A connected LSD is either
- round decomposable, or
- has independence number \(\leq 2 \).

Using Fradkin-Seymour algorithm we get

Corollary

For every fixed \(k \) there exists a polynomial algorithm for the weak \(k \)-linkage problem for LSD.