Index Theory on Singular Manifolds: a Groupoids’ approach

Bertrand Monthubert

Université Paul Sabatier,
118 Route de Narbonne, 31062 Toulouse Cedex, France
In Noncommutative Geometry: pseudodifferential calculus ↔ groupoid

Background: index theorem on foliations (Connes, Skandalis)

Problem: apply Connes’ approach to singular manifolds: understand the index theory on singular manifolds in terms of operators algebras, using groupoids methods.

Scheme: to define a pseudodifferential calculus, define a groupoid and use the general tools developed for the pseudodifferential calculus on a groupoid.

Collaborators: R. Lauter, P.Y. Le Gall, V. Nistor, F. Pierrot
Definition 1 Groupoid : small category in which all morphisms are invertible

\[s(\gamma') = r(\gamma) \]

\[s(\gamma') = r(\gamma) \]

\[s(\gamma) \]

\[r(\gamma') \]

\[\gamma' \circ \gamma \]
Definition 1 *Groupoid*: small category in which all morphisms are invertible

Additional structure: topology, smooth structure (Lie groupoid), continuous family groupoid (A. Patterson)
3 – Pseudodifferential calculus on groupoids

- G is a Lie groupoid (more generally a continuous family groupoid) \rightsquigarrow algebra of pseudodifferential operators $\Psi^\infty(G)$
- Pseudodifferential operator on G: G-equivariant continuous family of pseudodifferential operators on the fibers of G
- The structure we need: smooth fibers, continuity on the basis. Continuous family groupoids generalize the holonomy groupoid of a $C^{\infty,0}$-foliation (A. Connes)
3 – Pseudodifferential calculus on groupoids

- G is a Lie groupoid (more generally a continuous family groupoid) \leadsto algebra of pseudodifferential operators $\Psi^\infty(G)$
- pseudodifferential operator on G : G-equivariant continuous family of pseudodifferential operators on the fibers of G
- The structure we need : smooth fibers, continuity on the basis. Continuous family groupoids generalize the holonomy groupoid of a $C^{\infty,0}$-foliation (A. Connes)

Examples:
- If M is a manifold without boundary, and $G = M \times M$, $\Psi^\infty(G)$ is the algebra of pseudodifferential operators on M.

Pseudodifferential calculus on groupoids:

3 – Pseudodifferential calculus on groupoids

- G is a Lie groupoid (more generally a continuous family groupoid) \rightsquigarrow algebra of pseudodifferential operators $\Psi^\infty(G)$
- pseudodifferential operator on G : G-equivariant continuous family of pseudodifferential operators on the fibers of G
- The structure we need : smooth fibers, continuity on the basis. Continuous family groupoids generalize the holonomy groupoid of a $C^{\infty,0}$-foliation (A. Connes)

Examples:
- If M is a manifold without boundary, and $G = M \times M$, $\Psi^\infty(G)$ is the algebra of pseudodifferential operators on M.
- If G is a Lie group, $\Psi^\infty(G)$ is the algebra of G-equivariant pseudodifferential operators on G.
G is a Lie groupoid (more generally a continuous family groupoid) \(\mapsto \) algebra of pseudodifferential operators \(\Psi^\infty(G) \)
pseudodifferential operator on \(G \) : \(G \)-equivariant continuous family of pseudodifferential operators on the fibers of \(G \)
The structure we need : smooth fibers, continuity on the basis. Continuous family groupoids generalize the holonomy groupoid of a \(C^\infty,0 \)-foliation (A. Connes)

Examples :
- If \(M \) is a manifold without boundary, and \(G = M \times M \), \(\Psi^\infty(G) \) is the algebra of pseudodifferential operators on \(M \).
- If \(G \) is a Lie group, \(\Psi^\infty(G) \) is the algebra of \(G \)-equivariant pseudodifferential operators on \(G \).
- If \(M \) is a manifold with corners, there exists a groupoid such that \(\Psi^\infty(G) \) is the \(b \)-calculus of Melrose.
 Can be extended to manifolds in which the corners are not embedded.
Atiyah-Singer exact sequence

\[0 \to C^\ast(G) \to \Psi^0(G) \overset{\sigma}{\to} C(S^\ast(G)) \to 0 \]

\((S^\ast(G) : \text{cosphere bundle of the Lie algebroid } A(G))\)

Theorem 1 *The analytic index*

\[\text{Ind}_a : K^0(A^\ast(G)) \to K_0(C^\ast(G)) \]

is induced by the tangent groupoid \(G \times]0, 1] \cup A(G) \times \{0\}.\)
Restriction morphism: if $Y \subset G^{(0)}$ is closed and invariant,
$R_Y : \Psi^\infty(G) \to \Psi^\infty(G_Y)$ ("indicial family").
Restriction morphism: if $Y \subset G^{(0)}$ is closed and invariant, $R_Y : \Psi^\infty(G) \rightarrow \Psi^\infty(G_Y)$ (“indicial family”).

Fredholmness

Theorem 2 G groupoid such that $\exists U \subset G^{(0)}$, $G_U = U \times U$; let $Y = G^{(0)} \setminus U$. Then an operator of order 0 is Fredholm if and only if its symbol $\sigma(P)$ is invertible as well as $R_Y(P)$.

This gives a general condition of “total ellipticity”.
Proof:

\[
\begin{array}{cccccc}
0 & \rightarrow & C^*(\mathcal{G}) & \rightarrow & \overline{\Psi^0}(\mathcal{G}) & \xrightarrow{\sigma^0} & C(S^*\mathcal{G}) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & C^*(\mathcal{G}_Y) & \rightarrow & \overline{\Psi^0}(\mathcal{G}_Y) & \rightarrow & C(S^*\mathcal{G}_Y) & \rightarrow & 0 \\
\end{array}
\]
Proof:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & C^*(\mathcal{G}) & \rightarrow & \overline{\Psi}^0(\mathcal{G}) & \xrightarrow{\sigma^0} & C(S^*\mathcal{G}) & \rightarrow & 0 \\
0 & \rightarrow & C^*(\mathcal{G}_Y) & \rightarrow & \overline{\Psi}^0(\mathcal{G}_Y) & \rightarrow & C(S^*\mathcal{G}_Y) & \rightarrow & 0 \\
0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0
\end{array}
\]

\[
0 \rightarrow \mathcal{K} \rightarrow \overline{\Psi}^0(\mathcal{G}) \rightarrow C(S^*\mathcal{G}) \times_f \overline{\Psi}^0(\mathcal{G}_Y) \rightarrow 0
\]

\textbf{Spectral invariance}

length function of polynomial growth on $G \xrightarrow{\sim} \text{Schwartz space on } G$, $S(G)$.

\textbf{Theorem 3} $S(G)$ is a subalgebra of $C^*(G)$, closed under holomorphic functional calculus. Same with $\Psi^0(G') + S(G')$ in $\overline{\Psi^0(G')}$.

Spectral invariance
length function of polynomial growth on \(G \sim \rightarrow \) Schwartz space on \(G, S(G) \).

Theorem 3 \(S(G) \) is a subalgebra of \(C^*(G) \), closed under holomorphic functional calculus. Same with \(\Psi^0(G) + S(G) \) in \(\Psi^0(G) \).

This implies that if an operator of \(\Psi^0(G) + S(G) \) is Fredholm, it has a parametrix in \(\Psi^0(G) + S(G) \).
Spectral invariance

length function of polynomial growth on $G \rightsquigarrow$ Schwartz space on G, $\mathcal{S}(G)$.

Theorem 3 $\mathcal{S}(G)$ is a subalgebra of $C^\ast(G)$, closed under holomorphic functional calculus. Same with $\Psi^0(G') + \mathcal{S}(G)$ in $\overline{\Psi^0(G')}$.

This implies that if an operator of $\Psi^0(G') + \mathcal{S}(G)$ is Fredholm, it has a parametrix in $\Psi^0(G') + \mathcal{S}(G)$.

We also defined other spectrally invariant algebras in the case of the groupoid of the cusp-calculus.
5 – Application to manifolds with corners

X manifold with corners
Application to manifolds with corners:

5 – Application to manifolds with corners

\(X \) manifold with corners

"Universal" groupoid:

\[\mathcal{G}(X) = \left\{ (x, y, \alpha), x, y \in X, \text{codim}(x) = \text{codim}(y), \alpha : N_y F(y) \xrightarrow{\sim} N_x F(x) \right\}. \]

If \(X \) and \(X' \) have the same codimension, the analytic indices take their values in the same group, known.
Application to manifolds with corners:

"b"-groupoid (for manifold with embedded corners):

\[\Gamma_b(X) = \bigcup_{F \text{ face of } X} F \times F \times \mathbb{R}^{\text{codim}F} \]

\[= \{(x, y, \lambda_1, \ldots, \lambda_k) \in X \times X \times \mathbb{R}_+^k, \rho_i(x) = \lambda_i \rho_i(y) \}\]

ρ_i: defining functions of the faces
Application to manifolds with corners:

"b"-groupoid (for manifold with embedded corners):

\[\Gamma_b(X) = \bigcup_{F \text{ face of } X} \overset{\circ}{F} \times \overset{\circ}{F} \times \mathbb{R}^{\text{codim} F} \]

\[= \left\{ (x, y, \lambda_1, \ldots, \lambda_k) \in X \times X \times \mathbb{R}_+^k, \rho_i(x) = \lambda_i \rho_i(y) \right\} \]

\(\rho_i \) : defining functions of the faces

\(\Gamma_b(X) \) is an open subgroupoid of \(\mathcal{G}(X) \)

For the cusp-calculus, homeomorphic groupoid

Length function: \(\phi(x, y, \lambda_1, \ldots, \lambda_k) = \| \log(\lambda_i) \| \)