The lattice of linear Mal’cev conditions

Jakub Opršal

Charles University in Prague

Nashville, May 29, 2015
A Mal’cev condition is a condition of the form there exists some terms satisfying some equations.

Mal’cev conditions are naturally ordered by implication. A stronger condition is *larger* then a weaker one.
A **Mal’cev condition** is a condition of the form there exists some terms satisfying some equations.

Mal’cev conditions are naturally ordered by implication. A stronger condition is *larger* than a weaker one.

A **clone homomorphism** (or **interpretation**) from a clone \mathcal{A} to a clone \mathcal{B} is a map $i: \mathcal{A} \to \mathcal{B}$ mapping n-ary operations to n-operations, and preserving composition and projections.

Interpretation from a variety \mathcal{V} to a variety \mathcal{W} is a functor $I: \mathcal{W} \to \mathcal{V}$ that is commuting with forgetful functors.
A Mal’cev condition is a condition of the form there exists some terms satisfying some equations.
Mal’cev conditions are naturally ordered by implication. A stronger condition is *larger* than a weaker one.

A clone homomorphism (or interpretation) from a clone \mathcal{A} to a clone \mathcal{B} is a map $i: \mathcal{A} \to \mathcal{B}$ mapping n-ary operations to n-operations, and preserving composition and projections.

Interpretation from a variety \mathcal{V} to a variety \mathcal{W} is a functor $I: \mathcal{W} \to \mathcal{V}$ that is commuting with forgetful functors.

Interpretability form quasi-order. By a standard technique, we can get the corresponding partial order (we factor by equi-interpretable).

(Garcia, Taylor: The lattice of interpretability types of varieties, 1984.)
Join of two Mal’cev conditions is the condition given by conjunction of the two.

Join of two varieties V and W in can be described as the variety $V \lor W$ whose operations are operations of both varieties (taken as a discrete union of operations of V and operations W), and whose identities are all identities of both varieties.

In the other words, we can describe algebras in $V \lor W$ as $(A, F \cup G)$ where $(A, F) \in V$ and $(A, G) \in W$.

Examples

▶ Mal’cev \lor Jónsson terms = Pixley term,
▶ Jónsson terms \lor cube term = near unanimity.
▶ Gumm terms \lor SD(\lor) = Jónsson terms.
Join of two Mal’cev conditions is the condition given by conjunction of the two.

Join of two varieties \mathcal{V} and \mathcal{W} in can be described as the variety $\mathcal{V} \vee \mathcal{W}$ whose operations are operations of both varieties (taken as a discrete union of operations of \mathcal{V} and operations \mathcal{W}), and whose identities are all identities of both varieties.

Examples

- Mal’cev \vee Jónsson terms = Pixley term,
- Jónsson terms \vee cube term = near unanimity.
- Gumm terms \vee SD($\mathcal{V} \vee \mathcal{W}$) = Jónsson terms.
Join of two Mal’cev conditions is the condition given by conjunction of the two.

Join of two varieties \mathcal{V} and \mathcal{W} in can be described as the variety $\mathcal{V} \vee \mathcal{W}$ whose operations are operations of both varieties (taken as a discrete union of operations of \mathcal{V} and operations \mathcal{W}), and whose identities are all identities of both varieties.

In the other worlds, we can describe algebras in $\mathcal{V} \vee \mathcal{W}$ as $(A, F \cup G)$ where $(A, F) \in \mathcal{V}$ and $(A, G) \in \mathcal{W}$.
Join of two Mal’cev conditions is the condition given by conjunction of the two.

Join of two varieties \mathcal{V} and \mathcal{W} in can be described as the variety $\mathcal{V} \vee \mathcal{W}$ whose operations are operations of both varieties (taken as a discrete union of operations of \mathcal{V} and operations \mathcal{W}), and whose identities are all identities of both varieties.

In the other worlds, we can describe algebras in $\mathcal{V} \vee \mathcal{W}$ as $(A, F \cup G)$ where $(A, F) \in \mathcal{V}$ and $(A, G) \in \mathcal{W}$.

Examples

- Mal’cev \vee Jónsson terms $=$ Pixley term,
- Jónsson terms \vee cube term $=$ near unanimity.
- Gumm terms \vee $\text{SD}(\vee)$ $=$ Jónsson terms.
Meet of two abstract clones \mathcal{A} and \mathcal{B} is a clone $\mathcal{A} \times \mathcal{B}$ (the product in the category of clones) that is described by

$$(\mathcal{A} \times \mathcal{B})^{[n]} = \mathcal{A}^{[n]} \times \mathcal{B}^{[n]}$$

with the obvious composition, and obvious projections.
Meet of two abstract clones \mathcal{A} and \mathcal{B} is a clone $\mathcal{A} \times \mathcal{B}$ (the product in the category of clones) that is described by

$$(\mathcal{A} \times \mathcal{B})^n = \mathcal{A}^n \times \mathcal{B}^n$$

with the obvious composition, and obvious projections.

For varieties \mathcal{V}_1 and \mathcal{V}_2 the meet is described as the variety $\mathcal{V}_1 \times \mathcal{V}_2$ that is defined in such a way that

1. its signature is disjoint union of signatures of \mathcal{V}_1 and \mathcal{W} with a new binary symbol \cdot,
Meet of two abstract clones \(\mathcal{A} \) and \(\mathcal{B} \) is a clone \(\mathcal{A} \times \mathcal{B} \) (the product in the category of clones) that is described by

\[
(\mathcal{A} \times \mathcal{B})[^n] = \mathcal{A}[^n] \times \mathcal{B}[^n]
\]

with the obvious composition, and obvious projections.

For varieties \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) the meet is described as the variety \(\mathcal{V}_1 \times \mathcal{V}_2 \) that is defined in such a way that

1. its signature is disjoint union of signatures of \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) with a new binary symbol \(\cdot \),

2. it has two subvarieties \(\mathcal{V}_1' \) and \(\mathcal{V}_2' \) that are equi-interpretable with \(\mathcal{V}_1 \), \(\mathcal{V}_2 \) respectively (\(\mathcal{V}_i \) satisfies \(x_1 \cdot x_2 \approx x_i \)),

"Meet of two abstract clones \(\mathcal{A} \) and \(\mathcal{B} \) is a clone \(\mathcal{A} \times \mathcal{B} \) (the product in the category of clones) that is described by

\[
(\mathcal{A} \times \mathcal{B})[^n] = \mathcal{A}[^n] \times \mathcal{B}[^n]
\]

with the obvious composition, and obvious projections.

For varieties \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) the meet is described as the variety \(\mathcal{V}_1 \times \mathcal{V}_2 \) that is defined in such a way that

1. its signature is disjoint union of signatures of \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) with a new binary symbol \(\cdot \),

2. it has two subvarieties \(\mathcal{V}_1' \) and \(\mathcal{V}_2' \) that are equi-interpretable with \(\mathcal{V}_1 \), \(\mathcal{V}_2 \) respectively (\(\mathcal{V}_i \) satisfies \(x_1 \cdot x_2 \approx x_i \)),"
Meets

Meet of two abstract clones \(\mathcal{A} \) and \(\mathcal{B} \) is a clone \(\mathcal{A} \times \mathcal{B} \) (the product in the category of clones) that is described by

\[
(\mathcal{A} \times \mathcal{B})^{[n]} = \mathcal{A}^{[n]} \times \mathcal{B}^{[n]}
\]

with the obvious composition, and obvious projections.

For varieties \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) the meet is described as the variety \(\mathcal{V}_1 \times \mathcal{V}_2 \) that is defined in such a way that

1. its signature is disjoint union of signatures of \(\mathcal{V}_1 \) and \(\mathcal{V} \) with a new binary symbol \(\cdot \),
2. it has two subvarieties \(\mathcal{V}'_1 \) and \(\mathcal{V}'_2 \) that are equi-interpretable with \(\mathcal{V}_1 \), \(\mathcal{V}_2 \) respectively (\(\mathcal{V}_i \) satisfies \(x_1 \cdot x_2 \approx x_i \)),
3. every algebra in \(\mathcal{V}_1 \times \mathcal{V}_2 \) is a product of an algebra from \(\mathcal{V}'_1 \) and an algebra from \(\mathcal{V}'_2 \).
A linear Mal’cev condition is a condition that do not include term composition, i.e., only equations of the form

\[f(x_{i_1}, \ldots, x_{i_n}) \approx g(x_{j_1}, \ldots, x_{i_m}), \quad \text{or} \quad f(x_{i_1}, \ldots, x_{i_n}) \approx x_j \]

are allowed.
A linear Mal’cev condition is a condition that do not include term composition, i.e., only equations of the form

\[f(x_{i_1}, \ldots, x_{i_n}) \approx g(x_{j_1}, \ldots, x_{i_m}), \quad \text{or} \quad f(x_{i_1}, \ldots, x_{i_n}) \approx x_j \]

are allowed.

Examples

Mal’cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube term, Jónsson terms, etc.
A linear Mal’cev condition is a condition that do not include term composition, i.e., only equations of the form

\[f(x_{i_1}, \ldots, x_{i_n}) \approx g(x_{j_1}, \ldots, x_{i_m}), \quad \text{or} \quad f(x_{i_1}, \ldots, x_{i_n}) \approx x_j \]

are allowed.

Examples

Mal’cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube term, Jónsson terms, etc.

Not examples

group terms, lattice terms, semilattice term, congruence uniformity, congruence singularity?
A **linear Mal’cev condition** is a condition that do not include term composition, i.e., only equations of the form

\[f(x_{i_1}, \ldots, x_{i_n}) \approx g(x_{j_1}, \ldots, x_{i_m}), \quad \text{or} \quad f(x_{i_1}, \ldots, x_{i_n}) \approx x_j \]

are allowed.

Examples

Mal’cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube term, Jónsson terms, etc.

Not examples

group terms, lattice terms, semilattice term, congruence uniformity, congruence singularity?.

Linear Mal’cev condition forms a **subposet** of the lattice of all Mal’cev conditions.
A linear Mal’cev condition is a condition that do not include term composition, i.e., only equations of the form

\[f(x_{i_1}, \ldots, x_{i_n}) \approx g(x_{j_1}, \ldots, x_{i_m}), \quad \text{or} \quad f(x_{i_1}, \ldots, x_{i_n}) \approx x_j \]

are allowed.

Examples

Mal’cev term, Pixley term, Day terms, Gumm terms, near unanimity, cube term, Jónsson terms, etc.

Not examples

group terms, lattice terms, semilattice term, congruence uniformity, congruence singularity?.

Linear Mal’cev condition forms a subposet of the lattice of all Mal’cev conditions.
But, the subposet is not a sublattice!
Proposition

Meet of Mal’cev term and congruence distributivity is not equivalent to any linear Mal’cev condition.
Proposition

Meet of Mal’cev term and congruence distributivity is not equivalent to any linear Mal’cev condition.

Definition (Barto, Pinsker)

An algebra A is said to be a retract of B if there are two maps $a: B \to A$ and $b: A \to B$ such that $ab = 1_A$, and for every basic operation f we have

$$f_A(a_1, \ldots, a_n) = af_B(b(a_1), \ldots, b(a_n)).$$
Proposition

Mead of Mal’cev term and congruence distributivity is not equivalent to any linear Mal’cev condition.

Definition (Barto, Pinsker)

An algebra A is said to be a retract of B if there are two maps $a: B \to A$ and $b: A \to B$ such that $ab = 1_A$, and for every basic operation f we have

$$f_A(a_1, \ldots, a_n) = af_B(b(a_1), \ldots, b(a_n)).$$

Observation

If A is a retract of B then A satisfies all the linear equations that B does.
We will show that meet of Mal’cev and majority is not linear.
We will show that meet of Mal’cev and majority is not linear. Let

- \mathcal{V}_1 be the variety with single ternary Mal’cev operation q,

- \mathcal{V}_2 be the variety with the majority operation m,

- \mathcal{W} a variety equi-interpretable with $\mathcal{V}_1 \times \mathcal{V}_2$ that is defined by linear equations.

We choose algebra in \mathcal{V}_1' that has no Jonsson terms, and similarly algebra in \mathcal{V}_2' that has no Mal’cev term. For example $A = (\{0, 1\}, x + y + z, \text{proj}_3 1, \text{proj}_2 1)$, and $B = (\{0, 1\}, \text{proj}_3 1, (x \lor y) \land (y \lor z) \land (x \lor z), \text{proj}_2 2)$.

We will show that meet of Mal’cev and majority is not linear. Let

- \mathcal{V}_1 be the variety with single ternary Mal’cev operation q,
- \mathcal{V}_2 be the variety with the majority operation m,
We will show that meet of Mal’cev and majority is not linear. Let

1. \mathcal{V}_1 be the variety with single ternary Mal’cev operation q,
2. \mathcal{V}_2 be the variety with the majority operation m,
3. \mathcal{W} a variety equi-interpretable with $\mathcal{V}_1 \times \mathcal{V}_2$ that is defined by linear equations.
We will show that meet of Mal’cev and majority is not linear. Let

- \mathcal{V}_1 be the variety with single ternary Mal’cev operation q,
- \mathcal{V}_2 be the variety with the majority operation m,
- \mathcal{W} a variety equi-interpretable with $\mathcal{V}_1 \times \mathcal{V}_2$ that is defined by linear equations.

We choose algebra in \mathcal{V}_1' that has no Jónsson terms, and similarly algebra in \mathcal{V}_2' that has no Mal’cev term.
We will show that meet of Mal’cev and majority is not linear. Let

- \mathcal{V}_1 be the variety with single ternary Mal’cev operation q,
- \mathcal{V}_2 be the variety with the majority operation m,
- \mathcal{W} a variety equi-interpretable with $\mathcal{V}_1 \times \mathcal{V}_2$ that is defined by linear equations.

We choose algebra in \mathcal{V}_1' that has no Jónsson terms, and similarly algebra in \mathcal{V}_2' that has no Mal’cev term. For example

- $A = (\{0, 1\}, x + y + z, \text{proj}_1^3, \text{proj}_1^2)$, and
- $B = (\{0, 1\}, \text{proj}_1^3, (x \lor y) \land (y \lor z) \land (x \lor z), \text{proj}_2^2)$.
Consider the interpretation of $A \times B$ in \mathcal{W}, and take its retract C via

\[
\begin{align*}
(0,0) & \quad \rightarrow \quad 0 \\
(0,1) & \quad \rightarrow \quad 1 \\
(1,0) & \quad \rightarrow \quad 2 \\
(1,1) & \quad \leftarrow
\end{align*}
\]
Consider the interpretation of $A \times B$ in \mathcal{W}, and take its retract C via

\[
\begin{align*}
(0,0) & \quad \rightarrow \quad 0 \\
(0,1) & \quad \rightarrow \quad 1 \\
(1,0) & \quad \rightarrow \quad 2 \\
(1,1) & \quad \rightarrow \quad 0
\end{align*}
\]

Finally, let C' be the interpretation of C in $\mathcal{V}_1 \times \mathcal{V}_2$.

Consider the interpretation of $A \times B$ in \mathcal{W}, and take its retract C via

\[
\begin{align*}
(0,0) & \quad \rightarrow \quad 0 \\
(0,1) & \quad \rightarrow \quad 1 \\
(1,0) & \quad \rightarrow \quad 2 \\
(1,1) & \quad \leftarrow
\end{align*}
\]

Finally, let C' be the interpretation of C in $\mathcal{V}_1 \times \mathcal{V}_2$. Then

1. Both $B' = \{0,1\}$ and $A' = \{1,2\}$ are subuniverses of C', $\text{Clo } A'$ is a reduct of $\text{Clo } A$, and $\text{Clo } B'$ is a reduct of $\text{Clo } B$.
Consider the interpretation of $A \times B$ in \mathcal{V}, and take its retract C via

(0,0) \leftrightarrow 0
(0,1) \leftrightarrow 1
(1,0) \rightarrow 2
(1,1) \leftarrow

Finally, let C' be the interpretation of C in $\mathcal{V}_1 \times \mathcal{V}_2$. Then

1. Both $B' = \{0, 1\}$ and $A' = \{1, 2\}$ are subuniverses of C', $\text{Clo} A'$ is a reduct of $\text{Clo} A$, and $\text{Clo} B'$ is a reduct of $\text{Clo} B$,

2. $|C'| = 3$ which is a prime! So, either $C' \in \mathcal{V}_1$, or $C' \in \mathcal{V}_2$,
Meet of linear conditions (cont.)

Consider the interpretation of $A \times B$ in \mathcal{W}, and take its retract C via

$$(0,0) \leftrightarrow 0 \quad (0,1) \leftrightarrow 1 \quad (1,0) \rightarrow 2 \quad (1,1)$$

Finally, let C' be the interpretation of C in $\mathcal{V}_1 \times \mathcal{V}_2$. Then

1. Both $B' = \{0, 1\}$ and $A' = \{1, 2\}$ are subuniverses of C', $\text{Clo } A'$ is a reduct of $\text{Clo } A$, and $\text{Clo } B'$ is a reduct of $\text{Clo } B$,
2. $|C'| = 3$ which is a prime! So, either $C' \in \mathcal{V}_1'$, or $C' \in \mathcal{V}_2'$,
3. but neither is possible since A has no majority term, and B has no Mal’cev term!
Consider the interpretation of $A \times B$ in \mathcal{W}, and take its retract C via

- $(0,0) \leftrightarrow 0$
- $(0,1) \leftrightarrow 1$
- $(1,0) \rightarrow 2$
- $(1,1) \leftarrow$

Finally, let C' be the interpretation of C in $\mathcal{V}_1 \times \mathcal{V}_2$. Then

1. Both $B' = \{0, 1\}$ and $A' = \{1, 2\}$ are subuniverses of C', $\text{Clo } A'$ is a reduct of $\text{Clo } A$, and $\text{Clo } B'$ is a reduct of $\text{Clo } B$,
2. $|C'| = 3$ which is a prime! So, either $C' \in \mathcal{V}_1'$, or $C' \in \mathcal{V}_2'$,
3. but neither is possible since A has no majority term, and B has no Mal’cev term!
Lattice of linear varieties

Problems with Mal’cev conditions
Lattice of linear varieties

Problems with Mal’cev conditions

- they are not closed under infinite joins,
Problems with Mal’cev conditions

- they are not closed under infinite joins,
- there is not a largest linear Mal’cev condition interpretable in some clone (or non-linear Mal’cev condition).
Problems with Mal’cev conditions

- they are not closed under infinite joins,
- there is not a largest linear Mal’cev condition interpretable in some clone (or non-linear Mal’cev condition).

These problems can be solved by taking all linear varieties instead. (We lose Mal’cev conditions that are not strong.)
Prime elements of the lattice

Let X be a given set of variables, and $A \subseteq \mathrm{Eq}(X)$. We say that variety V is A-colorable if there is a map $c: F_V(X) \rightarrow X$ such that

1. $c(x) = x$ for all $x \in X$, and
2. for every $\alpha \in A$ whenever $f \sim \hat{\alpha} g$ then $c(f) \sim \alpha c(g)$

where $\hat{\alpha}$ denotes the congruence of the free algebra over X generated by α.

We say that Mal'cev condition P satisfies coloring condition A if variety V satisfies P if and only if V is not A-colorable.

Many of Mal'cev conditions that are suspected to be prime satisfy some coloring condition. Namely

- congruence n-permutability,
- congruence modularity,
- satisfying non-trivial congruence identity,
- n-cube terms,
- triviality ($x \approx y$).
(Sequeira, Barto) Let X be a given set of variables, and $A \subseteq \text{Eq}(X)$. We say that variety \mathcal{V} is A-colorable if there is a map $c: F_\mathcal{V}(X) \to X$ such that

1. $c(x) = x$ for all $x \in X$, and
2. for every $\alpha \in A$ whenever $f \sim_\alpha g$ then $c(f) \sim_\alpha c(g)$

where \sim_α denotes the congruence of the free algebra over X generated by α.
Let X be a given set of variables, and $A \subseteq \text{Eq}(X)$. We say that variety \mathcal{V} is A-colorable if there is a map $c: F_\mathcal{V}(X) \to X$ such that

1. $c(x) = x$ for all $x \in X$, and
2. for every $\alpha \in A$ whenever $f \sim _\alpha g$ then $c(f) \sim _\alpha c(g)$

where $\sim _\alpha$ denotes the congruence of the free algebra over X generated by α. We say that Mal’cev condition \mathcal{P} satisfies coloring condition A if variety \mathcal{V} satisfies \mathcal{P} if and only if \mathcal{V} is not A-colorable.
(Sequeira, Barto) Let X be a given set of variables, and $A \subseteq \text{Eq}(X)$. We say that variety \mathcal{V} is A-colorable if there is a map $c : F_{\mathcal{V}}(X) \to X$ such that

1. $c(x) = x$ for all $x \in X$, and
2. for every $\alpha \in A$ whenever $f \sim_{\hat{\alpha}} g$ then $c(f) \sim_{\alpha} c(g)$

where $\hat{\alpha}$ denotes the congruence of the free algebra over X generated by α.

We say that Mal’cev condition \mathcal{P} satisfies coloring condition A if variety \mathcal{V} satisfies \mathcal{P} if and only if \mathcal{V} is not A-colorable.

Many of Mal’cev conditions that are suspected to be prime satisfy some coloring condition. Namely
(Sequeira, Barto) Let X be a given set of variables, and $A \subseteq \text{Eq}(X)$. We say that variety \mathcal{V} is A-colorable if there is a map $c : F_\mathcal{V}(X) \to X$ such that

1. $c(x) = x$ for all $x \in X$, and
2. for every $\alpha \in A$ whenever $f \sim_\widehat{\alpha} g$ then $c(f) \sim_\alpha c(g)$

where $\widehat{\alpha}$ denotes the congruence of the free algebra over X generated by α. We say that Mal’cev condition \mathcal{P} satisfies coloring condition A if variety \mathcal{V} satisfies \mathcal{P} if and only if \mathcal{V} is not A-colorable.

Many of Mal’cev conditions that are suspected to be prime satisfy some coloring condition. Namely

- congruence n-permutability,
- congruence modularity,
- satisfying non-trivial congruence identity,
- n-cube terms,
- triviality ($x \approx y$).
Theorem (Sequeira; Bentz-Sequeira)

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and n-cube term are prime with respect to varieties axiomatized by linear equations.
Theorem (Sequeira; Bentz-Sequeira)

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and n-cube term are prime with respect to varieties axiomatized by linear equations.

Theorem (O.)

A Mal’cev condition \mathcal{M} satisfy coloring condition A if and only if for every linear variety \mathcal{V} we have that either \mathcal{V} satisfies \mathcal{M}, or \mathcal{V} is interpretable in $\text{Pol}(X, A)$.
Theorem (Sequeira; Bentz-Sequeira)

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and n-cube term are prime with respect to varieties axiomatized by linear equations.

Theorem (O.)

A Mal’cev condition \mathcal{M} satisfy coloring condition A if and only if for every linear variety \mathcal{V} we have that either \mathcal{V} satisfies \mathcal{M}, or \mathcal{V} is interpretable in $\text{Pol}(X, A)$

Proof.
Theorem (Sequeira; Bentz-Sequeira)

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and n-cube term are prime with respect to varieties axiomatized by linear equations.

Theorem (O.)

A Mal’cev condition \mathcal{M} satisfy coloring condition A if and only if for every linear variety \mathcal{V} we have that either \mathcal{V} satisfies \mathcal{M}, or \mathcal{V} is interpretable in $\text{Pol}(X, A)$.

Proof.

Suppose that \mathcal{V} is linear and A-colorable ($A \subseteq \text{Eq} \ X$). Then we define an interpretation $i: \mathcal{V} \rightarrow \text{Pol}(X, A)$ as

$$i(f)(x_0, \ldots, x_n) = c(f(x_0, x_1, \ldots, x_n))$$

for every basic operation f, and extend to terms.
Theorem (Sequeira; Bentz-Sequeira)

Congruence modularity, n-permutability, satisfying non-trivial congruence identity, and \textit{n-cube term} are prime with respect to varieties axiomatized by linear equations.

Theorem (O.)

A Mal’cev condition \(M \) satisfy coloring condition \(A \) if and only if for every linear variety \(V \) we have that either \(V \) satisfies \(M \), or \(V \) is interpretable in \(\text{Pol}(X, A) \).

Proof.

Suppose that \(V \) is linear and \(A \)-colorable \((A \subseteq \text{Eq} X)\). Then we define an interpretation \(i: V \rightarrow \text{Pol}(X, A) \) as

\[
i(f)(x_0, \ldots, x_n) = c(f(x_0, x_1, \ldots, x_n))
\]

for every basic operation \(f \), and extend to terms.
We say that two subsets of elements A, and B split a lattice if for every element x of the lattice we have either $a \leq x$ for some $a \in A$, or $x \leq b$ for some $b \in B$.

Theorem (Valeriote, Willard, 2014) \nn-permutability and idempotent polymorphisms of two-element poset split the lattice of idempotent varieties.

Theorem (Kiss, Kearnes, 2013) \nSatisfying a non-trivial congruence identity and the set $\{\text{Pol}(L) : L \text{ is a semilattice}\}$ split the lattice of idempotent varieties.
We say that two subsets of elements A, and B split a lattice if for every element x of the lattice we have either $a \leq x$ for some $a \in A$, or $x \leq b$ for some $b \in B$.

Theorem (Valeriote, Willard, 2014)

n-permutability and idempotent polymorphisms of two-element poset split the lattice of idempotent varieties.
We say that two subsets of elements A, and B split a lattice if for every element x of the lattice we have either $a \leq x$ for some $a \in A$, or $x \leq b$ for some $b \in B$.

Theorem (Valeriote, Willard, 2014)

n-permutability and idempotent polymorphisms of two-element poset split the lattice of idempotent varieties.

Theorem (Kiss, Kearnes, 2013)

Satisfying a non-trivial congruence identity and the set \{Pol(L) : L is a semilattice} split the lattice of idempotent varieties.
Problem

Find a satisfactory description of linear meet.
Some open problems...

Problem
Find a satisfactory description of linear meet.

Problem
Is CM the linear meet of Mal’cev and CD?
Some open problems...

Problem
Find a satisfactory description of linear meet.

Problem
Is CM the linear meet of Mal’cev and CD?

Problem
Does every prime element of the linear lattice satisfy some coloring condition? (Need to consider a little generalized conditions.)

Thank you for your attention!
Some open problems...

Problem
Find a satisfactory description of linear meet.

Problem
Is CM the linear meet of Mal’cev and CD?

Problem
Does every prime element of the linear lattice satisfy some coloring condition? (Need to consider a little generalized conditions.)

Problem
Are the Mal’cev conditions that satisfy some coloring condition prime? (Known for Mal’cev, cyclic terms, not known for everything else.)
Some open problems...

Problem
Find a satisfactory description of linear meet.

Problem
Is CM the linear meet of Mal’cev and CD?

Problem
Does every prime element of the linear lattice satisfy some coloring condition? (Need to consider a little generalized conditions.)

Problem
Are the Mal’cev conditions that satisfy some coloring condition prime? (Known for Mal’cev, cyclic terms, not known for everything else.)

Thank you for your attention!