Boolean Skeleton and Pierce representation of Bounded BCK-algebras

Joan Gispert∗ Antoni Torrens †
Facultat de Matemàtiques, Universitat de Barcelona‡

Introduction

BCK-algebras were introduced by K. Iseki in [6] in order to give an algebraic framework for Meredith's implicational logic BCK ("BCK logic"). Bounded BCK-algebras were also introduced by Iseki in [7] as BCK-algebras with an additional constant which is interpreted as the lower bound. In fact, they are the algebraic counterpart of the BCK-logic plus a negation satisfying the Duns Scoto law. Since this can be expressed by means of a simple axiom, Bounded BCK-logic is algebraizable (in the sense of Blok Pigozzi [2]) and its equivalent algebraic semantics is the class of Bounded BCK-algebras.

On the other hand, distributive congruence varieties have the Boolean factor property, i.e., the factor congruences of its members form a Boolean algebra, and hence they can be represented as weak Boolean product of algebras in the variety, i.e., isomorphic to the global sections of a Boolean sheaf, called Pierce sheaf in [1].

The class of all bounded BCK-algebras is not a variety, but it is a quasivariety relatively congruence distributive Then our main purpose is to study the representability of Bounded BCK-algebras as a weak Boolean product of BCK-algebras, in similar form as the given in [1, 4] for varieties. It is clear that in our case we need to relativize the used notions.

We recall that an i-filter of a bounded BCK-algebra \(B \) is a subset \(F \) of \(B \) such that

(I1) \(\top \in F \)

and

(I2) \(a, a \rightarrow b \in F \) implies \(b \in F \).

Then the correspondence \(\theta \mapsto \top/\theta \) gives an order isomorphism from \(\text{Con}_{BCK}(B) \) onto the family \(F_i(B) \) of all implicative filters of \(B \), both ordered by inclusion. Its inverse is given by \(F \mapsto \theta_F = \{ (a, b) \in B \times B : a \rightarrow b, b \rightarrow a \in F \} \).

Our first main task is to show that in any bounded BCK-algebra \(A \), its BCK-factor congruences, or factor BCK-congruences with a BCK-congruence as a companion factor, form a Boolean algebra. That is, \(A \) has a relative "Boolean BCK-factor property". To see this we show that BCK-factors can be identify with elements of the algebra, called factor elements, whose set

\[
B_F(A) = \{ a \in A : \langle a \rangle \cap \langle \neg a \rangle = \{ \top \} \text{ and } \theta_{\langle a \rangle} \circ \theta_{\langle \neg a \rangle} = \nabla A \}.
\]

∗jgispertb@ub.edu
†atorrens@ub.edu
‡Both authors are partially supported by grants MTM2004-03101 and TIN2004-07933-C03-02 of the Spanish Ministry of Education and Science, including fender funds of the European Union, and 2005SGR 00083 of D.U.R.S.I of Generalitat de Catalunya.
is the universe of a subalgebra $B_F(A)$, called Boolean skeleton, of a suitable Boolean algebra $B_C(A)$ called Boolean center, which is a subalgebra of A. The elements in $B_C(A) = \{a \in A : (a) \cap (\neg a) = \{\top\}\}$, called Boolean elements, are the members of A whose generated implicative filters is complemented in the distributive lattice of i-filters, and its complement is the implicative filter generated by its negation.

1 Boolean and Pierce representation of bounded BCK-algebras.

We recall that an algebra A is representable as a weak Boolean product of a family $(A_x : x \in X)$ when

Br(1) There exists a subdirect embedding α from A into $\prod_{x \in X} A_x$.

Br(2) There is a Boolean topological space carried on X, i.e., compact Hausdorff with the family of clopen subsets as a open basis, such that:

- Br(2a) for any $a, b \in A$, $[\alpha a = \alpha b] = \{x \in X : \alpha a(x) = \alpha b(x)\}$ is open subset of X.
- Br(2b) If N is a clopen subset of X, then for any $a, b \in A$,

$$aa|_N \cup ab|_{X-N} \in \alpha(A)$$

By requiring in condition Br(2a) that $[\alpha a = \alpha b]$ be clopen we say that A is representable as a Boolean product. As it is explained in [5], weak Boolean products (Boolean products) are the global sections of sheaves (Hausdorff sheaves) of algebras over Boolean spaces. The algebras A_x are called stalks.

Theorem 1.1 Any bounded BCK-algebra admits a weak Boolean representation of bounded BCK-algebras for each subalgebra of $B_F(A)$ over its associated Boolean space. Moreover every representation as a weak Boolean product of bounded BCK-algebras is equivalent to one of the above representations.

It follows from previous result that the weak Boolean representation given by $B_F(A)$ is the finest representation and it is called weak Pierce BCK-representation. In this case, when the representation is as Boolean product we call it Pierce BCK-representation.

Next we analyze these representations provided that its stalks satisfy some conditions. For instance, if we impose each stalk to be directly BCK-indecomposable we get what we call a good weak Pierce BCK-representation.

Theorem 1.2 Let Q be a relative subvariety of $bBCK$. Then Q is well weak Pierce representable if and only if for any $A \in Q$, $B_F(A) = B_C(A) = \{a \in A : a \rightarrow \neg a = \neg a$ and $\neg a \rightarrow a = a\}$

We also characterize classes of BCK-algebras such that in its (weak) Pierce BCK-representations the stalks are finitely subdirectly BCK-irreducible or simple BCK-algebras.

Theorem 1.3 For each bounded BCK-algebra A, the following are equivalent:
(i) \(\mathcal{A} \) is representable as a weak Boolean product of finitely subdirectly b\(\mathbb{BCK} \)-irreducible,

(ii) For each \(p \in \text{Prim}(B_F(\mathcal{A})) \), \(\langle p \rangle \in \text{Prim}(\mathcal{A}) \)

(iii) \(m\text{Prim}(\mathcal{A}) = \{ \langle p \rangle : p \in \text{Prim}(B_F(\mathcal{A})) \} \).

where \(\text{Prim}(\mathcal{A}) \) denotes the set of all proper prime \(i \)-filters of \(\mathcal{A} \) and \(m\text{Prim}(\mathcal{A}) \) the set of all the minimal elements in \((\text{Prim}(\mathcal{A}), \subseteq) \)

Theorem 1.4 Let \(Q \) be a relative subvariety of \(b\mathbb{BCK} \), then the following conditions are equivalent:

(i) All algebras in \(Q \) are hyperarchimedean i.e. weak Pierce BCK-representable with simple algebras as stalks.

(ii) There is \(n \leq 1 \) such that the equation

\[
(EM_n) (x \rightarrow y) \rightarrow (((x^n \rightarrow \perp) \rightarrow y) \rightarrow y) \approx \top
\]

hold in \(Q \), and for any \(\mathcal{A} \in Q \), \(B_F(\mathcal{A}) = B_C(\mathcal{A}) = \{ a \in A : a \rightarrow \neg a = \neg a \) and \(\neg a \rightarrow a = a \} \).

Moreover, if the above are true, then \(Q \) is a variety.

Through all the work we also include several examples of bounded BCK-algebras and relative subvarieties of bounded BCK-algebras, to illustrate our definitions and the independence of some notions.

References

