A commutative residuated lattice (briefly, CRL) is an algebra $\langle A; \cdot, \to, \wedge, \lor, e \rangle$ such that $\langle A; \cdot, e \rangle$ is a commutative monoid, $\langle A; \wedge, \lor \rangle$ is a lattice, \to is a binary operation, and for all $a, b, c \in A$,

$$c \leq a \to b \iff a \cdot c \leq b$$

where \leq is the lattice order. A unary operation \neg on a CRL A is called an involution provided that for all $a, b \in A$,

$$a \to (\neg b) = b \to (\neg a) \quad \text{and} \quad \neg\neg a = a.$$

In this case, the algebra $\langle A; \cdot, \to, \wedge, \lor, \neg, e \rangle$ is called an involutive CRL. We say a CRL (involutive or otherwise) is idempotent if it satisfies $x \cdot x \approx x$, linear if its lattice reduct is linearly ordered, and semilinear if it is a subdirect product of linear algebras. It is known that the class of all CRLs is an arithmetical variety, which has the congruence extension property (CEP). Every involutive CRL has the same congruences as its CRL-reduct, essentially because it satisfies $\neg x \approx x \to (\neg e)$.

By a Sugihara monoid we mean an involutive CRL which is idempotent and whose lattice reduct is distributive. The class SM of Sugihara monoids is clearly a variety. As shown by Dunn in [1], every n–generated subdirectly irreducible member of SM is a residuated chain with at most $2n + 2$ elements. Thus SM is locally finite and semilinear. SM is generated by a single algebra (which is based on the chain of non-zero integers). Because this algebra satisfies a quasi-equation not satisfied by SM, the quasivariety generated by this algebra is properly contained by SM.

We call a variety V structurally complete if every proper subquasivariety of V generates a proper subvariety of V. Thus SM is not structurally complete. By a positive Sugihara monoid we mean any $\{\neg\}$–free subreduct of a Sugihara monoid. PSM will denote the class of all positive Sugihara monoids, which happens to be a variety. Of course, PSM is locally finite because SM is. We are interested in whether PSM is structurally complete. The question for some related varieties is answered in [5]. The larger class of idempotent, semilinear CRLs is not structurally complete, although the class of its $\{e\}$–free subreducts is. In fact, this class of subreducts is primitive in the sense that each of its subquasivarieties is already a variety. The methods used in [5] do not apply to PSM, so we need a new approach to obtain the main result, that PSM is not only structurally complete, but primitive as well.

We mention here that the properties under discussion have a significant interpretation in logic. A logical consequence relation \vdash is said to be structurally
complete if each of its proper extensions contains some new theorems (as opposed to having only new derivable rules). If a variety V is the equivalent algebraic semantics for \vdash (in the sense of [3]), then V is structurally complete iff \vdash is. Sugihara monoids constitute the equivalent algebraic semantics of the logical system RM^t. This system is derived from the relevance logic “R–mingle” (axiomatized in [1]) by adding the sentential constant t to the language, as well as the axioms $\vdash t$ and $\vdash t \rightarrow (x \rightarrow x)$. Thus, the fact that SM is not structurally complete reflects the same fact (known for some time) regarding RM^t. Because PSM algebraizes the full negation-free fragment of RM^t, the primitivity of PSM implies that this fragment is structurally complete, as are all of its extensions.

We investigate the structure of directly indecomposable members of PSM, first by showing:

Theorem 1. A finite, idempotent semilinear CRL is directly indecomposable if and only if its lattice reduct has a unique co-atom.

Given a finite CRL A, one may define a CRL $A^{\perp \top}$ by adding new greatest and least elements (\top and \bot, respectively), and defining $\bot \cdot a = a$ for any $a \in A \cup \{\bot, \top\}$, and $\top \cdot a = \top$ whenever $a \neq \bot$. The resulting structure is residuated, and it is a directly indecomposable CRL. In the case of PSM, we can prove a converse:

Theorem 2. Every directly indecomposable member of PSM of size greater than 2 is of the form $A^{\perp \top}$ for some $A \in PSM$.

This useful fact makes proof by induction on the size of algebras in PSM possible. For example, we can show:

Proposition 3. The lattice reduct of every finite positive Sugihara monoid is self-dual.

This follows from the fact that (the lattice reduct of) $A^{\perp \top}$ is self-dual if A is, and that a product of two self-dual algebras is also self-dual.

To show that PSM is primitive, we will use the following characterization of primitivity, which is a variation of results in [4] and [2].

Theorem 4. A variety V is primitive iff whenever B is a subdirectly irreducible homomorphic image of a finitely generated algebra $A \in V$ then B may be embedded into some ultrapower of A.

So as a locally finite variety, PSM is primitive iff every subdirectly irreducible homomorphic image of a finite algebra A may be embedded back into A. (This specialization to locally finite varieties appears in [4], and with a direct proof in [6].) We can show that PSM actually has a stronger property. An algebra A is projective over a class of algebras (in the algebraic sense) provided that it can be embedded into any algebra in the class which has A as a homomorphic image, and in such a way that the composition of the two mappings is the identity on A. We can show
Theorem 5. Every finite subdirectly irreducible positive Sugihara monoid is projective in PSM (in the algebraic sense).

The following is an immediate consequence.

Theorem 6. PSM is primitive, that is, every subquasivariety of PSM is actually a variety.

And so we have:

Theorem 7. The full negation-free fragment of RM^t is structurally complete, as are all of its extensions.

References

